// File:src/qml/ThreeQML.js /* The MIT License Copyright © 2010-2015 three.js authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * QtQuick port of three.js library from: https://github.com/mrdoob/three.js * Latest version for current stable Qt version can be found at: https://github.com/tronlec/three.js/tree/stable * Latest version for current Qt version under development can be found at: https://github.com/tronlec/three.js/tree/master * @author Pasi keränen / pasi.keranen@theqtcompany.com */ // File:src/Three.js /** * @author mrdoob / http://mrdoob.com/ */ function THREE() {}; THREE.REVISION = '74' // //if ( typeof define === 'function' && define.amd ) { // define( 'three', THREE ); //} else if ( 'undefined' !== typeof exports && 'undefined' !== typeof module ) { // module.exports = THREE; //} // if ( Number.EPSILON === undefined ) { Number.EPSILON = Math.pow( 2, - 52 ); } // if ( Math.sign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; }; } if ( Function.prototype.name === undefined && Object.defineProperty !== undefined ) { // Missing in IE9-11. // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty( Function.prototype, 'name', { get: function () { return this.toString().match( /^\s*function\s*(\S*)\s*\(/ )[ 1 ]; } } ); } if ( Object.assign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign Object.defineProperty( Object, 'assign', { writable: true, configurable: true, value: function ( target ) { 'use strict'; if ( target === undefined || target === null ) { throw new TypeError( "Cannot convert first argument to object" ); } var to = Object( target ); for ( var i = 1, n = arguments.length; i !== n; ++ i ) { var nextSource = arguments[ i ]; if ( nextSource === undefined || nextSource === null ) continue; nextSource = Object( nextSource ); var keysArray = Object.keys( nextSource ); for ( var nextIndex = 0, len = keysArray.length; nextIndex !== len; ++ nextIndex ) { var nextKey = keysArray[ nextIndex ]; var desc = Object.getOwnPropertyDescriptor( nextSource, nextKey ); if ( desc !== undefined && desc.enumerable ) { to[ nextKey ] = nextSource[ nextKey ]; } } } return to; } } ); } // https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent.button THREE.MOUSE = { LEFT: Qt.LeftButton, MIDDLE: Qt.MiddleButton, RIGHT: Qt.RightButton }; // GL STATE CONSTANTS THREE.CullFaceNone = 0; THREE.CullFaceBack = 1; THREE.CullFaceFront = 2; THREE.CullFaceFrontBack = 3; THREE.FrontFaceDirectionCW = 0; THREE.FrontFaceDirectionCCW = 1; // SHADOWING TYPES THREE.BasicShadowMap = 0; THREE.PCFShadowMap = 1; THREE.PCFSoftShadowMap = 2; // MATERIAL CONSTANTS // side THREE.FrontSide = 0; THREE.BackSide = 1; THREE.DoubleSide = 2; // shading THREE.FlatShading = 1; THREE.SmoothShading = 2; // colors THREE.NoColors = 0; THREE.FaceColors = 1; THREE.VertexColors = 2; // blending modes THREE.NoBlending = 0; THREE.NormalBlending = 1; THREE.AdditiveBlending = 2; THREE.SubtractiveBlending = 3; THREE.MultiplyBlending = 4; THREE.CustomBlending = 5; // custom blending equations // (numbers start from 100 not to clash with other // mappings to OpenGL constants defined in Texture.js) THREE.AddEquation = 100; THREE.SubtractEquation = 101; THREE.ReverseSubtractEquation = 102; THREE.MinEquation = 103; THREE.MaxEquation = 104; // custom blending destination factors THREE.ZeroFactor = 200; THREE.OneFactor = 201; THREE.SrcColorFactor = 202; THREE.OneMinusSrcColorFactor = 203; THREE.SrcAlphaFactor = 204; THREE.OneMinusSrcAlphaFactor = 205; THREE.DstAlphaFactor = 206; THREE.OneMinusDstAlphaFactor = 207; // custom blending source factors //THREE.ZeroFactor = 200; //THREE.OneFactor = 201; //THREE.SrcAlphaFactor = 204; //THREE.OneMinusSrcAlphaFactor = 205; //THREE.DstAlphaFactor = 206; //THREE.OneMinusDstAlphaFactor = 207; THREE.DstColorFactor = 208; THREE.OneMinusDstColorFactor = 209; THREE.SrcAlphaSaturateFactor = 210; // depth modes THREE.NeverDepth = 0; THREE.AlwaysDepth = 1; THREE.LessDepth = 2; THREE.LessEqualDepth = 3; THREE.EqualDepth = 4; THREE.GreaterEqualDepth = 5; THREE.GreaterDepth = 6; THREE.NotEqualDepth = 7; // TEXTURE CONSTANTS THREE.MultiplyOperation = 0; THREE.MixOperation = 1; THREE.AddOperation = 2; // Mapping modes THREE.UVMapping = 300; THREE.CubeReflectionMapping = 301; THREE.CubeRefractionMapping = 302; THREE.EquirectangularReflectionMapping = 303; THREE.EquirectangularRefractionMapping = 304; THREE.SphericalReflectionMapping = 305; // Wrapping modes THREE.RepeatWrapping = 1000; THREE.ClampToEdgeWrapping = 1001; THREE.MirroredRepeatWrapping = 1002; // Filters THREE.NearestFilter = 1003; THREE.NearestMipMapNearestFilter = 1004; THREE.NearestMipMapLinearFilter = 1005; THREE.LinearFilter = 1006; THREE.LinearMipMapNearestFilter = 1007; THREE.LinearMipMapLinearFilter = 1008; // Data types THREE.UnsignedByteType = 1009; THREE.ByteType = 1010; THREE.ShortType = 1011; THREE.UnsignedShortType = 1012; THREE.IntType = 1013; THREE.UnsignedIntType = 1014; THREE.FloatType = 1015; THREE.HalfFloatType = 1025; // Pixel types //THREE.UnsignedByteType = 1009; THREE.UnsignedShort4444Type = 1016; THREE.UnsignedShort5551Type = 1017; THREE.UnsignedShort565Type = 1018; // Pixel formats THREE.AlphaFormat = 1019; THREE.RGBFormat = 1020; THREE.RGBAFormat = 1021; THREE.LuminanceFormat = 1022; THREE.LuminanceAlphaFormat = 1023; // THREE.RGBEFormat handled as THREE.RGBAFormat in shaders THREE.RGBEFormat = THREE.RGBAFormat; //1024; // DDS / ST3C Compressed texture formats THREE.RGB_S3TC_DXT1_Format = 2001; THREE.RGBA_S3TC_DXT1_Format = 2002; THREE.RGBA_S3TC_DXT3_Format = 2003; THREE.RGBA_S3TC_DXT5_Format = 2004; // PVRTC compressed texture formats THREE.RGB_PVRTC_4BPPV1_Format = 2100; THREE.RGB_PVRTC_2BPPV1_Format = 2101; THREE.RGBA_PVRTC_4BPPV1_Format = 2102; THREE.RGBA_PVRTC_2BPPV1_Format = 2103; // ETC compressed texture formats THREE.RGB_ETC1_Format = 2151; // Loop styles for AnimationAction THREE.LoopOnce = 2200; THREE.LoopRepeat = 2201; THREE.LoopPingPong = 2202; // Interpolation THREE.InterpolateDiscrete = 2300; THREE.InterpolateLinear = 2301; THREE.InterpolateSmooth = 2302; // Interpolant ending modes THREE.ZeroCurvatureEnding = 2400; THREE.ZeroSlopeEnding = 2401; THREE.WrapAroundEnding = 2402; // Triangle Draw modes THREE.TrianglesDrawMode = 0; THREE.TriangleStripDrawMode = 1; THREE.TriangleFanDrawMode = 2; // File:src/math/Color.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Color = function ( color ) { if ( arguments.length === 3 ) { return this.fromArray( arguments ); } return this.set( color ); }; THREE.Color.prototype = { constructor: THREE.Color, r: 1, g: 1, b: 1, set: function ( value ) { if ( value instanceof THREE.Color ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }, setScalar: function ( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSL: function () { function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } return function ( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = THREE.Math.euclideanModulo( h, 1 ); s = THREE.Math.clamp( s, 0, 1 ); l = THREE.Math.clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }; }(), setStyle: function ( style ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } var m; if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { // rgb / hsl var color; var name = m[ 1 ]; var components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 5 ] ); return this; } if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 5 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 5 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { // hex color var hex = m[ 1 ]; var size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { // color keywords var hex = THREE.ColorKeywords[ style ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } } return this; }, clone: function () { return new this.constructor( this.r, this.g, this.b ); }, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; }, copyLinearToGamma: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, getHex: function () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }, getHexString: function () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }, getHSL: function ( optionalTarget ) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 }; var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } hsl.h = hue; hsl.s = saturation; hsl.l = lightness; return hsl; }, getStyle: function () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }, offsetHSL: function ( h, s, l ) { var hsl = this.getHSL(); hsl.h += h; hsl.s += s; hsl.l += l; this.setHSL( hsl.h, hsl.s, hsl.l ); return this; }, add: function ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }, addColors: function ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }, addScalar: function ( s ) { this.r += s; this.g += s; this.b += s; return this; }, multiply: function ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }, multiplyScalar: function ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }, lerp: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, equals: function ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } }; THREE.ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; // File:src/math/Quaternion.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ THREE.Quaternion = function ( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; this.__defineGetter__("x", function(){ return this._x; }); this.__defineSetter__("x", function(value){ this._x = value; this.onChangeCallback(); }); this.__defineGetter__("y", function(){ return this._y; }); this.__defineSetter__("y", function(value){ this._y = value; this.onChangeCallback(); }); this.__defineGetter__("z", function(){ return this._z; }); this.__defineSetter__("z", function(value){ this._z = value; this.onChangeCallback(); }); this.__defineGetter__("w", function(){ return this._w; }); this.__defineSetter__("w", function(value){ this._w = value; this.onChangeCallback(); }); }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, _x: 0,_y: 0, _z: 0, _w: 0, set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._w ); }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( euler instanceof THREE.Euler === false ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( euler._x / 2 ); var c2 = Math.cos( euler._y / 2 ); var c3 = Math.cos( euler._z / 2 ); var s1 = Math.sin( euler._x / 2 ); var s2 = Math.sin( euler._y / 2 ); var s3 = Math.sin( euler._z / 2 ); var order = euler.order; if ( order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final // assumes direction vectors vFrom and vTo are normalized var v1, r; var EPS = 0.000001; return function ( vFrom, vTo ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; this.normalize(); return this; }; }(), inverse: function () { this.conjugate().normalize(); return this; }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, slerp: function ( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; Object.assign( THREE.Quaternion, { slerp: function( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); }, slerpFlat: function( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ], x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { var s = 1 - t, cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } var tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } } ); // File:src/math/Vector2.js /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, get width() { return this.x; }, set width( value ) { this.x = value; }, get height() { return this.y; }, set height( value ) { this.y = value; }, // set: function ( x, y ) { this.x = x; this.y = y; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; } else { this.x = 0; this.y = 0; } return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector2(); max = new THREE.Vector2(); } min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); return this; }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, lengthManhattan: function() { return Math.abs( this.x ) + Math.abs( this.y ); }, normalize: function () { return this.divideScalar( this.length() ); }, angle: function () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2( this.y, this.x ); if ( angle < 0 ) angle += 2 * Math.PI; return angle; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; return this; }, rotateAround: function ( center, angle ) { var c = Math.cos( angle ), s = Math.sin( angle ); var x = this.x - center.x; var y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } }; // File:src/math/Vector3.js /** * @author mrdoob / http://mrdoob.com/ * @author *kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion; return function applyEuler( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromEuler( euler ) ); return this; }; }(), applyAxisAngle: function () { var quaternion; return function applyAxisAngle( axis, angle ) { if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); return this; }; }(), applyMatrix3: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { // input: THREE.Matrix4 affine matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ]; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ]; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ]; return this; }, applyProjection: function ( m ) { // input: THREE.Matrix4 projection matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d; return this; }, applyQuaternion: function ( q ) { var x = this.x; var y = this.y; var z = this.z; var qx = q.x; var qy = q.y; var qz = q.z; var qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, project: function () { var matrix; return function project( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) ); return this.applyProjection( matrix ); }; }(), unproject: function () { var matrix; return function unproject( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) ); return this.applyProjection( matrix ); }; }(), transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; this.normalize(); return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector3(); max = new THREE.Vector3(); } min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); return this; }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function () { var v1, dot; return function projectOnVector( vector ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( vector ).normalize(); dot = this.dot( v1 ); return this.copy( v1 ).multiplyScalar( dot ); }; }(), projectOnPlane: function () { var v1; return function projectOnPlane( planeNormal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); } }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1; return function reflect( normal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) ); // clamp, to handle numerical problems return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x; var dy = this.y - v.y; var dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, setFromMatrixPosition: function ( m ) { this.x = m.elements[ 12 ]; this.y = m.elements[ 13 ]; this.z = m.elements[ 14 ]; return this; }, setFromMatrixScale: function ( m ) { var sx = this.set( m.elements[ 0 ], m.elements[ 1 ], m.elements[ 2 ] ).length(); var sy = this.set( m.elements[ 4 ], m.elements[ 5 ], m.elements[ 6 ] ).length(); var sz = this.set( m.elements[ 8 ], m.elements[ 9 ], m.elements[ 10 ] ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( index, matrix ) { var offset = index * 4; var me = matrix.elements; this.x = me[ offset ]; this.y = me[ offset + 1 ]; this.z = me[ offset + 2 ]; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; return this; } }; // File:src/math/Vector4.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector4 = function ( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Vector4.prototype = { constructor: THREE.Vector4, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setW: function ( w ) { this.w = w; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z, this.w ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } return this; }, applyMatrix4: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector4(); max = new THREE.Vector4(); } min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; this.w = attribute.array[ index + 3 ]; return this; } }; // File:src/math/Euler.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Euler = function ( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || THREE.Euler.DefaultOrder; this.__defineGetter__("x", function(){ return this._x; }); this.__defineSetter__("x", function(value){ this._x = value; this.onChangeCallback(); }); this.__defineGetter__("y", function(){ return this._y; }); this.__defineSetter__("y", function(value){ this._y = value; this.onChangeCallback(); }); this.__defineGetter__("z", function(){ return this._z; }); this.__defineSetter__("z", function(value){ this._z = value; this.onChangeCallback(); }); this.__defineGetter__("order", function(){ return this._order; }); this.__defineSetter__("order", function(value){ this._order = value; this.onChangeCallback(); }); }; THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; THREE.Euler.DefaultOrder = 'XYZ'; THREE.Euler.prototype = { constructor: THREE.Euler, _x: 0, _y: 0, _z: 0, _order: THREE.Euler.DefaultOrder, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._order ); }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order, update ) { var clamp = THREE.Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ) } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, setFromQuaternion: function () { var matrix; return function ( q, order, update ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.makeRotationFromQuaternion( q ); this.setFromRotationMatrix( matrix, order, update ); return this; }; }(), setFromVector3: function ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new THREE.Quaternion(); return function ( newOrder ) { q.setFromEuler( this ); this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; }, toVector3: function ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new THREE.Vector3( this._x, this._y, this._z ); } }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; // File:src/math/Line3.js /** * @author bhouston / http://clara.io */ THREE.Line3 = function ( start, end ) { this.start = ( start !== undefined ) ? start : new THREE.Vector3(); this.end = ( end !== undefined ) ? end : new THREE.Vector3(); }; THREE.Line3.prototype = { constructor: THREE.Line3, set: function ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }, delta: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.end, this.start ); }, distanceSq: function () { return this.start.distanceToSquared( this.end ); }, distance: function () { return this.start.distanceTo( this.end ); }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, closestPointToPointParameter: function () { var startP = new THREE.Vector3(); var startEnd = new THREE.Vector3(); return function ( point, clampToLine ) { startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start ); var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = THREE.Math.clamp( t, 0, 1 ); } return t; }; }(), closestPointToPoint: function ( point, clampToLine, optionalTarget ) { var t = this.closestPointToPointParameter( point, clampToLine ); var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, applyMatrix4: function ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }, equals: function ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } }; // File:src/math/Box2.js /** * @author bhouston / http://clara.io */ THREE.Box2 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector2( - Infinity, - Infinity ); }; THREE.Box2.prototype = { constructor: THREE.Box2, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector2(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector2(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ) { return false; } return true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector2(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; // File:src/math/Box3.js /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ THREE.Box3 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector3( - Infinity, - Infinity, - Infinity ); }; THREE.Box3.prototype = { constructor: THREE.Box3, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromArray: function ( array ) { this.makeEmpty(); var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, il = array.length; i < il; i += 3 ) { var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector3(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), setFromObject: function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms var box; return function ( object ) { if ( box === undefined ) box = new THREE.Box3(); var scope = this; this.makeEmpty(); object.updateMatrixWorld( true ); object.traverse( function ( node ) { var geometry = node.geometry; if ( geometry !== undefined ) { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } box.copy( geometry.boundingBox ); box.applyMatrix4( node.matrixWorld ); scope.union( box ); } } ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) && ( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector3(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ) { return false; } return true; }, intersectsSphere: ( function () { var closestPoint; return function intersectsSphere( sphere ) { if ( closestPoint === undefined ) closestPoint = new THREE.Vector3(); // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, closestPoint ); // If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); }; } )(), intersectsPlane: function ( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= plane.constant && max >= plane.constant ); }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), getBoundingSphere: function () { var v1 = new THREE.Vector3(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Sphere(); result.center = this.center(); result.radius = this.size( v1 ).length() * 0.5; return result; }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, applyMatrix4: function () { var points = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; return function ( matrix ) { // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.makeEmpty(); this.setFromPoints( points ); return this; }; }(), translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; // File:src/math/Matrix3.js /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ THREE.Matrix3 = function () { this.elements = new Float32Array( [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } }; THREE.Matrix3.prototype = { constructor: THREE.Matrix3, set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 3 ] = n12; te[ 6 ] = n13; te[ 1 ] = n21; te[ 4 ] = n22; te[ 7 ] = n23; te[ 2 ] = n31; te[ 5 ] = n32; te[ 8 ] = n33; return this; }, identity: function () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }, clone: function () { return new this.constructor().fromArray( this.elements ); }, copy: function ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], me[ 1 ], me[ 4 ], me[ 7 ], me[ 2 ], me[ 5 ], me[ 8 ] ); return this; }, applyToVector3Array: function () { var v1; return function ( array, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix3( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix3( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }, determinant: function () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }, getInverse: function ( matrix, throwOnDegenerate ) { // input: THREE.Matrix4 // ( based on http://code.google.com/p/webgl-mjs/ ) var me = matrix.elements; var te = this.elements; te[ 0 ] = me[ 10 ] * me[ 5 ] - me[ 6 ] * me[ 9 ]; te[ 1 ] = - me[ 10 ] * me[ 1 ] + me[ 2 ] * me[ 9 ]; te[ 2 ] = me[ 6 ] * me[ 1 ] - me[ 2 ] * me[ 5 ]; te[ 3 ] = - me[ 10 ] * me[ 4 ] + me[ 6 ] * me[ 8 ]; te[ 4 ] = me[ 10 ] * me[ 0 ] - me[ 2 ] * me[ 8 ]; te[ 5 ] = - me[ 6 ] * me[ 0 ] + me[ 2 ] * me[ 4 ]; te[ 6 ] = me[ 9 ] * me[ 4 ] - me[ 5 ] * me[ 8 ]; te[ 7 ] = - me[ 9 ] * me[ 0 ] + me[ 1 ] * me[ 8 ]; te[ 8 ] = me[ 5 ] * me[ 0 ] - me[ 1 ] * me[ 4 ]; var det = me[ 0 ] * te[ 0 ] + me[ 1 ] * te[ 3 ] + me[ 2 ] * te[ 6 ]; // no inverse if ( det === 0 ) { var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate || false ) { throw new Error( msg ); } else { console.warn( msg ); } this.identity(); return this; } this.multiplyScalar( 1.0 / det ); return this; }, transpose: function () { var tmp, m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; }, getNormalMatrix: function ( m ) { // input: THREE.Matrix4 this.getInverse( m ).transpose(); return this; }, transposeIntoArray: function ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ] ]; } }; // File:src/math/Matrix4.js /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ THREE.Matrix4 = function () { this.elements = new Float32Array( [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } }; THREE.Matrix4.prototype = { constructor: THREE.Matrix4, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, clone: function () { return new THREE.Matrix4().fromArray( this.elements ); }, copy: function ( m ) { this.elements.set( m.elements ); return this; }, copyPosition: function ( m ) { var te = this.elements; var me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }, extractBasis: function ( xAxis, yAxis, zAxis ) { var te = this.elements; xAxis.set( te[ 0 ], te[ 1 ], te[ 2 ] ); yAxis.set( te[ 4 ], te[ 5 ], te[ 6 ] ); zAxis.set( te[ 8 ], te[ 9 ], te[ 10 ] ); return this; }, makeBasis: function ( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; }, extractRotation: function () { var v1; return function ( m ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); var te = this.elements; var me = m.elements; var scaleX = 1 / v1.set( me[ 0 ], me[ 1 ], me[ 2 ] ).length(); var scaleY = 1 / v1.set( me[ 4 ], me[ 5 ], me[ 6 ] ).length(); var scaleZ = 1 / v1.set( me[ 8 ], me[ 9 ], me[ 10 ] ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; return this; }; }(), makeRotationFromEuler: function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz ); te[ 4 ] = xy - wz; te[ 8 ] = xz + wy; te[ 1 ] = xy + wz; te[ 5 ] = 1 - ( xx + zz ); te[ 9 ] = yz - wx; te[ 2 ] = xz - wy; te[ 6 ] = yz + wx; te[ 10 ] = 1 - ( xx + yy ); // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, lookAt: function () { var x, y, z; return function ( eye, target, up ) { if ( x === undefined ) x = new THREE.Vector3(); if ( y === undefined ) y = new THREE.Vector3(); if ( z === undefined ) z = new THREE.Vector3(); var te = this.elements; z.subVectors( eye, target ).normalize(); if ( z.lengthSq() === 0 ) { z.z = 1; } x.crossVectors( up, z ).normalize(); if ( x.lengthSq() === 0 ) { z.x += 0.0001; x.crossVectors( up, z ).normalize(); } y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; }; }(), multiply: function ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiplyMatrices( a, b ); r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ]; r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ]; r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ]; r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }, applyToVector3Array: function () { var v1; return function ( array, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix4( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix4( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; }, getPosition: function () { var v1; return function () { if ( v1 === undefined ) v1 = new THREE.Vector3(); console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); var te = this.elements; return v1.set( te[ 12 ], te[ 13 ], te[ 14 ] ); }; }(), setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z; return this; }, getInverse: function ( m, throwOnInvertible ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements; var me = m.elements; var n11 = me[ 0 ], n12 = me[ 4 ], n13 = me[ 8 ], n14 = me[ 12 ]; var n21 = me[ 1 ], n22 = me[ 5 ], n23 = me[ 9 ], n24 = me[ 13 ]; var n31 = me[ 2 ], n32 = me[ 6 ], n33 = me[ 10 ], n34 = me[ 14 ]; var n41 = me[ 3 ], n42 = me[ 7 ], n43 = me[ 11 ], n44 = me[ 15 ]; te[ 0 ] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44; te[ 4 ] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44; te[ 8 ] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44; te[ 12 ] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44; te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44; te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44; te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34; te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44; te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44; te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44; te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34; te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43; te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43; te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43; te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33; var det = n11 * te[ 0 ] + n21 * te[ 4 ] + n31 * te[ 8 ] + n41 * te[ 12 ]; if ( det === 0 ) { var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnInvertible || false ) { throw new Error( msg ); } else { console.warn( msg ); } this.identity(); return this; } this.multiplyScalar( 1 / det ); return this; }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); }, makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion ); this.scale( scale ); this.setPosition( position ); return this; }, decompose: function () { var vector, matrix; return function ( position, quaternion, scale ) { if ( vector === undefined ) vector = new THREE.Vector3(); if ( matrix === undefined ) matrix = new THREE.Matrix4(); var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) { sx = - sx; } position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy() var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; }(), makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = right - left; var h = top - bottom; var p = far - near; var x = ( right + left ) / w; var y = ( top + bottom ) / h; var z = ( far + near ) / p; te[ 0 ] = 2 / w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 / h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 / p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; }, equals: function ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ], te[ 9 ], te[ 10 ], te[ 11 ], te[ 12 ], te[ 13 ], te[ 14 ], te[ 15 ] ]; } }; // File:src/math/Ray.js /** * @author bhouston / http://clara.io */ THREE.Ray = function ( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new THREE.Vector3(); this.direction = ( direction !== undefined ) ? direction : new THREE.Vector3(); }; THREE.Ray.prototype = { constructor: THREE.Ray, set: function ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }, lookAt: function ( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); }, recast: function () { var v1 = new THREE.Vector3(); return function ( t ) { this.origin.copy( this.at( t, v1 ) ); return this; }; }(), closestPointToPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( point, this.origin ); var directionDistance = result.dot( this.direction ); if ( directionDistance < 0 ) { return result.copy( this.origin ); } return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }, distanceToPoint: function ( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); }, distanceSqToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceTo( point ); } v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return v1.distanceTo( point ); }; }(), distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment // return function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { var segCenter = v0.clone().add( v1 ).multiplyScalar( 0.5 ); var segDir = v1.clone().sub( v0 ).normalize(); var segExtent = v0.distanceTo( v1 ) * 0.5; var diff = this.origin.clone().sub( segCenter ); var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det >= 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction.clone().multiplyScalar( s0 ).add( this.origin ) ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( segDir.clone().multiplyScalar( s1 ).add( segCenter ) ); } return sqrDist; }, isIntersectionSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, intersectSphere: function () { var v1 = new THREE.Vector3(); return function ( sphere, optionalTarget ) { v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, optionalTarget ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, optionalTarget ); } }(), intersectsSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, distanceToPlane: function ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }, intersectPlane: function ( plane, optionalTarget ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, optionalTarget ); }, intersectsPlane: function ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }, intersectBox: function ( box, optionalTarget ) { var tmin, tmax, tymin, tymax, tzmin, tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, optionalTarget ); }, intersectsBox: ( function () { var v = new THREE.Vector3(); return function ( box ) { return this.intersectBox( box, v ) !== null; }; } )(), intersectTriangle: function () { // Compute the offset origin, edges, and normal. var diff = new THREE.Vector3(); var edge1 = new THREE.Vector3(); var edge2 = new THREE.Vector3(); var normal = new THREE.Vector3(); return function ( a, b, c, backfaceCulling, optionalTarget ) { // from http://www.geometrictools.com/LibMathematics/Intersection/Wm5IntrRay3Triangle3.cpp edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, optionalTarget ); }; }(), applyMatrix4: function ( matrix4 ) { this.direction.add( this.origin ).applyMatrix4( matrix4 ); this.origin.applyMatrix4( matrix4 ); this.direction.sub( this.origin ); this.direction.normalize(); return this; }, equals: function ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } }; // File:src/math/Sphere.js /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ THREE.Sphere = function ( center, radius ) { this.center = ( center !== undefined ) ? center : new THREE.Vector3(); this.radius = ( radius !== undefined ) ? radius : 0; }; THREE.Sphere.prototype = { constructor: THREE.Sphere, set: function ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }, setFromPoints: function () { var box = new THREE.Box3(); return function ( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { box.setFromPoints( points ).center( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }, empty: function () { return ( this.radius <= 0 ); }, containsPoint: function ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }, distanceToPoint: function ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }, intersectsSphere: function ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }, intersectsBox: function ( box ) { return box.intersectsSphere( this ); }, intersectsPlane: function ( plane ) { // We use the following equation to compute the signed distance from // the center of the sphere to the plane. // // distance = q * n - d // // If this distance is greater than the radius of the sphere, // then there is no intersection. return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius; }, clampPoint: function ( point, optionalTarget ) { var deltaLengthSq = this.center.distanceToSquared( point ); var result = optionalTarget || new THREE.Vector3(); result.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { result.sub( this.center ).normalize(); result.multiplyScalar( this.radius ).add( this.center ); } return result; }, getBoundingBox: function ( optionalTarget ) { var box = optionalTarget || new THREE.Box3(); box.set( this.center, this.center ); box.expandByScalar( this.radius ); return box; }, applyMatrix4: function ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }, translate: function ( offset ) { this.center.add( offset ); return this; }, equals: function ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } }; // File:src/math/Frustum.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */ THREE.Frustum = function ( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new THREE.Plane(), ( p1 !== undefined ) ? p1 : new THREE.Plane(), ( p2 !== undefined ) ? p2 : new THREE.Plane(), ( p3 !== undefined ) ? p3 : new THREE.Plane(), ( p4 !== undefined ) ? p4 : new THREE.Plane(), ( p5 !== undefined ) ? p5 : new THREE.Plane() ]; }; THREE.Frustum.prototype = { constructor: THREE.Frustum, set: function ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }, setFromMatrix: function ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }, intersectsObject: function () { var sphere = new THREE.Sphere(); return function ( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( object.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSphere: function ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }, intersectsBox: function () { var p1 = new THREE.Vector3(), p2 = new THREE.Vector3(); return function ( box ) { var planes = this.planes; for ( var i = 0; i < 6 ; i ++ ) { var plane = planes[ i ]; p1.x = plane.normal.x > 0 ? box.min.x : box.max.x; p2.x = plane.normal.x > 0 ? box.max.x : box.min.x; p1.y = plane.normal.y > 0 ? box.min.y : box.max.y; p2.y = plane.normal.y > 0 ? box.max.y : box.min.y; p1.z = plane.normal.z > 0 ? box.min.z : box.max.z; p2.z = plane.normal.z > 0 ? box.max.z : box.min.z; var d1 = plane.distanceToPoint( p1 ); var d2 = plane.distanceToPoint( p2 ); // if both outside plane, no intersection if ( d1 < 0 && d2 < 0 ) { return false; } } return true; }; }(), containsPoint: function ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } }; // File:src/math/Plane.js /** * @author bhouston / http://clara.io */ THREE.Plane = function ( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; }; THREE.Plane.prototype = { constructor: THREE.Plane, set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }, setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }, setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; }, setFromCoplanarPoints: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }, negate: function () { this.constant *= - 1; this.normal.negate(); return this; }, distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; }, distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }, projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); }, orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); }, intersectLine: function () { var v1 = new THREE.Vector3(); return function ( line, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return result.copy( direction ).multiplyScalar( t ).add( line.start ); }; }(), intersectsLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }, intersectsBox: function ( box ) { return box.intersectsPlane( this ); }, intersectsSphere: function ( sphere ) { return sphere.intersectsPlane( this ); }, coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); }, applyMatrix4: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function ( matrix, optionalNormalMatrix ) { // compute new normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var newNormal = v1.copy( this.normal ).applyMatrix3( normalMatrix ); var newCoplanarPoint = this.coplanarPoint( v2 ); newCoplanarPoint.applyMatrix4( matrix ); this.setFromNormalAndCoplanarPoint( newNormal, newCoplanarPoint ); return this; }; }(), translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; }, equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } }; // File:src/math/Math.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.Math = { generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function () { for ( var i = 0; i < 36; i ++ ) { if ( i === 8 || i === 13 || i === 18 || i === 23 ) { uuid[ i ] = '-'; } else if ( i === 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), clamp: function ( value, min, max ) { return Math.max( min, Math.min( max, value ) ); }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function ( n, m ) { return ( ( n % m ) + m ) % m; }, // Linear mapping from range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, random16: function () { console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' ); return Math.random(); }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, degToRad: function () { var degreeToRadiansFactor = Math.PI / 180; return function ( degrees ) { return degrees * degreeToRadiansFactor; }; }(), radToDeg: function () { var radianToDegreesFactor = 180 / Math.PI; return function ( radians ) { return radians * radianToDegreesFactor; }; }(), isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, nearestPowerOfTwo: function ( value ) { return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) ); }, nextPowerOfTwo: function ( value ) { value --; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value ++; return value; } }; // File:src/math/Spline.js /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Spline = function ( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function ( a ) { this.points = []; for ( var i = 0; i < a.length; i ++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new THREE.Vector3(), tmpVec = new THREE.Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( ! nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint !== oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, realDistance, sampling, position, newpoints = [], tmpVec = new THREE.Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i ++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j ++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; // File:src/math/Triangle.js /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ THREE.Triangle = function ( a, b, c ) { this.a = ( a !== undefined ) ? a : new THREE.Vector3(); this.b = ( b !== undefined ) ? b : new THREE.Vector3(); this.c = ( c !== undefined ) ? c : new THREE.Vector3(); }; THREE.Triangle.normal = function () { var v0 = new THREE.Vector3(); return function ( a, b, c, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( c, b ); v0.subVectors( a, b ); result.cross( v0 ); var resultLengthSq = result.lengthSq(); if ( resultLengthSq > 0 ) { return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) ); } return result.set( 0, 0, 0 ); }; }(); // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html THREE.Triangle.barycoordFromPoint = function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( point, a, b, c, optionalTarget ) { v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a ); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); var result = optionalTarget || new THREE.Vector3(); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return result.set( 1 - u - v, v, u ); }; }(); THREE.Triangle.containsPoint = function () { var v1 = new THREE.Vector3(); return function ( point, a, b, c ) { var result = THREE.Triangle.barycoordFromPoint( point, a, b, c, v1 ); return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 ); }; }(); THREE.Triangle.prototype = { constructor: THREE.Triangle, set: function ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }, setFromPointsAndIndices: function ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }, area: function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); return function () { v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b ); return v0.cross( v1 ).length() * 0.5; }; }(), midpoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }, normal: function ( optionalTarget ) { return THREE.Triangle.normal( this.a, this.b, this.c, optionalTarget ); }, plane: function ( optionalTarget ) { var result = optionalTarget || new THREE.Plane(); return result.setFromCoplanarPoints( this.a, this.b, this.c ); }, barycoordFromPoint: function ( point, optionalTarget ) { return THREE.Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget ); }, containsPoint: function ( point ) { return THREE.Triangle.containsPoint( point, this.a, this.b, this.c ); }, equals: function ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } }; // File:src/math/Interpolant.js /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */ THREE.Interpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; }; THREE.Interpolant.prototype = { constructor: THREE.Interpolant, evaluate: function( t ) { var pp = this.parameterPositions, i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { var right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( var giveUpAt = i1 + 2; ;) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? var t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( var giveUpAt = i1 - 2; ;) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { var mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function() { return this.settings || this.DefaultSettings_; }, copySampleValue_: function( index ) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; }, // Template methods for derived classes: interpolate_: function( i1, t0, t, t1 ) { throw new Error( "call to abstract method" ); // implementations shall return this.resultBuffer }, intervalChanged_: function( i1, t0, t1 ) { // empty } }; Object.assign( THREE.Interpolant.prototype, { beforeStart_: //( 0, t, t0 ), returns this.resultBuffer THREE.Interpolant.prototype.copySampleValue_, afterEnd_: //( N-1, tN-1, t ), returns this.resultBuffer THREE.Interpolant.prototype.copySampleValue_ } ); // File:src/math/interpolants/CubicInterpolant.js /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */ THREE.CubicInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; }; THREE.CubicInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.CubicInterpolant, DefaultSettings_: { endingStart: THREE.ZeroCurvatureEnding, endingEnd: THREE.ZeroCurvatureEnding }, intervalChanged_: function( i1, t0, t1 ) { var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case THREE.ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case THREE.WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case THREE.ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case THREE.WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; }, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp; // combine data linearly for ( var i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } ); // File:src/math/interpolants/DiscreteInterpolant.js /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */ THREE.DiscreteInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.DiscreteInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.DiscreteInterpolant, interpolate_: function( i1, t0, t, t1 ) { return this.copySampleValue_( i1 - 1 ); } } ); // File:src/math/interpolants/LinearInterpolant.js /** * @author tschw */ THREE.LinearInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.LinearInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.LinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } ); // File:src/math/interpolants/QuaternionLinearInterpolant.js /** * Spherical linear unit quaternion interpolant. * * @author tschw */ THREE.QuaternionLinearInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.QuaternionLinearInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.QuaternionLinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = i1 * stride, alpha = ( t - t0 ) / ( t1 - t0 ); for ( var end = offset + stride; offset !== end; offset += 4 ) { THREE.Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } ); // File:src/core/Clock.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Clock = function ( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; }; THREE.Clock.prototype = { constructor: THREE.Clock, start: function () { this.startTime = ( Qt === undefined && self.performance !== undefined && self.performance.now !== undefined ) ? self.performance.now() : Date.now(); this.oldTime = this.startTime; this.running = true; }, stop: function () { this.getElapsedTime(); this.running = false; }, getElapsedTime: function () { this.getDelta(); return this.elapsedTime; }, getDelta: function () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); } if ( this.running ) { var newTime = ( Qt === undefined && self.performance !== undefined && self.performance.now !== undefined ) ? self.performance.now() : Date.now(); diff = 0.001 * ( newTime - this.oldTime ); this.oldTime = newTime; this.elapsedTime += diff; } return diff; } }; // File:src/core/EventDispatcher.js /** * https://github.com/mrdoob/eventdispatcher.js/ */ THREE.EventDispatcher = function () {}; THREE.EventDispatcher.prototype = { constructor: THREE.EventDispatcher, apply: function ( object ) { object.addEventListener = THREE.EventDispatcher.prototype.addEventListener; object.hasEventListener = THREE.EventDispatcher.prototype.hasEventListener; object.removeEventListener = THREE.EventDispatcher.prototype.removeEventListener; object.dispatchEvent = THREE.EventDispatcher.prototype.dispatchEvent; }, addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return false; var listeners = this._listeners; if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) { return true; } return false; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; var array = []; var length = listenerArray.length; for ( var i = 0; i < length; i ++ ) { array[ i ] = listenerArray[ i ]; } for ( var i = 0; i < length; i ++ ) { array[ i ].call( this, event ); } } } }; // File:src/core/Layers.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Layers = function () { this.mask = 1; }; THREE.Layers.prototype = { constructor: THREE.Layers, set: function ( channel ) { this.mask = 1 << channel; }, enable: function ( channel ) { this.mask |= 1 << channel; }, toggle: function ( channel ) { this.mask ^= 1 << channel; }, disable: function ( channel ) { this.mask &= ~ ( 1 << channel ); }, test: function ( layers ) { return ( this.mask & layers.mask ) !== 0; } }; // File:src/core/Raycaster.js /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */ //( function ( THREE ) { THREE.Raycaster = function ( origin, direction, near, far ) { this.ray = new THREE.Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; Object.defineProperties( this.params, { PointCloud: { get: function () { console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points; } } } ); }; function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.visible === false ) return; object.raycast( raycaster, intersects ); if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } // THREE.Raycaster.prototype = { constructor: THREE.Raycaster, linePrecision: 1, set: function ( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); }, setFromCamera: function ( coords, camera ) { if ( camera instanceof THREE.PerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); } else if ( camera instanceof THREE.OrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, - 1 ).unproject( camera ); this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); } else { console.error( 'THREE.Raycaster: Unsupported camera type.' ); } }, intersectObject: function ( object, recursive ) { var intersects = []; intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; }, intersectObjects: function ( objects, recursive ) { var intersects = []; if ( Array.isArray( objects ) === false ) { console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects; } for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } }; //}( THREE ) ); // File:src/core/Object3D.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */ THREE.Object3D = function () { Object.defineProperty( this, 'id', { value: THREE.Object3DIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = THREE.Object3D.DefaultUp.clone(); var position = new THREE.Vector3(); var rotation = new THREE.Euler(); var quaternion = new THREE.Quaternion(); var scale = new THREE.Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation.onChange( onRotationChange ); quaternion.onChange( onQuaternionChange ); Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new THREE.Matrix4() }, normalMatrix: { value: new THREE.Matrix3() } } ); this.rotationAutoUpdate = true; this.matrix = new THREE.Matrix4(); this.matrixWorld = new THREE.Matrix4(); this.matrixAutoUpdate = THREE.Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new THREE.Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.userData = {}; }; THREE.Object3D.DefaultUp = new THREE.Vector3( 0, 1, 0 ); THREE.Object3D.DefaultMatrixAutoUpdate = true; THREE.Object3D.prototype = { constructor: THREE.Object3D, applyMatrix: function ( matrix ) { this.matrix.multiplyMatrices( matrix, this.matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new THREE.Quaternion(); return function ( axis, angle ) { q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( q1 ); return this; }; }(), rotateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), translateOnAxis: function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new THREE.Vector3(); return function ( axis, distance ) { v1.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( v1.multiplyScalar( distance ) ); return this; }; }(), translateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function () { var m1 = new THREE.Matrix4(); return function ( vector ) { return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) ); }; }(), lookAt: function () { // This routine does not support objects with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( vector, this.position, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(), add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this; } if ( object instanceof THREE.Object3D ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; object.dispatchEvent( { type: 'added' } ); this.children.push( object ); } else { console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } } var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; object.dispatchEvent( { type: 'removed' } ); this.children.splice( index, 1 ); } }, getObjectById: function ( id ) { return this.getObjectByProperty( 'id', id ); }, getObjectByName: function ( name ) { return this.getObjectByProperty( 'name', name ); }, getObjectByProperty: function ( name, value ) { if ( this[ name ] === value ) return this; for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; var object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; }, getWorldPosition: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.updateMatrixWorld( true ); return result.setFromMatrixPosition( this.matrixWorld ); }, getWorldQuaternion: function () { var position = new THREE.Vector3(); var scale = new THREE.Vector3(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Quaternion(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, result, scale ); return result; }; }(), getWorldRotation: function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Euler(); this.getWorldQuaternion( quaternion ); return result.setFromQuaternion( quaternion, this.rotation.order, false ); }; }(), getWorldScale: function () { var position = new THREE.Vector3(); var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, quaternion, result ); return result; }; }(), getWorldDirection: function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, 1 ).applyQuaternion( quaternion ); }; }(), raycast: function () {}, traverse: function ( callback ) { callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) return; callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } }, traverseAncestors: function ( callback ) { var parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate === true ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate === true || force === true ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }, toJSON: function ( meta ) { var isRootObject = ( meta === undefined ); var output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {} }; output.metadata = { version: 4.4, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization var object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; object.matrix = this.matrix.toArray(); // if ( this.geometry !== undefined ) { if ( meta.geometries[ this.geometry.uuid ] === undefined ) { meta.geometries[ this.geometry.uuid ] = this.geometry.toJSON( meta ); } object.geometry = this.geometry.uuid; } if ( this.material !== undefined ) { if ( meta.materials[ this.material.uuid ] === undefined ) { meta.materials[ this.material.uuid ] = this.material.toJSON( meta ); } object.material = this.material.uuid; } // if ( this.children.length > 0 ) { object.children = []; for ( var i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } if ( isRootObject ) { var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache ( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } }, clone: function ( recursive ) { return new this.constructor().copy( this, recursive ); }, copy: function ( source, recursive ) { if ( recursive === undefined ) recursive = true; this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.rotationAutoUpdate = source.rotationAutoUpdate; this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( var i = 0; i < source.children.length; i ++ ) { var child = source.children[ i ]; this.add( child.clone() ); } } return this; } }; THREE.EventDispatcher.prototype.apply( THREE.Object3D.prototype ); THREE.Object3DIdCount = 0; // File:src/core/Face3.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : []; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = Array.isArray( color ) ? color : []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; }; THREE.Face3.prototype = { constructor: THREE.Face3, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.a = source.a; this.b = source.b; this.c = source.c; this.normal.copy( source.normal ); this.color.copy( source.color ); this.materialIndex = source.materialIndex; for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); } for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) { this.vertexColors[ i ] = source.vertexColors[ i ].clone(); } return this; } }; // File:src/core/BufferAttribute.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferAttribute = function ( array, itemSize ) { this.uuid = THREE.Math.generateUUID(); this.array = array; this.itemSize = itemSize; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; }; THREE.BufferAttribute.prototype = { constructor: THREE.BufferAttribute, get count() { return this.array.length / this.itemSize; }, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( var i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, copyArray: function ( array ) { this.array.set( array ); return this; }, copyColorsArray: function ( colors ) { var array = this.array, offset = 0; for ( var i = 0, l = colors.length; i < l; i ++ ) { var color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new THREE.Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; }, copyIndicesArray: function ( indices ) { var array = this.array, offset = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { var index = indices[ i ]; array[ offset ++ ] = index.a; array[ offset ++ ] = index.b; array[ offset ++ ] = index.c; } return this; }, copyVector2sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new THREE.Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; }, copyVector3sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new THREE.Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; }, copyVector4sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new THREE.Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, getX: function ( index ) { return this.array[ index * this.itemSize ]; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, getY: function ( index ) { return this.array[ index * this.itemSize + 1 ]; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, getZ: function ( index ) { return this.array[ index * this.itemSize + 2 ]; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, getW: function ( index ) { return this.array[ index * this.itemSize + 3 ]; }, setW: function ( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; }, clone: function () { return new this.constructor().copy( this ); } }; // THREE.Int8Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int8Array( array ), itemSize ); }; THREE.Uint8Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint8Array( array ), itemSize ); }; THREE.Uint8ClampedAttribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint8ClampedArray( array ), itemSize ); }; THREE.Int16Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int16Array( array ), itemSize ); }; THREE.Uint16Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint16Array( array ), itemSize ); }; THREE.Int32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int32Array( array ), itemSize ); }; THREE.Uint32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint32Array( array ), itemSize ); }; THREE.Float32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Float32Array( array ), itemSize ); }; THREE.Float64Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Float64Array( array ), itemSize ); }; // Deprecated THREE.DynamicBufferAttribute = function ( array, itemSize ) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' ); return new THREE.BufferAttribute( array, itemSize ).setDynamic( true ); }; // File:src/core/InstancedBufferAttribute.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedBufferAttribute = function ( array, itemSize, meshPerAttribute ) { THREE.BufferAttribute.call( this, array, itemSize ); this.meshPerAttribute = meshPerAttribute || 1; }; THREE.InstancedBufferAttribute.prototype = Object.create( THREE.BufferAttribute.prototype ); THREE.InstancedBufferAttribute.prototype.constructor = THREE.InstancedBufferAttribute; THREE.InstancedBufferAttribute.prototype.copy = function ( source ) { THREE.BufferAttribute.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; // File:src/core/InterleavedBuffer.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InterleavedBuffer = function ( array, stride ) { this.uuid = THREE.Math.generateUUID(); this.array = array; this.stride = stride; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; }; THREE.InterleavedBuffer.prototype = { constructor: THREE.InterleavedBuffer, get length () { return this.array.length; }, get count () { return this.array.length / this.stride; }, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.stride = source.stride; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( var i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, clone: function () { return new this.constructor().copy( this ); } }; // File:src/core/InstancedInterleavedBuffer.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedInterleavedBuffer = function ( array, stride, meshPerAttribute ) { THREE.InterleavedBuffer.call( this, array, stride ); this.meshPerAttribute = meshPerAttribute || 1; }; THREE.InstancedInterleavedBuffer.prototype = Object.create( THREE.InterleavedBuffer.prototype ); THREE.InstancedInterleavedBuffer.prototype.constructor = THREE.InstancedInterleavedBuffer; THREE.InstancedInterleavedBuffer.prototype.copy = function ( source ) { THREE.InterleavedBuffer.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; // File:src/core/InterleavedBufferAttribute.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InterleavedBufferAttribute = function ( interleavedBuffer, itemSize, offset ) { this.uuid = THREE.Math.generateUUID(); this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; }; THREE.InterleavedBufferAttribute.prototype = { constructor: THREE.InterleavedBufferAttribute, get length() { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' ); return this.array.length; }, get count() { return this.data.count; }, setX: function ( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; }, setY: function ( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; }, setZ: function ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; }, setW: function ( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; }, getX: function ( index ) { return this.data.array[ index * this.data.stride + this.offset ]; }, getY: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; }, getZ: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; }, getW: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; }, setXY: function ( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } }; // File:src/core/Geometry.js /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */ THREE.Geometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Geometry'; this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [ [] ]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.elementsNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false; }; THREE.Geometry.prototype = { constructor: THREE.Geometry, applyMatrix: function ( matrix ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } this.verticesNeedUpdate = true; this.normalsNeedUpdate = true; }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new THREE.Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), fromBufferGeometry: function ( geometry ) { var scope = this; var indices = geometry.index !== null ? geometry.index.array : undefined; var attributes = geometry.attributes; var positions = attributes.position.array; var normals = attributes.normal !== undefined ? attributes.normal.array : undefined; var colors = attributes.color !== undefined ? attributes.color.array : undefined; var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined; var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined; if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = []; var tempNormals = []; var tempUVs = []; var tempUVs2 = []; for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) { scope.vertices.push( new THREE.Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) ); if ( normals !== undefined ) { tempNormals.push( new THREE.Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) ); } if ( colors !== undefined ) { scope.colors.push( new THREE.Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) ); } if ( uvs !== undefined ) { tempUVs.push( new THREE.Vector2( uvs[ j ], uvs[ j + 1 ] ) ); } if ( uvs2 !== undefined ) { tempUVs2.push( new THREE.Vector2( uvs2[ j ], uvs2[ j + 1 ] ) ); } } function addFace( a, b, c ) { var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : []; var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : []; var face = new THREE.Face3( a, b, c, vertexNormals, vertexColors ); scope.faces.push( face ); if ( uvs !== undefined ) { scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] ); } if ( uvs2 !== undefined ) { scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] ); } } if ( indices !== undefined ) { var groups = geometry.groups; if ( groups.length > 0 ) { for ( var i = 0; i < groups.length; i ++ ) { var group = groups[ i ]; var start = group.start; var count = group.count; for ( var j = start, jl = start + count; j < jl; j += 3 ) { addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ] ); } } } else { for ( var i = 0; i < indices.length; i += 3 ) { addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] ); } } } else { for ( var i = 0; i < positions.length / 3; i += 3 ) { addFace( i, i + 1, i + 2 ); } } this.computeFaceNormals(); if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } return this; }, center: function () { this.computeBoundingBox(); var offset = this.boundingBox.center().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, normalize: function () { this.computeBoundingSphere(); var center = this.boundingSphere.center; var radius = this.boundingSphere.radius; var s = radius === 0 ? 1 : 1.0 / radius; var matrix = new THREE.Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 ); this.applyMatrix( matrix ); return this; }, computeFaceNormals: function () { var cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { if ( areaWeighted === undefined ) areaWeighted = true; var v, vl, f, fl, face, vertices; vertices = new Array( this.vertices.length ); for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new THREE.Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC; var cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( vertices[ face.a ] ); vertexNormals[ 1 ].copy( vertices[ face.b ] ); vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else { vertexNormals[ 0 ] = vertices[ face.a ].clone(); vertexNormals[ 1 ] = vertices[ face.b ].clone(); vertexNormals[ 2 ] = vertices[ face.c ].clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new THREE.Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { faceNormal = new THREE.Vector3(); vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { console.warn( 'THREE.Geometry: .computeTangents() has been removed.' ); }, computeLineDistances: function () { var d = 0; var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { if ( i > 0 ) { d += vertices[ i ].distanceTo( vertices[ i - 1 ] ); } this.lineDistances[ i ] = d; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( geometry instanceof THREE.Geometry === false ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ]; if ( materialIndexOffset === undefined ) materialIndexOffset = 0; if ( matrix !== undefined ) { normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix ); vertices1.push( vertexCopy ); } // faces for ( i = 0, il = faces2.length; i < il; i ++ ) { var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) { color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( i = 0, il = uvs2.length; i < il; i ++ ) { var uv = uvs2[ i ], uvCopy = []; if ( uv === undefined ) { continue; } for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( uv[ j ].clone() ); } uvs1.push( uvCopy ); } }, mergeMesh: function ( mesh ) { if ( mesh instanceof THREE.Mesh === false ) { console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return; } mesh.matrixAutoUpdate && mesh.updateMatrix(); this.merge( mesh.geometry, mesh.matrix ); }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i, il, face; var indices, j, jl; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; indices = [ face.a, face.b, face.c ]; var dupIndex = - 1; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { dupIndex = n; faceIndicesToRemove.push( i ); break; } } } for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) { var idx = faceIndicesToRemove[ i ]; this.faces.splice( idx, 1 ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, sortFacesByMaterialIndex: function () { var faces = this.faces; var length = faces.length; // tag faces for ( var i = 0; i < length; i ++ ) { faces[ i ]._id = i; } // sort faces function materialIndexSort( a, b ) { return a.materialIndex - b.materialIndex; } faces.sort( materialIndexSort ); // sort uvs var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ]; var newUvs1, newUvs2; if ( uvs1 && uvs1.length === length ) newUvs1 = []; if ( uvs2 && uvs2.length === length ) newUvs2 = []; for ( var i = 0; i < length; i ++ ) { var id = faces[ i ]._id; if ( newUvs1 ) newUvs1.push( uvs1[ id ] ); if ( newUvs2 ) newUvs2.push( uvs2[ id ] ); } if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1; if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'Geometry', generator: 'Geometry.toJSON' } }; // standard Geometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } var vertices = []; for ( var i = 0; i < this.vertices.length; i ++ ) { var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z ); } var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {}; for ( var i = 0; i < this.faces.length; i ++ ) { var face = this.faces[ i ]; var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0; var faceType = 0; faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor ); faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex ); if ( hasFaceVertexUv ) { var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ]; faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) ); } if ( hasFaceNormal ) { faces.push( getNormalIndex( face.normal ) ); } if ( hasFaceVertexNormal ) { var vertexNormals = face.vertexNormals; faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) ); } if ( hasFaceColor ) { faces.push( getColorIndex( face.color ) ); } if ( hasFaceVertexColor ) { var vertexColors = face.vertexColors; faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) ); } } function setBit( value, position, enabled ) { return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); } function getNormalIndex( normal ) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); if ( normalsHash[ hash ] !== undefined ) { return normalsHash[ hash ]; } normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z ); return normalsHash[ hash ]; } function getColorIndex( color ) { var hash = color.r.toString() + color.g.toString() + color.b.toString(); if ( colorsHash[ hash ] !== undefined ) { return colorsHash[ hash ]; } colorsHash[ hash ] = colors.length; colors.push( color.getHex() ); return colorsHash[ hash ]; } function getUvIndex( uv ) { var hash = uv.x.toString() + uv.y.toString(); if ( uvsHash[ hash ] !== undefined ) { return uvsHash[ hash ]; } uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y ); return uvsHash[ hash ]; } data.data = {}; data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) data.data.colors = colors; if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility data.data.faces = faces; return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new THREE.Geometry().copy( this ); }, copy: function ( source ) { this.vertices = []; this.faces = []; this.faceVertexUvs = [ [] ]; var vertices = source.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { this.vertices.push( vertices[ i ].clone() ); } var faces = source.faces; for ( var i = 0, il = faces.length; i < il; i ++ ) { this.faces.push( faces[ i ].clone() ); } for ( var i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) { var faceVertexUvs = source.faceVertexUvs[ i ]; if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; } for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { var uvs = faceVertexUvs[ j ], uvsCopy = []; for ( var k = 0, kl = uvs.length; k < kl; k ++ ) { var uv = uvs[ k ]; uvsCopy.push( uv.clone() ); } this.faceVertexUvs[ i ].push( uvsCopy ); } } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Geometry.prototype ); THREE.GeometryIdCount = 0; // File:src/core/DirectGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.DirectGeometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'DirectGeometry'; this.indices = []; this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = []; this.groups = []; this.morphTargets = {}; this.skinWeights = []; this.skinIndices = []; // this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false; }; THREE.DirectGeometry.prototype = { constructor: THREE.DirectGeometry, computeBoundingBox: THREE.Geometry.prototype.computeBoundingBox, computeBoundingSphere: THREE.Geometry.prototype.computeBoundingSphere, computeFaceNormals: function () { console.warn( 'THREE.DirectGeometry: computeFaceNormals() is not a method of this type of geometry.' ); }, computeVertexNormals: function () { console.warn( 'THREE.DirectGeometry: computeVertexNormals() is not a method of this type of geometry.' ); }, computeGroups: function ( geometry ) { var group; var groups = []; var materialIndex; var faces = geometry.faces; for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; // materials if ( face.materialIndex !== materialIndex ) { materialIndex = face.materialIndex; if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } group = { start: i * 3, materialIndex: materialIndex }; } } if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } this.groups = groups; }, fromGeometry: function ( geometry ) { var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length; var morphTargetsPosition; if ( morphTargetsLength > 0 ) { morphTargetsPosition = []; for ( var i = 0; i < morphTargetsLength; i ++ ) { morphTargetsPosition[ i ] = []; } this.morphTargets.position = morphTargetsPosition; } var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length; var morphTargetsNormal; if ( morphNormalsLength > 0 ) { morphTargetsNormal = []; for ( var i = 0; i < morphNormalsLength; i ++ ) { morphTargetsNormal[ i ] = []; } this.morphTargets.normal = morphTargetsNormal; } // skins var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights; var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length; // for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); } else { var normal = face.normal; this.normals.push( normal, normal, normal ); } var vertexColors = face.vertexColors; if ( vertexColors.length === 3 ) { this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); } else { var color = face.color; this.colors.push( color, color, color ); } if ( hasFaceVertexUv === true ) { var vertexUvs = faceVertexUvs[ 0 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i ); this.uvs.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() ); } } if ( hasFaceVertexUv2 === true ) { var vertexUvs = faceVertexUvs[ 1 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i ); this.uvs2.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() ); } } // morphs for ( var j = 0; j < morphTargetsLength; j ++ ) { var morphTarget = morphTargets[ j ].vertices; morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); } for ( var j = 0; j < morphNormalsLength; j ++ ) { var morphNormal = morphNormals[ j ].vertexNormals[ i ]; morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c ); } // skins if ( hasSkinIndices ) { this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); } if ( hasSkinWeights ) { this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); } } this.computeGroups( geometry ); this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.DirectGeometry.prototype ); // File:src/core/BufferGeometry.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.BufferGeometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; }; THREE.BufferGeometry.prototype = { constructor: THREE.BufferGeometry, getIndex: function () { return this.index; }, setIndex: function ( index ) { this.index = index; }, addAttribute: function ( name, attribute ) { if ( attribute instanceof THREE.BufferAttribute === false && attribute instanceof THREE.InterleavedBufferAttribute === false ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); this.addAttribute( name, new THREE.BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); return; } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return; } this.attributes[ name ] = attribute; return this; }, getAttribute: function ( name ) { return this.attributes[ name ]; }, removeAttribute: function ( name ) { delete this.attributes[ name ]; return this; }, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 } ); }, clearGroups: function () { this.groups = []; }, setDrawRange: function ( start, count ) { this.drawRange.start = start; this.drawRange.count = count; }, applyMatrix: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { matrix.applyToVector3Array( position.array ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); normalMatrix.applyToVector3Array( normal.array ); normal.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new THREE.Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), center: function () { this.computeBoundingBox(); var offset = this.boundingBox.center().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, setFromObject: function ( object ) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry; if ( object instanceof THREE.Points || object instanceof THREE.Line ) { var positions = new THREE.Float32Attribute( geometry.vertices.length * 3, 3 ); var colors = new THREE.Float32Attribute( geometry.colors.length * 3, 3 ); this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { var lineDistances = new THREE.Float32Attribute( geometry.lineDistances.length, 1 ); this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } } else if ( object instanceof THREE.Mesh ) { if ( geometry instanceof THREE.Geometry ) { this.fromGeometry( geometry ); } } return this; }, updateFromObject: function ( object ) { var geometry = object.geometry; if ( object instanceof THREE.Mesh ) { var direct = geometry.__directGeometry; if ( direct === undefined ) { return this.fromGeometry( geometry ); } direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate; geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false; geometry = direct; } if ( geometry.verticesNeedUpdate === true ) { var attribute = this.attributes.position; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true; } geometry.verticesNeedUpdate = false; } if ( geometry.normalsNeedUpdate === true ) { var attribute = this.attributes.normal; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.normals ); attribute.needsUpdate = true; } geometry.normalsNeedUpdate = false; } if ( geometry.colorsNeedUpdate === true ) { var attribute = this.attributes.color; if ( attribute !== undefined ) { attribute.copyColorsArray( geometry.colors ); attribute.needsUpdate = true; } geometry.colorsNeedUpdate = false; } if ( geometry.uvsNeedUpdate ) { var attribute = this.attributes.uv; if ( attribute !== undefined ) { attribute.copyVector2sArray( geometry.uvs ); attribute.needsUpdate = true; } geometry.uvsNeedUpdate = false; } if ( geometry.lineDistancesNeedUpdate ) { var attribute = this.attributes.lineDistance; if ( attribute !== undefined ) { attribute.copyArray( geometry.lineDistances ); attribute.needsUpdate = true; } geometry.lineDistancesNeedUpdate = false; } if ( geometry.groupsNeedUpdate ) { geometry.computeGroups( object.geometry ); this.groups = geometry.groups; geometry.groupsNeedUpdate = false; } return this; }, fromGeometry: function ( geometry ) { geometry.__directGeometry = new THREE.DirectGeometry().fromGeometry( geometry ); return this.fromDirectGeometry( geometry.__directGeometry ); }, fromDirectGeometry: function ( geometry ) { var positions = new Float32Array( geometry.vertices.length * 3 ); this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); this.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.addAttribute( 'uv2', new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); } if ( geometry.indices.length > 0 ) { var TypeArray = geometry.vertices.length > 65535 ? Uint32Array : Uint16Array; var indices = new TypeArray( geometry.indices.length * 3 ); this.setIndex( new THREE.BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) ); } // groups this.groups = geometry.groups; // morphs for ( var name in geometry.morphTargets ) { var array = []; var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; var attribute = new THREE.Float32Attribute( morphTarget.length * 3, 3 ); array.push( attribute.copyVector3sArray( morphTarget ) ); } this.morphAttributes[ name ] = array; } // skinning if ( geometry.skinIndices.length > 0 ) { var skinIndices = new THREE.Float32Attribute( geometry.skinIndices.length * 4, 4 ); this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); } if ( geometry.skinWeights.length > 0 ) { var skinWeights = new THREE.Float32Attribute( geometry.skinWeights.length * 4, 4 ); this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); } // if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }, computeBoundingBox: function () { var vector = new THREE.Vector3(); return function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } var positions = this.attributes.position.array; if ( positions ) { this.boundingBox.setFromArray( positions ); } if ( positions === undefined || positions.length === 0 ) { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } }; }(), computeBoundingSphere: function () { var box = new THREE.Box3(); var vector = new THREE.Vector3(); return function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } var positions = this.attributes.position.array; if ( positions ) { var center = this.boundingSphere.center; box.setFromArray( positions ); box.center( center ); // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i = 0, il = positions.length; i < il; i += 3 ) { vector.fromArray( positions, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) ); } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } }; }(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index; var attributes = this.attributes; var groups = this.groups; if ( attributes.position ) { var positions = attributes.position.array; if ( attributes.normal === undefined ) { this.addAttribute( 'normal', new THREE.BufferAttribute( new Float32Array( positions.length ), 3 ) ); } else { // reset existing normals to zero var array = attributes.normal.array; for ( var i = 0, il = array.length; i < il; i ++ ) { array[ i ] = 0; } } var normals = attributes.normal.array; var vA, vB, vC, pA = new THREE.Vector3(), pB = new THREE.Vector3(), pC = new THREE.Vector3(), cb = new THREE.Vector3(), ab = new THREE.Vector3(); // indexed elements if ( index ) { var indices = index.array; if ( groups.length === 0 ) { this.addGroup( 0, indices.length ); } for ( var j = 0, jl = groups.length; j < jl; ++ j ) { var group = groups[ j ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { vA = indices[ i + 0 ] * 3; vB = indices[ i + 1 ] * 3; vC = indices[ i + 2 ] * 3; pA.fromArray( positions, vA ); pB.fromArray( positions, vB ); pC.fromArray( positions, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ vA ] += cb.x; normals[ vA + 1 ] += cb.y; normals[ vA + 2 ] += cb.z; normals[ vB ] += cb.x; normals[ vB + 1 ] += cb.y; normals[ vB + 2 ] += cb.z; normals[ vC ] += cb.x; normals[ vC + 1 ] += cb.y; normals[ vC + 2 ] += cb.z; } } } else { // non-indexed elements (unconnected triangle soup) for ( var i = 0, il = positions.length; i < il; i += 9 ) { pA.fromArray( positions, i ); pB.fromArray( positions, i + 3 ); pC.fromArray( positions, i + 6 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z; normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z; normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z; } } this.normalizeNormals(); attributes.normal.needsUpdate = true; } }, merge: function ( geometry, offset ) { if ( geometry instanceof THREE.BufferGeometry === false ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) offset = 0; var attributes = this.attributes; for ( var key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array; var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array; var attributeSize = attribute2.itemSize; for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; }, normalizeNormals: function () { var normals = this.attributes.normal.array; var x, y, z, n; for ( var i = 0, il = normals.length; i < il; i += 3 ) { x = normals[ i ]; y = normals[ i + 1 ]; z = normals[ i + 2 ]; n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals[ i ] *= n; normals[ i + 1 ] *= n; normals[ i + 2 ] *= n; } }, toNonIndexed: function () { if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this; } var geometry2 = new THREE.BufferGeometry(); var indices = this.index.array; var attributes = this.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; var array = attribute.array; var itemSize = attribute.itemSize; var array2 = new array.constructor( indices.length * itemSize ); var index = 0, index2 = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { index = indices[ i ] * itemSize; for ( var j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } geometry2.addAttribute( name, new THREE.BufferAttribute( array2, itemSize ) ); } return geometry2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } data.data = { attributes: {} }; var index = this.index; if ( index !== null ) { var array = Array.prototype.slice.call( index.array ); data.data.index = { type: index.array.constructor.name, array: array }; } var attributes = this.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var array = Array.prototype.slice.call( attribute.array ); data.data.attributes[ key ] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array }; } var groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } var boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new THREE.BufferGeometry().copy( this ); }, copy: function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count ); } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.BufferGeometry.prototype ); THREE.BufferGeometry.MaxIndex = 65535; // File:src/core/InstancedBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedBufferGeometry = function () { THREE.BufferGeometry.call( this ); this.type = 'InstancedBufferGeometry'; this.maxInstancedCount = undefined; }; THREE.InstancedBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.InstancedBufferGeometry.prototype.constructor = THREE.InstancedBufferGeometry; THREE.InstancedBufferGeometry.prototype.addGroup = function ( start, count, instances ) { this.groups.push( { start: start, count: count, instances: instances } ); }; THREE.InstancedBufferGeometry.prototype.copy = function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.instances ); } return this; }; THREE.EventDispatcher.prototype.apply( THREE.InstancedBufferGeometry.prototype ); // File:src/core/Uniform.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Uniform = function ( type, value ) { this.type = type; this.value = value; this.dynamic = false; }; THREE.Uniform.prototype = { constructor: THREE.Uniform, onUpdate: function ( callback ) { this.dynamic = true; this.onUpdateCallback = callback; return this; } }; // File:src/animation/AnimationClip.js /** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ THREE.AnimationClip = function ( name, duration, tracks ) { this.name = name || THREE.Math.generateUUID(); this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : -1; // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } // maybe only do these on demand, as doing them here could potentially slow down loading // but leaving these here during development as this ensures a lot of testing of these functions this.trim(); this.optimize(); }; THREE.AnimationClip.prototype = { constructor: THREE.AnimationClip, resetDuration: function() { var tracks = this.tracks, duration = 0; for ( var i = 0, n = tracks.length; i !== n; ++ i ) { var track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; }, trim: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; }, optimize: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } }; // Static methods: Object.assign( THREE.AnimationClip, { parse: function( json ) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( THREE.KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) ); } return new THREE.AnimationClip( json.name, json.duration, tracks ); }, toJSON: function( clip ) { var tracks = [], clipTracks = clip.tracks; var json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks }; for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( THREE.KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; }, CreateFromMorphTargetSequence: function( name, morphTargetSequence, fps ) { var numMorphTargets = morphTargetSequence.length; var tracks = []; for ( var i = 0; i < numMorphTargets; i ++ ) { var times = []; var values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); var order = THREE.AnimationUtils.getKeyframeOrder( times ); times = THREE.AnimationUtils.sortedArray( times, 1, order ); values = THREE.AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new THREE.NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new THREE.AnimationClip( name, -1, tracks ); }, findByName: function( clipArray, name ) { for ( var i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; }, CreateClipsFromMorphTargetSequences: function( morphTargets, fps ) { var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { var name = parts[ 1 ]; var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } var clips = []; for ( var name in animationToMorphTargets ) { clips.push( THREE.AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps ) ); } return clips; }, // parse the animation.hierarchy format parseAnimation: function( animation, bones, nodeName ) { if ( ! animation ) { console.error( " no animation in JSONLoader data" ); return null; } var addNonemptyTrack = function( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { var times = []; var values = []; THREE.AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; var tracks = []; var clipName = animation.name || 'default'; // automatic length determination in AnimationClip. var duration = animation.length || -1; var fps = animation.fps || 30; var hierarchyTracks = animation.hierarchy || []; for ( var h = 0; h < hierarchyTracks.length; h ++ ) { var animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length == 0 ) continue; // process morph targets in a way exactly compatible // with AnimationHandler.init( animation ) if ( animationKeys[0].morphTargets ) { // figure out all morph targets used in this track var morphTargetNames = {}; for ( var k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[k].morphTargets ) { for ( var m = 0; m < animationKeys[k].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[k].morphTargets[m] ] = -1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) { var times = []; var values = []; for ( var m = 0; m !== animationKeys[k].morphTargets.length; ++ m ) { var animationKey = animationKeys[k]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ) } tracks.push( new THREE.NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation var boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( THREE.VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( THREE.QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( THREE.VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } var clip = new THREE.AnimationClip( clipName, duration, tracks ); return clip; } } ); // File:src/animation/AnimationMixer.js /** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.AnimationMixer = function( root ) { this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; }; THREE.AnimationMixer.prototype = { constructor: THREE.AnimationMixer, // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipName = ( typeof clip === 'string' ) ? clip : clip.name, clipObject = ( clip !== clipName ) ? clip : null, actionsForClip = this._actionsByClip[ clipName ], prototypeAction; if ( actionsForClip !== undefined ) { var existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action clipObject = prototypeAction._clip; if ( clip !== clipName && clip !== clipObject ) { throw new Error( "Different clips with the same name detected!" ); } } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it var newAction = new THREE. AnimationMixer._Action( this, clipObject, optionalRoot ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipName, rootUuid ); return newAction; }, // get an existing action existingAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipName = ( typeof clip === 'string' ) ? clip : clip.name, actionsForClip = this._actionsByClip[ clipName ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; }, // deactivates all previously scheduled actions stopAllAction: function() { var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings; this._nActiveActions = 0; this._nActiveBindings = 0; for ( var i = 0; i !== nActions; ++ i ) { actions[ i ].reset(); } for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].useCount = 0; } return this; }, // advance the time and update apply the animation update: function( deltaTime ) { deltaTime *= this.timeScale; var actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( var i = 0; i !== nActions; ++ i ) { var action = actions[ i ]; if ( action.enabled ) { action._update( time, deltaTime, timeDirection, accuIndex ); } } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings; for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; }, // return this mixer's root target object getRoot: function() { return this._root; }, // free all resources specific to a particular clip uncacheClip: function( clip ) { var actions = this._actions, clipName = clip.name, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions; for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { var action = actionsToRemove[ i ]; this._deactivateAction( action ); var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipName ]; } }, // free all resources specific to a particular root target object uncacheRoot: function( root ) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( var clipName in actionsByClip ) { var actionByRoot = actionsByClip[ clipName ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( var trackName in bindingByName ) { var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } }, // remove a targeted clip from the cache uncacheAction: function( clip, optionalRoot ) { var action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } }; THREE.EventDispatcher.prototype.apply( THREE.AnimationMixer.prototype ); THREE.AnimationMixer._Action = function( mixer, clip, localRoot ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null; var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); var interpolantSettings = { endingStart: THREE.ZeroCurvatureEnding, endingEnd: THREE.ZeroCurvatureEnding }; for ( var i = 0; i !== nTracks; ++ i ) { var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = THREE.LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // false -> zero effective time scale this.enabled = true; // true -> zero effective weight this.clampWhenFinished = false; // keep feeding the last frame? this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end }; THREE.AnimationMixer._Action.prototype = { constructor: THREE.AnimationMixer._Action, // State & Scheduling play: function() { this._mixer._activateAction( this ); return this; }, stop: function() { this._mixer._deactivateAction( this ); return this.reset(); }, reset: function() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1; // forget previous loops this._startTime = null; // forget scheduling return this.stopFading().stopWarping(); }, isRunning: function() { var start = this._startTime; return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ) }, // return true when play has been called isScheduled: function() { return this._mixer._isActiveAction( this ); }, startAt: function( time ) { this._startTime = time; return this; }, setLoop: function( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; }, // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); }, // return the weight considering fading and .enabled getEffectiveWeight: function() { return this._effectiveWeight; }, fadeIn: function( duration ) { return this._scheduleFading( duration, 0, 1 ); }, fadeOut: function( duration ) { return this._scheduleFading( duration, 1, 0 ); }, crossFadeFrom: function( fadeOutAction, duration, warp ) { var mixer = this._mixer; fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if( warp ) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; }, crossFadeTo: function( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); }, stopFading: function() { var weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; }, // Time Scale Control // set the weight stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 :timeScale; return this.stopWarping(); }, // return the time scale considering warping and .paused getEffectiveTimeScale: function() { return this._effectiveTimeScale; }, setDuration: function( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); }, syncWith: function( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); }, halt: function( duration ) { return this.warp( this._currentTimeScale, 0, duration ); }, warp: function( startTimeScale, endTimeScale, duration ) { var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant, timeScale = this.timeScale; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._timeScaleInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; }, stopWarping: function() { var timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; }, // Object Accessors getMixer: function() { return this._mixer; }, getClip: function() { return this._clip; }, getRoot: function() { return this._localRoot || this._mixer._root; }, // Interna _update: function( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer var startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight( time ); if ( weight > 0 ) { var interpolants = this._interpolants; var propertyMixers = this._propertyBindings; for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } }, _updateWeight: function( time ) { var weight = 0; if ( this.enabled ) { weight = this.weight; var interpolant = this._weightInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; }, _updateTimeScale: function( time ) { var timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.pause = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; }, _updateTime: function( deltaTime ) { var time = this.time + deltaTime; if ( deltaTime === 0 ) return time; var duration = this._clip.duration, loop = this.loop, loopCount = this._loopCount, pingPong = false; switch ( loop ) { case THREE.LoopOnce: if ( loopCount === -1 ) { // just started this.loopCount = 0; this._setEndings( true, true, false ); } if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else break; // reached the end if ( this.clampWhenFinished ) this.pause = true; else this.enabled = false; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 } ); break; case THREE.LoopPingPong: pingPong = true; case THREE.LoopRepeat: if ( loopCount === -1 ) { // just started if ( deltaTime > 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); var pending = this.repetitions - loopCount; if ( pending < 0 ) { // stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 } ); break; } else if ( pending === 0 ) { // transition to last round var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } if ( loop === THREE.LoopPingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" this.time = time; return duration - time; } break; } this.time = time; return time; }, _setEndings: function( atStart, atEnd, pingPong ) { var settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = THREE.ZeroSlopeEnding; settings.endingEnd = THREE.ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding; } else { settings.endingStart = THREE.WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding; } else { settings.endingEnd = THREE.WrapAroundEnding; } } }, _scheduleFading: function( duration, weightNow, weightThen ) { var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._weightInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } }; // Implementation details: Object.assign( THREE.AnimationMixer.prototype, { _bindAction: function( action, prototypeAction ) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( var i = 0; i !== nTracks; ++ i ) { var track = tracks[ i ], trackName = track.name, binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new THREE.PropertyMixer( THREE.PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } }, _activateAction: function( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = ( action._localRoot || this._root ).uuid, clipName = action._clip.name, actionsForClip = this._actionsByClip[ clipName ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipName, rootUuid ); } var bindings = action._propertyBindings; // increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } }, _deactivateAction: function( action ) { if ( this._isActiveAction( action ) ) { var bindings = action._propertyBindings; // decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } }, // Memory manager _initMemoryManager: function() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< _Action > - used as prototypes // actionByRoot: _Action - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; var scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; }, // Memory management for _Action objects _isActiveAction: function( action ) { var index = action._cacheIndex; return index !== null && index < this._nActiveActions; }, _addInactiveAction: function( action, clipName, rootUuid ) { var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipName ] = actionsForClip; } else { var knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; }, _removeInactiveAction: function( action ) { var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; var clipName = action._clip.name, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( actions._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipName ]; } this._removeInactiveBindingsForAction( action ); }, _removeInactiveBindingsForAction: function( action ) { var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } }, _lendAction: function( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; }, _takeBackAction: function( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; }, // Memory management for PropertyMixer objects _addInactiveBinding: function( binding, rootUuid, trackName ) { var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], bindings = this._bindings; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); }, _removeInactiveBinding: function( binding ) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; remove_empty_map: { for ( var _ in bindingByName ) break remove_empty_map; delete bindingsByRoot[ rootUuid ]; } }, _lendBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; }, _takeBackBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function() { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++, interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new THREE.LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; }, _takeBackControlInterpolant: function( interpolant ) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; }, _controlInterpolantsResultBuffer: new Float32Array( 1 ) } ); // File:src/animation/AnimationObjectGroup.js /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */ THREE.AnimationObjectGroup = function( var_args ) { this.uuid = THREE.Math.generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite var indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( var i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays var scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; }; THREE.AnimationObjectGroup.prototype = { constructor: THREE.AnimationObjectGroup, add: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new THREE.PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { var knownObject = objects[ index ]; // move existing object to the ACTIVE region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new THREE.PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject) { console.error( "Different objects with the same UUID " + "detected. Clean the caches or recreate your " + "infrastructure when reloading scenes..." ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; }, remove: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; }, // remove & forget uncache: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop var lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; indicesByUUID[ lastObject.uuid ] = index; objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ], bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { var object = objects[ i ]; bindingsForPath[ i ] = new THREE.PropertyBinding( object, path, parsedPath ); } return bindingsForPath; }, unsubscribe_: function( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } }; // File:src/animation/AnimationUtils.js /** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ THREE.AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function( array, from, to ) { if ( THREE.AnimationUtils.isTypedArray( array ) ) { return new array.constructor( array.subarray( from, to ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function( values, stride, order ) { var nValues = values.length; var result = new values.constructor( nValues ); for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { var srcOffset = order[ i ] * stride; for ( var j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function( jsonKeys, times, values, valuePropertyName ) { var i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data var value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } }; // File:src/animation/KeyframeTrack.js /** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.KeyframeTrack = function ( name, times, values, interpolation ) { if( name === undefined ) throw new Error( "track name is undefined" ); if( times === undefined || times.length === 0 ) { throw new Error( "no keyframes in track named " + name ); } this.name = name; this.times = THREE.AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = THREE.AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); this.validate(); this.optimize(); }; THREE.KeyframeTrack.prototype = { constructor: THREE.KeyframeTrack, TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: THREE.InterpolateLinear, InterpolantFactoryMethodDiscrete: function( result ) { return new THREE.DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodLinear: function( result ) { return new THREE.LinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: function( result ) { return new THREE.CubicInterpolant( this.times, this.values, this.getValueSize(), result ); }, setInterpolation: function( interpolation ) { var factoryMethod = undefined; switch ( interpolation ) { case THREE.InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case THREE.InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case THREE.InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( message ); return; } this.createInterpolant = factoryMethod; }, getInterpolation: function() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return THREE.InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return THREE.InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return THREE.InterpolateSmooth; } }, getValueSize: function() { return this.values.length / this.times.length; }, // move all keyframes either forwards or backwards in time shift: function( timeOffset ) { if( timeOffset !== 0.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function( timeScale ) { if( timeScale !== 1.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function( startTime, endTime ) { var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) ++ from; while ( to !== -1 && times[ to ] > endTime ) -- to; ++ to; // inclusive -> exclusive bound if( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) to = Math.max( to , 1 ), from = to - 1; var stride = this.getValueSize(); this.times = THREE.AnimationUtils.arraySlice( times, from, to ); this.values = THREE.AnimationUtils. arraySlice( this.values, from * stride, to * stride ); } return this; }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function() { var valid = true; var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( "invalid value size in track", this ); valid = false; } var times = this.times, values = this.values, nKeys = times.length; if( nKeys === 0 ) { console.error( "track is empty", this ); valid = false; } var prevTime = null; for( var i = 0; i !== nKeys; i ++ ) { var currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( "time is not a valid number", this, i, currTime ); valid = false; break; } if( prevTime !== null && prevTime > currTime ) { console.error( "out of order keys", this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( THREE.AnimationUtils.isTypedArray( values ) ) { for ( var i = 0, n = values.length; i !== n; ++ i ) { var value = values[ i ]; if ( isNaN( value ) ) { console.error( "value is not a valid number", this, i, value ); valid = false; break; } } } } return valid; }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function() { var times = this.times, values = this.values, stride = this.getValueSize(), writeIndex = 1; for( var i = 1, n = times.length - 1; i <= n; ++ i ) { var keep = false; var time = times[ i ]; var timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( var j = 0; j !== stride; ++ j ) { var value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; var readOffset = i * stride, writeOffset = writeIndex * stride; for ( var j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } } ++ writeIndex; } } if ( writeIndex !== times.length ) { this.times = THREE.AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = THREE.AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } return this; } }; // Static methods: Object.assign( THREE.KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): parse: function( json ) { if( json.type === undefined ) { throw new Error( "track type undefined, can not parse" ); } var trackType = THREE.KeyframeTrack._getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { console.warn( "legacy JSON format detected, converting" ); var times = [], values = []; THREE.AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we asssume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } }, toJSON: function( track ) { var trackType = track.constructor; var json; // derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': THREE.AnimationUtils.convertArray( track.times, Array ), 'values': THREE.AnimationUtils.convertArray( track.values, Array ) }; var interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; }, _getTrackTypeForValueTypeName: function( typeName ) { switch( typeName.toLowerCase() ) { case "scalar": case "double": case "float": case "number": case "integer": return THREE.NumberKeyframeTrack; case "vector": case "vector2": case "vector3": case "vector4": return THREE.VectorKeyframeTrack; case "color": return THREE.ColorKeyframeTrack; case "quaternion": return THREE.QuaternionKeyframeTrack; case "bool": case "boolean": return THREE.BooleanKeyframeTrack; case "string": return THREE.StringKeyframeTrack; }; throw new Error( "Unsupported typeName: " + typeName ); } } ); // File:src/animation/PropertyBinding.js /** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.PropertyBinding = function ( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || THREE.PropertyBinding.parseTrackName( path ); this.node = THREE.PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; }; THREE.PropertyBinding.prototype = { constructor: THREE.PropertyBinding, getValue: function getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); }, // create getter / setter pair for a property in the scene graph bind: function() { var targetObject = this.node, parsedPath = this.parsedPath, objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = THREE.PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( " trying to update node for track: " + this.path + " but it wasn't found." ); return; } if( objectName ) { var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if( ! targetObject.material ) { console.error( ' can not bind to material as node does not have a material', this ); return; } if( ! targetObject.material.materials ) { console.error( ' can not bind to material.materials as node.material does not have a materials array', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if( ! targetObject.skeleton ) { console.error( ' can not bind to bones as node does not have a skeleton', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) { if ( targetObject[i].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( ' can not bind to objectName of node, undefined', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if( targetObject[ objectIndex ] === undefined ) { console.error( " trying to bind to objectIndex of objectName, but is undefined:", this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property var nodeProperty = targetObject[ propertyName ]; if ( ! nodeProperty ) { var nodeName = parsedPath.nodeName; console.error( " trying to update property for track: " + nodeName + '.' + propertyName + " but it wasn't found.", targetObject ); return; } // determine versioning scheme var versioning = this.Versioning.None; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; this.targetObject = targetObject; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; this.targetObject = targetObject; } // determine how the property gets bound var bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === "morphTargetInfluences" ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry', this ); return; } if ( ! targetObject.geometry.morphTargets ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this ); return; } for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) { if ( targetObject.geometry.morphTargets[i].name === propertyIndex ) { propertyIndex = i; break; } } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( nodeProperty.length !== undefined ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; }, unbind: function() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } }; Object.assign( THREE.PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function() {}, _setValue_unavailable: function() {}, // initial state of these methods that calls 'bind' _getValue_unbound: THREE.PropertyBinding.prototype.getValue, _setValue_unbound: THREE.PropertyBinding.prototype.setValue, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct( buffer, offset ) { buffer[ offset ] = this.node[ this.propertyName ]; }, function getValue_array( buffer, offset ) { var source = this.resolvedProperty; for ( var i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } }, function getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; }, function getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; }, function setValue_direct_setNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // EntireArray function setValue_array( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } }, function setValue_array_setNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; }, function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // ArrayElement function setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; }, function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // HasToFromArray function setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); }, function setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; }, function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } ] ] } ); THREE.PropertyBinding.Composite = function( targetGroup, path, optionalParsedPath ) { var parsedPath = optionalParsedPath || THREE.PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); }; THREE.PropertyBinding.Composite.prototype = { constructor: THREE.PropertyBinding.Composite, getValue: function( array, offset ) { this.bind(); // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); }, setValue: function( array, offset ) { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } }, bind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } }, unbind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } }; THREE.PropertyBinding.create = function( root, path, parsedPath ) { if ( ! ( root instanceof THREE.AnimationObjectGroup ) ) { return new THREE.PropertyBinding( root, path, parsedPath ); } else { return new THREE.PropertyBinding.Composite( root, path, parsedPath ); } }; THREE.PropertyBinding.parseTrackName = function( trackName ) { // matches strings in the form of: // nodeName.property // nodeName.property[accessor] // nodeName.material.property[accessor] // uuid.property[accessor] // uuid.objectName[objectIndex].propertyName[propertyIndex] // parentName/nodeName.property // parentName/parentName/nodeName.property[index] // .bone[Armature.DEF_cog].position // created and tested via https://regex101.com/#javascript var re = /^(([\w]+\/)*)([\w-\d]+)?(\.([\w]+)(\[([\w\d\[\]\_. ]+)\])?)?(\.([\w.]+)(\[([\w\d\[\]\_. ]+)\])?)$/; var matches = re.exec(trackName); if( ! matches ) { throw new Error( "cannot parse trackName at all: " + trackName ); } if (matches.index === re.lastIndex) { re.lastIndex++; } var results = { // directoryName: matches[1], // (tschw) currently unused nodeName: matches[3], // allowed to be null, specified root node. objectName: matches[5], objectIndex: matches[7], propertyName: matches[9], propertyIndex: matches[11] // allowed to be null, specifies that the whole property is set. }; if( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( "can not parse propertyName from trackName: " + trackName ); } return results; }; THREE.PropertyBinding.findNode = function( root, nodeName ) { if( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if( root.skeleton ) { var searchSkeleton = function( skeleton ) { for( var i = 0; i < skeleton.bones.length; i ++ ) { var bone = skeleton.bones[i]; if( bone.name === nodeName ) { return bone; } } return null; }; var bone = searchSkeleton( root.skeleton ); if( bone ) { return bone; } } // search into node subtree. if( root.children ) { var searchNodeSubtree = function( children ) { for( var i = 0; i < children.length; i ++ ) { var childNode = children[i]; if( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } var result = searchNodeSubtree( childNode.children ); if( result ) return result; } return null; }; var subTreeNode = searchNodeSubtree( root.children ); if( subTreeNode ) { return subTreeNode; } } return null; } // File:src/animation/PropertyMixer.js /** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.PropertyMixer = function ( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; var bufferType = Float64Array, mixFunction; switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; break; case 'string': case 'bool': bufferType = Array, mixFunction = this._select; break; default: mixFunction = this._lerp; } this.buffer = new bufferType( valueSize * 4 ); // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property this._mixBufferRegion = mixFunction; this.cumulativeWeight = 0; this.useCount = 0; this.referenceCount = 0; }; THREE.PropertyMixer.prototype = { constructor: THREE.PropertyMixer, // accumulate data in the 'incoming' region into 'accu' accumulate: function( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride, currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( var i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; }, // apply the state of 'accu' to the binding when accus differ apply: function( accuIndex ) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, binding = this.binding; this.cumulativeWeight = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * 3; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } for ( var i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function() { var binding = this.binding; var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * 3; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } this.cumulativeWeight = 0; }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function() { var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); }, // mix functions _select: function( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( var i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } }, _slerp: function( buffer, dstOffset, srcOffset, t, stride ) { THREE.Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); }, _lerp: function( buffer, dstOffset, srcOffset, t, stride ) { var s = 1 - t; for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } }; // File:src/animation/tracks/BooleanKeyframeTrack.js /** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.BooleanKeyframeTrack = function ( name, times, values ) { THREE.KeyframeTrack.call( this, name, times, values ); }; THREE.BooleanKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: THREE.IntepolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". } ); // File:src/animation/tracks/NumberKeyframeTrack.js /** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.NumberKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.NumberKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.NumberKeyframeTrack, ValueTypeName: 'number', // ValueBufferType is inherited // DefaultInterpolation is inherited } ); // File:src/animation/tracks/QuaternionKeyframeTrack.js /** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.QuaternionKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.QuaternionKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: THREE.InterpolateLinear, InterpolantFactoryMethodLinear: function( result ) { return new THREE.QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: undefined // not yet implemented } ); // File:src/animation/tracks/StringKeyframeTrack.js /** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.StringKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.StringKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: THREE.IntepolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined } ); // File:src/animation/tracks/VectorKeyframeTrack.js /** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.VectorKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.VectorKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); // File:src/audio/Audio.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Audio = function ( listener ) { THREE.Object3D.call( this ); this.type = 'Audio'; this.context = listener.context; this.source = this.context.createBufferSource(); this.source.onended = this.onEnded.bind( this ); this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.startTime = 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.sourceType = 'empty'; this.filter = null; }; THREE.Audio.prototype = Object.create( THREE.Object3D.prototype ); THREE.Audio.prototype.constructor = THREE.Audio; THREE.Audio.prototype.getOutput = function () { return this.gain; }; THREE.Audio.prototype.load = function ( file ) { var buffer = new THREE.AudioBuffer( this.context ); buffer.load( file ); this.setBuffer( buffer ); return this; }; THREE.Audio.prototype.setNodeSource = function ( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; }; THREE.Audio.prototype.setBuffer = function ( audioBuffer ) { var scope = this; audioBuffer.onReady( function( buffer ) { scope.source.buffer = buffer; scope.sourceType = 'buffer'; if ( scope.autoplay ) scope.play(); } ); return this; }; THREE.Audio.prototype.play = function () { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } var source = this.context.createBufferSource(); source.buffer = this.source.buffer; source.loop = this.source.loop; source.onended = this.source.onended; source.start( 0, this.startTime ); source.playbackRate.value = this.playbackRate; this.isPlaying = true; this.source = source; this.connect(); }; THREE.Audio.prototype.pause = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = this.context.currentTime; }; THREE.Audio.prototype.stop = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = 0; }; THREE.Audio.prototype.connect = function () { if ( this.filter !== null ) { this.source.connect( this.filter ); this.filter.connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } }; THREE.Audio.prototype.disconnect = function () { if ( this.filter !== null ) { this.source.disconnect( this.filter ); this.filter.disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } }; THREE.Audio.prototype.getFilter = function () { return this.filter; }; THREE.Audio.prototype.setFilter = function ( value ) { if ( value === undefined ) value = null; if ( this.isPlaying === true ) { this.disconnect(); this.filter = value; this.connect(); } else { this.filter = value; } }; THREE.Audio.prototype.setPlaybackRate = function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.value = this.playbackRate; } }; THREE.Audio.prototype.getPlaybackRate = function () { return this.playbackRate; }; THREE.Audio.prototype.onEnded = function() { this.isPlaying = false; }; THREE.Audio.prototype.setLoop = function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.loop = value; }; THREE.Audio.prototype.getLoop = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.source.loop; }; THREE.Audio.prototype.setVolume = function ( value ) { this.gain.gain.value = value; }; THREE.Audio.prototype.getVolume = function () { return this.gain.gain.value; }; // File:src/audio/AudioAnalyser.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioAnalyser = function ( audio, fftSize ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); }; THREE.AudioAnalyser.prototype = { constructor: THREE.AudioAnalyser, getData: function () { this.analyser.getByteFrequencyData( this.data ); return this.data; } }; // File:src/audio/AudioBuffer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioBuffer = function ( context ) { this.context = context; this.ready = false; this.readyCallbacks = []; }; THREE.AudioBuffer.prototype.load = function ( file ) { var scope = this; var request = new XMLHttpRequest(); request.open( 'GET', file, true ); request.responseType = 'arraybuffer'; request.onload = function ( e ) { scope.context.decodeAudioData( this.response, function ( buffer ) { scope.buffer = buffer; scope.ready = true; for ( var i = 0; i < scope.readyCallbacks.length; i ++ ) { scope.readyCallbacks[ i ]( scope.buffer ); } scope.readyCallbacks = []; } ); }; request.send(); return this; }; THREE.AudioBuffer.prototype.onReady = function ( callback ) { if ( this.ready ) { callback( this.buffer ); } else { this.readyCallbacks.push( callback ); } }; // File:src/audio/PositionalAudio.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.PositionalAudio = function ( listener ) { THREE.Audio.call( this, listener ); this.panner = this.context.createPanner(); this.panner.connect( this.gain ); }; THREE.PositionalAudio.prototype = Object.create( THREE.Audio.prototype ); THREE.PositionalAudio.prototype.constructor = THREE.PositionalAudio; THREE.PositionalAudio.prototype.getOutput = function () { return this.panner; }; THREE.PositionalAudio.prototype.setRefDistance = function ( value ) { this.panner.refDistance = value; }; THREE.PositionalAudio.prototype.getRefDistance = function () { return this.panner.refDistance; }; THREE.PositionalAudio.prototype.setRolloffFactor = function ( value ) { this.panner.rolloffFactor = value; }; THREE.PositionalAudio.prototype.getRolloffFactor = function () { return this.panner.rolloffFactor; }; THREE.PositionalAudio.prototype.setDistanceModel = function ( value ) { this.panner.distanceModel = value; }; THREE.PositionalAudio.prototype.getDistanceModel = function () { return this.panner.distanceModel; }; THREE.PositionalAudio.prototype.setMaxDistance = function ( value ) { this.panner.maxDistance = value; }; THREE.PositionalAudio.prototype.getMaxDistance = function () { return this.panner.maxDistance; }; THREE.PositionalAudio.prototype.updateMatrixWorld = ( function () { var position = new THREE.Vector3(); return function updateMatrixWorld( force ) { THREE.Object3D.prototype.updateMatrixWorld.call( this, force ); position.setFromMatrixPosition( this.matrixWorld ); this.panner.setPosition( position.x, position.y, position.z ); }; } )(); // File:src/audio/AudioListener.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioListener = function () { THREE.Object3D.call( this ); this.type = 'AudioListener'; this.context = new ( window.AudioContext || window.webkitAudioContext )(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; }; THREE.AudioListener.prototype = Object.create( THREE.Object3D.prototype ); THREE.AudioListener.prototype.constructor = THREE.AudioListener; THREE.AudioListener.prototype.getInput = function () { return this.gain; }; THREE.AudioListener.prototype.removeFilter = function ( ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } }; THREE.AudioListener.prototype.setFilter = function ( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); }; THREE.AudioListener.prototype.getFilter = function () { return this.filter; }; THREE.AudioListener.prototype.setMasterVolume = function ( value ) { this.gain.gain.value = value; }; THREE.AudioListener.prototype.getMasterVolume = function () { return this.gain.gain.value; }; THREE.AudioListener.prototype.updateMatrixWorld = ( function () { var position = new THREE.Vector3(); var quaternion = new THREE.Quaternion(); var scale = new THREE.Vector3(); var orientation = new THREE.Vector3(); return function updateMatrixWorld( force ) { THREE.Object3D.prototype.updateMatrixWorld.call( this, force ); var listener = this.context.listener; var up = this.up; this.matrixWorld.decompose( position, quaternion, scale ); orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion ); listener.setPosition( position.x, position.y, position.z ); listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z ); }; } )(); // File:src/cameras/Camera.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ THREE.Camera = function () { THREE.Object3D.call( this ); this.type = 'Camera'; this.matrixWorldInverse = new THREE.Matrix4(); this.projectionMatrix = new THREE.Matrix4(); }; THREE.Camera.prototype = Object.create( THREE.Object3D.prototype ); THREE.Camera.prototype.constructor = THREE.Camera; THREE.Camera.prototype.getWorldDirection = function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, - 1 ).applyQuaternion( quaternion ); }; }(); THREE.Camera.prototype.lookAt = function () { // This routine does not support cameras with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( this.position, vector, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(); THREE.Camera.prototype.clone = function () { return new this.constructor().copy( this ); }; THREE.Camera.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); return this; }; // File:src/cameras/CubeCamera.js /** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */ THREE.CubeCamera = function ( near, far, cubeResolution ) { THREE.Object3D.call( this ); this.type = 'CubeCamera'; var fov = 90, aspect = 1; var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) ); this.add( cameraPX ); var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new THREE.Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) ); this.add( cameraPY ); var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new THREE.Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new THREE.Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); var options = { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter }; this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, options ); this.updateCubeMap = function ( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); var renderTarget = this.renderTarget; var generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderTarget.activeCubeFace = 0; renderer.render( scene, cameraPX, renderTarget ); renderTarget.activeCubeFace = 1; renderer.render( scene, cameraNX, renderTarget ); renderTarget.activeCubeFace = 2; renderer.render( scene, cameraPY, renderTarget ); renderTarget.activeCubeFace = 3; renderer.render( scene, cameraNY, renderTarget ); renderTarget.activeCubeFace = 4; renderer.render( scene, cameraPZ, renderTarget ); renderTarget.texture.generateMipmaps = generateMipmaps; renderTarget.activeCubeFace = 5; renderer.render( scene, cameraNZ, renderTarget ); renderer.setRenderTarget( null ); }; }; THREE.CubeCamera.prototype = Object.create( THREE.Object3D.prototype ); THREE.CubeCamera.prototype.constructor = THREE.CubeCamera; // File:src/cameras/OrthographicCamera.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) { THREE.Camera.call( this ); this.type = 'OrthographicCamera'; this.zoom = 1; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); }; THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera; THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () { var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2; this.projectionMatrix.makeOrthographic( cx - dx, cx + dx, cy + dy, cy - dy, this.near, this.far ); }; THREE.OrthographicCamera.prototype.copy = function ( source ) { THREE.Camera.prototype.copy.call( this, source ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; return this; }; THREE.OrthographicCamera.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; return data; }; // File:src/cameras/PerspectiveCamera.js /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.PerspectiveCamera = function ( fov, aspect, near, far ) { THREE.Camera.call( this ); this.type = 'PerspectiveCamera'; this.focalLength = 10; this.zoom = 1; this.fov = fov !== undefined ? fov : 50; this.aspect = aspect !== undefined ? aspect : 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera; /** * Uses Focal Length (in mm) to estimate and set FOV * 35mm (full-frame) camera is used if frame size is not specified; * Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html */ THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) { if ( frameHeight === undefined ) frameHeight = 24; this.fov = 2 * THREE.Math.radToDeg( Math.atan( frameHeight / ( focalLength * 2 ) ) ); this.updateProjectionMatrix(); }; /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) { this.fullWidth = fullWidth; this.fullHeight = fullHeight; this.x = x; this.y = y; this.width = width; this.height = height; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () { var fov = THREE.Math.radToDeg( 2 * Math.atan( Math.tan( THREE.Math.degToRad( this.fov ) * 0.5 ) / this.zoom ) ); if ( this.fullWidth ) { var aspect = this.fullWidth / this.fullHeight; var top = Math.tan( THREE.Math.degToRad( fov * 0.5 ) ) * this.near; var bottom = - top; var left = aspect * bottom; var right = aspect * top; var width = Math.abs( right - left ); var height = Math.abs( top - bottom ); this.projectionMatrix.makeFrustum( left + this.x * width / this.fullWidth, left + ( this.x + this.width ) * width / this.fullWidth, top - ( this.y + this.height ) * height / this.fullHeight, top - this.y * height / this.fullHeight, this.near, this.far ); } else { this.projectionMatrix.makePerspective( fov, this.aspect, this.near, this.far ); } }; THREE.PerspectiveCamera.prototype.copy = function ( source ) { THREE.Camera.prototype.copy.call( this, source ); this.focalLength = source.focalLength; this.zoom = source.zoom; this.fov = source.fov; this.aspect = source.aspect; this.near = source.near; this.far = source.far; return this; }; THREE.PerspectiveCamera.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.focalLength = this.focalLength; data.object.zoom = this.zoom; data.object.fov = this.fov; data.object.aspect = this.aspect; data.object.near = this.near; data.object.far = this.far; return data; }; // File:src/cameras/StereoCamera.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.StereoCamera = function () { this.type = 'StereoCamera'; this.aspect = 1; this.cameraL = new THREE.PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new THREE.PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; }; THREE.StereoCamera.prototype = { constructor: THREE.StereoCamera, update: ( function () { var focalLength, fov, aspect, near, far; var eyeRight = new THREE.Matrix4(); var eyeLeft = new THREE.Matrix4(); return function update ( camera ) { var needsUpdate = focalLength !== camera.focalLength || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far; if ( needsUpdate ) { focalLength = camera.focalLength; fov = camera.fov; aspect = camera.aspect * this.aspect; near = camera.near; far = camera.far; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone(); var eyeSep = 0.064 / 2; var eyeSepOnProjection = eyeSep * near / focalLength; var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) ); var xmin, xmax; // translate xOffset eyeLeft.elements[ 12 ] = - eyeSep; eyeRight.elements[ 12 ] = eyeSep; // for left eye xmin = - ymax * aspect + eyeSepOnProjection; xmax = ymax * aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * aspect - eyeSepOnProjection; xmax = ymax * aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight ); }; } )() }; // File:src/lights/Light.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Light = function ( color, intensity ) { THREE.Object3D.call( this ); this.type = 'Light'; this.color = new THREE.Color( color ); this.intensity = intensity !== undefined ? intensity : 1; this.receiveShadow = undefined; }; THREE.Light.prototype = Object.create( THREE.Object3D.prototype ); THREE.Light.prototype.constructor = THREE.Light; THREE.Light.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; }; THREE.Light.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.exponent !== undefined ) data.object.exponent = this.exponent; return data; }; // File:src/lights/LightShadow.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LightShadow = function ( camera ) { this.camera = camera; this.bias = 0; this.radius = 1; this.mapSize = new THREE.Vector2( 512, 512 ); this.map = null; this.matrix = new THREE.Matrix4(); }; THREE.LightShadow.prototype = { constructor: THREE.LightShadow, copy: function ( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; }, clone: function () { return new this.constructor().copy( this ); } }; // File:src/lights/AmbientLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AmbientLight = function ( color, intensity ) { THREE.Light.call( this, color, intensity ); this.type = 'AmbientLight'; this.castShadow = undefined; }; THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype ); THREE.AmbientLight.prototype.constructor = THREE.AmbientLight; // File:src/lights/DirectionalLight.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.DirectionalLight = function ( color, intensity ) { THREE.Light.call( this, color, intensity ); this.type = 'DirectionalLight'; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.target = new THREE.Object3D(); this.shadow = new THREE.LightShadow( new THREE.OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); }; THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype ); THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight; THREE.DirectionalLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; }; // File:src/lights/HemisphereLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.HemisphereLight = function ( skyColor, groundColor, intensity ) { THREE.Light.call( this, skyColor, intensity ); this.type = 'HemisphereLight'; this.castShadow = undefined; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.groundColor = new THREE.Color( groundColor ); }; THREE.HemisphereLight.prototype = Object.create( THREE.Light.prototype ); THREE.HemisphereLight.prototype.constructor = THREE.HemisphereLight; THREE.HemisphereLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; }; // File:src/lights/PointLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.PointLight = function ( color, intensity, distance, decay ) { THREE.Light.call( this, color, intensity ); this.type = 'PointLight'; this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 90, 1, 0.5, 500 ) ); }; THREE.PointLight.prototype = Object.create( THREE.Light.prototype ); THREE.PointLight.prototype.constructor = THREE.PointLight; THREE.PointLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; }; // File:src/lights/SpotLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SpotLight = function ( color, intensity, distance, angle, exponent, decay ) { THREE.Light.call( this, color, intensity ); this.type = 'SpotLight'; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.target = new THREE.Object3D(); this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.exponent = ( exponent !== undefined ) ? exponent : 10; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 50, 1, 0.5, 500 ) ); }; THREE.SpotLight.prototype = Object.create( THREE.Light.prototype ); THREE.SpotLight.prototype.constructor = THREE.SpotLight; THREE.SpotLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.distance = source.distance; this.angle = source.angle; this.exponent = source.exponent; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; }; // File:src/loaders/Cache.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; // File:src/loaders/Loader.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Loader = function () { this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; this.extractUrlBase = function ( url ) { return ""; } }; THREE.Loader.prototype = { constructor: THREE.Loader, crossOrigin: undefined, extractUrlBase: function ( url ) { var parts = url.split( '/' ); if ( parts.length === 1 ) return './'; parts.pop(); return parts.join( '/' ) + '/'; }, initMaterials: function ( materials, texturePath, crossOrigin ) { var array = []; for ( var i = 0; i < materials.length; ++ i ) { array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin ); } return array; }, createMaterial: ( function () { var color, textureLoader, materialLoader; return function ( m, texturePath, crossOrigin ) { if ( color === undefined ) color = new THREE.Color(); if ( textureLoader === undefined ) textureLoader = new THREE.TextureLoader(); if ( materialLoader === undefined ) materialLoader = new THREE.MaterialLoader(); // convert from old material format var textures = {}; function loadTexture( path, repeat, offset, wrap, anisotropy ) { var fullPath = texturePath + path; var loader = THREE.Loader.Handlers.get( fullPath ); var texture; if ( loader !== null ) { texture = loader.load( fullPath ); } else { textureLoader.setCrossOrigin( crossOrigin ); texture = textureLoader.load( fullPath ); } if ( repeat !== undefined ) { texture.repeat.fromArray( repeat ); if ( repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping; } if ( offset !== undefined ) { texture.offset.fromArray( offset ); } if ( wrap !== undefined ) { if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = THREE.RepeatWrapping; if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = THREE.MirroredRepeatWrapping; if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = THREE.RepeatWrapping; if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = THREE.MirroredRepeatWrapping; } if ( anisotropy !== undefined ) { texture.anisotropy = anisotropy; } var uuid = THREE.Math.generateUUID(); textures[ uuid ] = texture; return uuid; } // var json = { uuid: THREE.Math.generateUUID(), type: 'MeshLambertMaterial' }; for ( var name in m ) { var value = m[ name ]; switch ( name ) { case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break; case 'DbgName': json.name = value; break; case 'blending': json.blending = THREE[ value ]; break; case 'colorAmbient': console.warn( 'THREE.Loader.createMaterial: colorAmbient is no longer supported' ); break; case 'colorDiffuse': json.color = color.fromArray( value ).getHex(); break; case 'colorSpecular': json.specular = color.fromArray( value ).getHex(); break; case 'colorEmissive': json.emissive = color.fromArray( value ).getHex(); break; case 'specularCoef': json.shininess = value; break; case 'shading': if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial'; if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial'; break; case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); break; case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break; case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); break; case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break; case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ); break; case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break; case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); break; case 'mapBumpScale': json.bumpScale = value; break; case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break; case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); break; case 'mapNormalFactor': json.normalScale = [ value, value ]; break; case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break; case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); break; case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break; case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); break; case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break; case 'flipSided': json.side = THREE.BackSide; break; case 'doubleSided': json.side = THREE.DoubleSide; break; case 'transparency': console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' ); json.opacity = value; break; case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[ name ] = value; break; case 'vertexColors': if ( value === true ) json.vertexColors = THREE.VertexColors; if ( value === 'face' ) json.vertexColors = THREE.FaceColors; break; default: console.error( 'THREE.Loader.createMaterial: Unsupported', name, value ); break; } } if ( json.type === 'MeshBasicMaterial' ) delete json.emissive; if ( json.type !== 'MeshPhongMaterial' ) delete json.specular; if ( json.opacity < 1 ) json.transparent = true; materialLoader.setTextures( textures ); return materialLoader.parse( json ); }; } )() }; THREE.Loader.Handlers = { handlers: [], add: function ( regex, loader ) { this.handlers.push( regex, loader ); }, get: function ( file ) { var handlers = this.handlers; for ( var i = 0, l = handlers.length; i < l; i += 2 ) { var regex = handlers[ i ]; var loader = handlers[ i + 1 ]; if ( regex.test( file ) ) { return loader; } } return null; } }; // File:src/loaders/XHRLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.XHRLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.XHRLoader.prototype = { constructor: THREE.XHRLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = THREE.Cache.get( url ); if ( cached !== undefined ) { if ( onLoad ) { // setTimeout doesn't work in QML. // There should be no need to do this asynchronously anyway, // as we add the url to cache after the loading is done. //setTimeout( function () { onLoad( cached ); //}, 0 ); } return cached; } var request = new XMLHttpRequest(); //request.overrideMimeType( 'text/plain' ); // Not supported in QML request.onreadystatechange = function() { if (request.readyState === XMLHttpRequest.DONE) { if (request.status == 200 || request.status == 0) { var response; response = request.response; if ( onLoad ) onLoad( response ); THREE.Cache.add( url, response ); scope.manager.itemEnd( url ); } else { if ( onError !== undefined ) { onError(); } } } else if (request.readyState === XMLHttpRequest.HEADERS_RECEIVED) { if ( onProgress !== undefined ) { onProgress(); } } }; request.open( 'GET', url, true ); if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials; request.send( null ); scope.manager.itemStart( url ); return request; }, setPath: function ( value ) { this.path = value; }, setResponseType: function ( value ) { this.responseType = value; }, setWithCredentials: function ( value ) { this.withCredentials = value; } }; // File:src/loaders/FontLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.FontLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.FontLoader.prototype = { constructor: THREE.FontLoader, load: function ( url, onLoad, onProgress, onError ) { var loader = new THREE.XHRLoader( this.manager ); loader.load( url, function ( text ) { onLoad( new THREE.Font( JSON.parse( text.substring( 65, text.length - 2 ) ) ) ); }, onProgress, onError ); } }; // File:src/loaders/ImageLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ImageLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.ImageLoader.prototype = { constructor: THREE.ImageLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = THREE.Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); if ( onLoad ) { setTimeout( function () { onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); } else { scope.manager.itemEnd( url ); } return cached; } var image = document.createElement( 'img' ); image.addEventListener( 'load', function ( event ) { THREE.Cache.add( url, image ); if ( onLoad ) onLoad( image ); scope.manager.itemEnd( url ); }, false ); if ( onProgress !== undefined ) { image.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } image.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemError( url ); }, false ); if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; scope.manager.itemStart( url ); image.src = url; return image; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/JSONLoader.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.JSONLoader = function ( manager ) { if ( typeof manager === 'boolean' ) { console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' ); manager = undefined; } this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.withCredentials = false; }; THREE.JSONLoader.prototype = { constructor: THREE.JSONLoader, // Deprecated get statusDomElement () { if ( this._statusDomElement === undefined ) { this._statusDomElement = document.createElement( 'div' ); } console.warn( 'THREE.JSONLoader: .statusDomElement has been removed.' ); return this._statusDomElement; }, load: function( url, onLoad, onProgress, onError ) { var scope = this; var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : THREE.Loader.prototype.extractUrlBase( url ); var loader = new THREE.XHRLoader( this.manager ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { var json = JSON.parse( text ); var metadata = json.metadata; if ( metadata !== undefined ) { var type = metadata.type; if ( type !== undefined ) { if ( type.toLowerCase() === 'object' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ); return; } if ( type.toLowerCase() === 'scene' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' ); return; } } } var object = scope.parse( json, texturePath ); onLoad( object.geometry, object.materials ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, parse: function ( json, texturePath ) { var geometry = new THREE.Geometry(), scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0; parseModel( scale ); parseSkin(); parseMorphing( scale ); parseAnimations(); geometry.computeFaceNormals(); geometry.computeBoundingSphere(); function parseModel( scale ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, nUvLayers = 0; if ( json.uvs !== undefined ) { // disregard empty arrays for ( i = 0; i < json.uvs.length; i ++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i ++ ) { geometry.faceVertexUvs[ i ] = []; } } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new THREE.Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { faceA = new THREE.Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ]; faceB = new THREE.Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ]; offset += 4; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = []; for ( j = 0; j < 4; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); faceB.normal.copy( faceA.normal ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 4; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; faceA.color.setHex( hex ); faceB.color.setHex( hex ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 4; i ++ ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; if ( i !== 2 ) faceA.vertexColors.push( new THREE.Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new THREE.Color( hex ) ); } } geometry.faces.push( faceA ); geometry.faces.push( faceB ); } else { face = new THREE.Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; for ( j = 0; j < 3; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); geometry.faceVertexUvs[ i ][ fi ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 3; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 3; i ++ ) { colorIndex = faces[ offset ++ ]; face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } } }; function parseSkin() { var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2; if ( json.skinWeights ) { for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) { var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0; geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) { var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0; geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ); } }; function parseMorphing( scale ) { if ( json.morphTargets !== undefined ) { for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = json.morphTargets[ i ].vertices; for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new THREE.Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined && json.morphColors.length > 0 ) { console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' ); var faces = geometry.faces; var morphColors = json.morphColors[ 0 ].colors; for ( var i = 0, l = faces.length; i < l; i ++ ) { faces[ i ].color.fromArray( morphColors, i * 3 ); } } } function parseAnimations() { var outputAnimations = []; // parse old style Bone/Hierarchy animations var animations = []; if ( json.animation !== undefined ) { animations.push( json.animation ); } if ( json.animations !== undefined ) { if ( json.animations.length ) { animations = animations.concat( json.animations ); } else { animations.push( json.animations ); } } for ( var i = 0; i < animations.length; i ++ ) { var clip = THREE.AnimationClip.parseAnimation( animations[ i ], geometry.bones ); if ( clip ) outputAnimations.push( clip ); } // parse implicit morph animations if ( geometry.morphTargets ) { // TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = THREE.AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ); outputAnimations = outputAnimations.concat( morphAnimationClips ); } if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations; }; if ( json.materials === undefined || json.materials.length === 0 ) { return { geometry: geometry }; } else { var materials = THREE.Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin ); return { geometry: geometry, materials: materials }; } } }; // File:src/loaders/LoadingManager.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LoadingManager = function ( onLoad, onProgress, onError ) { var scope = this; var isLoading = false, itemsLoaded = 0, itemsTotal = 0; this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; }; THREE.DefaultLoadingManager = new THREE.LoadingManager(); // File:src/loaders/BufferGeometryLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferGeometryLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.BufferGeometryLoader.prototype = { constructor: THREE.BufferGeometryLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, parse: function ( json ) { var geometry = new THREE.BufferGeometry(); var index = json.data.index; var TYPED_ARRAYS = { 'Int8Array': Int8Array, 'Uint8Array': Uint8Array, 'Uint8ClampedArray': Uint8ClampedArray, 'Int16Array': Int16Array, 'Uint16Array': Uint16Array, 'Int32Array': Int32Array, 'Uint32Array': Uint32Array, 'Float32Array': Float32Array, 'Float64Array': Float64Array }; if ( index !== undefined ) { var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new THREE.BufferAttribute( typedArray, 1 ) ); } var attributes = json.data.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); geometry.addAttribute( key, new THREE.BufferAttribute( typedArray, attribute.itemSize ) ); } var groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( var i = 0, n = groups.length; i !== n; ++ i ) { var group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } var boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { var center = new THREE.Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new THREE.Sphere( center, boundingSphere.radius ); } return geometry; } }; // File:src/loaders/MaterialLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MaterialLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.textures = {}; }; THREE.MaterialLoader.prototype = { constructor: THREE.MaterialLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setTextures: function ( value ) { this.textures = value; }, getTexture: function ( name ) { var textures = this.textures; if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; }, parse: function ( json ) { var material = new THREE[ json.type ]; if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.uniforms !== undefined ) material.uniforms = json.uniforms; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.shading !== undefined ) material.shading = json.shading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = this.getTexture( json.map ); if ( json.alphaMap !== undefined ) { material.alphaMap = this.getTexture( json.alphaMap ); material.transparent = true; } if ( json.bumpMap !== undefined ) material.bumpMap = this.getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = this.getTexture( json.normalMap ); if ( json.normalScale !== undefined ) { var normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new THREE.Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = this.getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = this.getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = this.getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = this.getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = this.getTexture( json.specularMap ); if ( json.envMap !== undefined ) { material.envMap = this.getTexture( json.envMap ); material.combine = THREE.MultiplyOperation; } if ( json.reflectivity ) material.reflectivity = json.reflectivity; if ( json.lightMap !== undefined ) material.lightMap = this.getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = this.getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; // MultiMaterial if ( json.materials !== undefined ) { for ( var i = 0, l = json.materials.length; i < l; i ++ ) { material.materials.push( this.parse( json.materials[ i ] ) ); } } return material; } }; // File:src/loaders/ObjectLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ObjectLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.texturePath = ''; }; THREE.ObjectLoader.prototype = { constructor: THREE.ObjectLoader, load: function ( url, onLoad, onProgress, onError ) { // if ( this.texturePath === '' ) { // this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 ); // } var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { scope.parse( JSON.parse( text ), onLoad ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json, onLoad ) { var geometries = this.parseGeometries( json.geometries ); var images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures ); var object = this.parseObject( json.object, geometries, materials ); if ( json.animations ) { object.animations = this.parseAnimations( json.animations ); } if ( json.images === undefined || json.images.length === 0 ) { if ( onLoad !== undefined ) onLoad( object ); } return object; }, parseGeometries: function ( json ) { var geometries = {}; if ( json !== undefined ) { var geometryLoader = new THREE.JSONLoader(); var bufferGeometryLoader = new THREE.BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry; var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new THREE[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'CubeGeometry': // backwards compatible geometry = new THREE.BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleBufferGeometry': geometry = new THREE.CircleBufferGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CircleGeometry': geometry = new THREE.CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CylinderGeometry': geometry = new THREE.CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'SphereGeometry': geometry = new THREE.SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'SphereBufferGeometry': geometry = new THREE.SphereBufferGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'DodecahedronGeometry': geometry = new THREE.DodecahedronGeometry( data.radius, data.detail ); break; case 'IcosahedronGeometry': geometry = new THREE.IcosahedronGeometry( data.radius, data.detail ); break; case 'OctahedronGeometry': geometry = new THREE.OctahedronGeometry( data.radius, data.detail ); break; case 'TetrahedronGeometry': geometry = new THREE.TetrahedronGeometry( data.radius, data.detail ); break; case 'RingGeometry': geometry = new THREE.RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); break; case 'TorusGeometry': geometry = new THREE.TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': geometry = new THREE.TorusKnotGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.p, data.q, data.heightScale ); break; case 'LatheGeometry': geometry = new THREE.LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength ); break; case 'BufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': geometry = geometryLoader.parse( data.data, this.texturePath ).geometry; break; default: console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); continue; } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json, textures ) { var materials = {}; if ( json !== undefined ) { var loader = new THREE.MaterialLoader(); loader.setTextures( textures ); for ( var i = 0, l = json.length; i < l; i ++ ) { var material = loader.parse( json[ i ] ); materials[ material.uuid ] = material; } } return materials; }, parseAnimations: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var clip = THREE.AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; }, parseImages: function ( json, onLoad ) { var scope = this; var images = {}; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); } ); } if ( json !== undefined && json.length > 0 ) { var manager = new THREE.LoadingManager( onLoad ); var loader = new THREE.ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( var i = 0, l = json.length; i < l; i ++ ) { var image = json[ i ]; var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url; images[ image.uuid ] = loadImage( path ); } } return images; }, parseTextures: function ( json, images ) { function parseConstant( value ) { if ( typeof( value ) === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return THREE[ value ]; } var textures = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } var texture = new THREE.Texture( images[ data.image ] ); texture.needsUpdate = true; texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping ); if ( data.offset !== undefined ) texture.offset = new THREE.Vector2( data.offset[ 0 ], data.offset[ 1 ] ); if ( data.repeat !== undefined ) texture.repeat = new THREE.Vector2( data.repeat[ 0 ], data.repeat[ 1 ] ); if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( Array.isArray( data.wrap ) ) { texture.wrapS = parseConstant( data.wrap[ 0 ] ); texture.wrapT = parseConstant( data.wrap[ 1 ] ); } textures[ data.uuid ] = texture; } } return textures; }, parseObject: function () { var matrix = new THREE.Matrix4(); return function ( data, geometries, materials ) { var object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } switch ( data.type ) { case 'Scene': object = new THREE.Scene(); break; case 'PerspectiveCamera': object = new THREE.PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); break; case 'OrthographicCamera': object = new THREE.OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); break; case 'AmbientLight': object = new THREE.AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new THREE.DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new THREE.PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'SpotLight': object = new THREE.SpotLight( data.color, data.intensity, data.distance, data.angle, data.exponent, data.decay ); break; case 'HemisphereLight': object = new THREE.HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'Mesh': var geometry = getGeometry( data.geometry ); var material = getMaterial( data.material ); if ( geometry.bones && geometry.bones.length > 0 ) { object = new THREE.SkinnedMesh( geometry, material ); } else { object = new THREE.Mesh( geometry, material ); } break; case 'LOD': object = new THREE.LOD(); break; case 'Line': object = new THREE.Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); break; case 'PointCloud': case 'Points': object = new THREE.Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new THREE.Sprite( getMaterial( data.material ) ); break; case 'Group': object = new THREE.Group(); break; default: object = new THREE.Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { matrix.fromArray( data.matrix ); matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.visible !== undefined ) object.visible = data.visible; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.children !== undefined ) { for ( var child in data.children ) { object.add( this.parseObject( data.children[ child ], geometries, materials ) ); } } if ( data.type === 'LOD' ) { var levels = data.levels; for ( var l = 0; l < levels.length; l ++ ) { var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; } }() }; // File:src/loaders/TextureLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.TextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.TextureLoader.prototype = { constructor: THREE.TextureLoader, load: function ( url, onLoad, onProgress, onError ) { var texture = new THREE.Texture(); var loader = new THREE.ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/CubeTextureLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.CubeTextureLoader.prototype = { constructor: THREE.CubeTextureLoader, load: function ( urls, onLoad, onProgress, onError ) { var texture = new THREE.CubeTexture( [] ); var loader = new THREE.ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( var i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/BinaryTextureLoader.js /** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */ THREE.DataTextureLoader = THREE.BinaryTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; // override in sub classes this._parser = null; }; THREE.BinaryTextureLoader.prototype = { constructor: THREE.BinaryTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texture = new THREE.DataTexture(); var loader = new THREE.XHRLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var texData = scope._parser( buffer ); if ( ! texData ) return; if ( undefined !== texData.image ) { texture.image = texData.image; } else if ( undefined !== texData.data ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : THREE.ClampToEdgeWrapping; texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : THREE.ClampToEdgeWrapping; texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : THREE.LinearFilter; texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : THREE.LinearMipMapLinearFilter; texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1; if ( undefined !== texData.format ) { texture.format = texData.format; } if ( undefined !== texData.type ) { texture.type = texData.type; } if ( undefined !== texData.mipmaps ) { texture.mipmaps = texData.mipmaps; } if ( 1 === texData.mipmapCount ) { texture.minFilter = THREE.LinearFilter; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } }; // File:src/loaders/CompressedTextureLoader.js /** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */ THREE.CompressedTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; // override in sub classes this._parser = null; }; THREE.CompressedTextureLoader.prototype = { constructor: THREE.CompressedTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var images = []; var texture = new THREE.CompressedTexture(); texture.image = images; var loader = new THREE.XHRLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { var texDatas = scope._parser( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = THREE.LinearFilter; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { var loaded = 0; for ( var i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { var texDatas = scope._parser( buffer, true ); if ( texDatas.isCubemap ) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( var f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps : [] }; for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = THREE.LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; }, setPath: function ( value ) { this.path = value; } }; // File:src/materials/Material.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Material = function () { Object.defineProperty( this, 'id', { value: THREE.MaterialIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Material'; this.side = THREE.FrontSide; this.opacity = 1; this.transparent = false; this.blending = THREE.NormalBlending; this.blendSrc = THREE.SrcAlphaFactor; this.blendDst = THREE.OneMinusSrcAlphaFactor; this.blendEquation = THREE.AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = THREE.LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.alphaTest = 0; this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true; this._needsUpdate = true; }; THREE.Material.prototype = { constructor: THREE.Material, get needsUpdate () { return this._needsUpdate; }, set needsUpdate ( value ) { if ( value === true ) this.update(); this._needsUpdate = value; }, setValues: function ( values ) { if ( values === undefined ) return; for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } var currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue; } if ( currentValue instanceof THREE.Color ) { currentValue.set( newValue ); } else if ( currentValue instanceof THREE.Vector3 && newValue instanceof THREE.Vector3 ) { currentValue.copy( newValue ); } else if ( key === 'overdraw' ) { // ensure overdraw is backwards-compatible with legacy boolean type this[ key ] = Number( newValue ); } else { this[ key ] = newValue; } } }, toJSON: function ( meta ) { var isRoot = meta === undefined; if ( isRoot ) { meta = { textures: {}, images: {} }; } var data = { metadata: { version: 4.4, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color instanceof THREE.Color ) data.color = this.color.getHex(); if ( this.roughness !== 0.5 ) data.roughness = this.roughness; if ( this.metalness !== 0.5 ) data.metalness = this.metalness; if ( this.emissive instanceof THREE.Color ) data.emissive = this.emissive.getHex(); if ( this.specular instanceof THREE.Color ) data.specular = this.specular.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.map instanceof THREE.Texture ) data.map = this.map.toJSON( meta ).uuid; if ( this.alphaMap instanceof THREE.Texture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap instanceof THREE.Texture ) data.lightMap = this.lightMap.toJSON( meta ).uuid; if ( this.bumpMap instanceof THREE.Texture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap instanceof THREE.Texture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap instanceof THREE.Texture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap instanceof THREE.Texture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap instanceof THREE.Texture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap instanceof THREE.Texture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap instanceof THREE.Texture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.envMap instanceof THREE.Texture ) { data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap } if ( this.size !== undefined ) data.size = this.size; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.vertexColors !== undefined && this.vertexColors !== THREE.NoColors ) data.vertexColors = this.vertexColors; if ( this.shading !== undefined && this.shading !== THREE.SmoothShading ) data.shading = this.shading; if ( this.blending !== undefined && this.blending !== THREE.NormalBlending ) data.blending = this.blending; if ( this.side !== undefined && this.side !== THREE.FrontSide ) data.side = this.side; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; // TODO: Copied from Object3D.toJSON function extractFromCache ( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.side = source.side; this.opacity = source.opacity; this.transparent = source.transparent; this.blending = source.blending; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.alphaTest = source.alphaTest; this.overdraw = source.overdraw; this.visible = source.visible; return this; }, update: function () { this.dispatchEvent( { type: 'update' } ); }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Material.prototype ); THREE.MaterialIdCount = 0; // File:src/materials/LineBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * linewidth: , * linecap: "round", * linejoin: "round", * * vertexColors: * * fog: * } */ THREE.LineBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'LineBasicMaterial'; this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial; THREE.LineBasicMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/LineDashedMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * linewidth: , * * scale: , * dashSize: , * gapSize: , * * vertexColors: THREE.NoColors / THREE.FaceColors / THREE.VertexColors * * fog: * } */ THREE.LineDashedMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'LineDashedMaterial'; this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.LineDashedMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineDashedMaterial.prototype.constructor = THREE.LineDashedMaterial; THREE.LineDashedMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/MeshBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * * fog: * } */ THREE.MeshBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshBasicMaterial'; this.color = new THREE.Color( 0xffffff ); // emissive this.map = null; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial; THREE.MeshBasicMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; return this; }; // File:src/materials/MeshLambertMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshLambertMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshLambertMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial; THREE.MeshLambertMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshPhongMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshPhongMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshPhongMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.specular = new THREE.Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new THREE.Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial; THREE.MeshPhongMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshStandardMaterial.js /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshStandardMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshStandardMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.roughness = 0.5; this.metalness = 0.5; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new THREE.Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshStandardMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshStandardMaterial.prototype.constructor = THREE.MeshStandardMaterial; THREE.MeshStandardMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshDepthMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshDepthMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshDepthMaterial'; this.morphTargets = false; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); }; THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial; THREE.MeshDepthMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; // File:src/materials/MeshNormalMaterial.js /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * opacity: , * * shading: THREE.FlatShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshNormalMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); this.type = 'MeshNormalMaterial'; this.wireframe = false; this.wireframeLinewidth = 1; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial; THREE.MeshNormalMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; // File:src/materials/MultiMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MultiMaterial = function ( materials ) { this.uuid = THREE.Math.generateUUID(); this.type = 'MultiMaterial'; this.materials = materials instanceof Array ? materials : []; this.visible = true; }; THREE.MultiMaterial.prototype = { constructor: THREE.MultiMaterial, toJSON: function ( meta ) { var output = { metadata: { version: 4.2, type: 'material', generator: 'MaterialExporter' }, uuid: this.uuid, type: this.type, materials: [] }; var materials = this.materials; for ( var i = 0, l = materials.length; i < l; i ++ ) { var material = materials[ i ].toJSON( meta ); delete material.metadata; output.materials.push( material ); } output.visible = this.visible; return output; }, clone: function () { var material = new this.constructor(); for ( var i = 0; i < this.materials.length; i ++ ) { material.materials.push( this.materials[ i ].clone() ); } material.visible = this.visible; return material; } }; // File:src/materials/PointsMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * sizeAttenuation: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * vertexColors: , * * fog: * } */ THREE.PointsMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'PointsMaterial'; this.color = new THREE.Color( 0xffffff ); this.map = null; this.size = 1; this.sizeAttenuation = true; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.PointsMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.PointsMaterial.prototype.constructor = THREE.PointsMaterial; THREE.PointsMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/ShaderMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } }, * * fragmentShader: , * vertexShader: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.ShaderMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; this.shading = THREE.SmoothShading; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.vertexColors = THREE.NoColors; // set to use "color" attribute stream this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } }; THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial; THREE.ShaderMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = THREE.UniformsUtils.clone( source.uniforms ); this.defines = source.defines; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = source.extensions; return this; }; THREE.ShaderMaterial.prototype.toJSON = function ( meta ) { var data = THREE.Material.prototype.toJSON.call( this, meta ); data.uniforms = this.uniforms; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; return data; }; // File:src/materials/RawShaderMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RawShaderMaterial = function ( parameters ) { THREE.ShaderMaterial.call( this, parameters ); this.type = 'RawShaderMaterial'; }; THREE.RawShaderMaterial.prototype = Object.create( THREE.ShaderMaterial.prototype ); THREE.RawShaderMaterial.prototype.constructor = THREE.RawShaderMaterial; // File:src/materials/SpriteMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2(), * * fog: * } */ THREE.SpriteMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'SpriteMaterial'; this.color = new THREE.Color( 0xffffff ); this.map = null; this.rotation = 0; this.fog = false; // set parameters this.setValues( parameters ); }; THREE.SpriteMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.SpriteMaterial.prototype.constructor = THREE.SpriteMaterial; THREE.SpriteMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.rotation = source.rotation; this.fog = source.fog; return this; }; // File:src/textures/Texture.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Object.defineProperty( this, 'id', { value: THREE.TextureIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.sourceFile = ''; this.image = image !== undefined ? image : THREE.Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : THREE.Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : THREE.RGBAFormat; this.type = type !== undefined ? type : THREE.UnsignedByteType; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) this.version = 0; this.onUpdate = null; var _this = this; this.__defineSetter__("needsUpdate", function(value){ if ( value === true ) _this.version++; }); }; THREE.Texture.DEFAULT_IMAGE = undefined; THREE.Texture.DEFAULT_MAPPING = THREE.UVMapping; THREE.Texture.prototype = { constructor: THREE.Texture, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; return this; }, toJSON: function ( meta ) { if ( meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } function getDataURL( image ) { var canvas; if ( image.toDataURL !== undefined ) { canvas = image; } else { canvas = document.createElement( 'canvas' ); canvas.width = image.width; canvas.height = image.height; canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height ); } if ( canvas.width > 2048 || canvas.height > 2048 ) { return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } var output = { metadata: { version: 4.4, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], wrap: [ this.wrapS, this.wrapT ], minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image var image = this.image; if ( image.uuid === undefined ) { image.uuid = THREE.Math.generateUUID(); // UGH } if ( meta.images[ image.uuid ] === undefined ) { meta.images[ image.uuid ] = { uuid: image.uuid, url: getDataURL( image ) }; } output.image = image.uuid; } meta.textures[ this.uuid ] = output; return output; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); }, transformUv: function ( uv ) { if ( this.mapping !== THREE.UVMapping ) return; uv.multiply( this.repeat ); uv.add( this.offset ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case THREE.RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case THREE.ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case THREE.MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case THREE.RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case THREE.ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case THREE.MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } } }; THREE.EventDispatcher.prototype.apply( THREE.Texture.prototype ); THREE.TextureIdCount = 0; // File:src/textures/CanvasTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CanvasTexture = function ( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; }; THREE.CanvasTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CanvasTexture.prototype.constructor = THREE.CanvasTexture; // File:src/textures/CubeTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeTexture = function ( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { mapping = mapping !== undefined ? mapping : THREE.CubeReflectionMapping; THREE.Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.images = images; this.flipY = false; }; THREE.CubeTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CubeTexture.prototype.constructor = THREE.CubeTexture; THREE.CubeTexture.prototype.copy = function ( source ) { THREE.Texture.prototype.copy.call( this, source ); this.images = source.images; return this; }; // File:src/textures/CompressedTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.CompressedTexture = function ( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; }; THREE.CompressedTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CompressedTexture.prototype.constructor = THREE.CompressedTexture; // File:src/textures/DataTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { data: data, width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter; this.flipY = false; this.generateMipmaps = false; }; THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.DataTexture.prototype.constructor = THREE.DataTexture; // File:src/textures/VideoTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.VideoTexture = function ( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.generateMipmaps = false; var scope = this; function update() { requestAnimationFrame( update ); if ( video.readyState === video.HAVE_ENOUGH_DATA ) { scope.needsUpdate = true; } } update(); }; THREE.VideoTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.VideoTexture.prototype.constructor = THREE.VideoTexture; // File:src/objects/Group.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Group = function () { THREE.Object3D.call( this ); this.type = 'Group'; }; THREE.Group.prototype = Object.create( THREE.Object3D.prototype ); THREE.Group.prototype.constructor = THREE.Group; // File:src/objects/Points.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Points = function ( geometry, material ) { THREE.Object3D.call( this ); this.type = 'Points'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.PointsMaterial( { color: Math.random() * 0xffffff } ); }; THREE.Points.prototype = Object.create( THREE.Object3D.prototype ); THREE.Points.prototype.constructor = THREE.Points; THREE.Points.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); return function raycast( raycaster, intersects ) { var object = this; var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var position = new THREE.Vector3(); function testPoint( point, index ) { var rayPointDistanceSq = ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { var intersectPoint = ray.closestPointToPoint( point ); intersectPoint.applyMatrix4( matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint.clone(), index: index, face: null, object: object } ); } } if ( geometry instanceof THREE.BufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, il = indices.length; i < il; i ++ ) { var a = indices[ i ]; position.fromArray( positions, a * 3 ); testPoint( position, a ); } } else { for ( var i = 0, l = positions.length / 3; i < l; i ++ ) { position.fromArray( positions, i * 3 ); testPoint( position, i ); } } } else { var vertices = geometry.vertices; for ( var i = 0, l = vertices.length; i < l; i ++ ) { testPoint( vertices[ i ], i ); } } }; }() ); THREE.Points.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // File:src/objects/Line.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Line = function ( geometry, material, mode ) { if ( mode === 1 ) { console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' ); return new THREE.LineSegments( geometry, material ); } THREE.Object3D.call( this ); this.type = 'Line'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } ); }; THREE.Line.prototype = Object.create( THREE.Object3D.prototype ); THREE.Line.prototype.constructor = THREE.Line; THREE.Line.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); return function raycast( raycaster, intersects ) { var precision = raycaster.linePrecision; var precisionSq = precision * precision; var geometry = this.geometry; var matrixWorld = this.matrixWorld; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var vStart = new THREE.Vector3(); var vEnd = new THREE.Vector3(); var interSegment = new THREE.Vector3(); var interRay = new THREE.Vector3(); var step = this instanceof THREE.LineSegments ? 2 : 1; if ( geometry instanceof THREE.BufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length - 1; i < l; i += step ) { var a = indices[ i ]; var b = indices[ i + 1 ]; vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) { vStart.fromArray( positions, 3 * i ); vEnd.fromArray( positions, 3 * i + 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } else if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var nbVertices = vertices.length; for ( var i = 0; i < nbVertices - 1; i += step ) { var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } }; }() ); THREE.Line.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // DEPRECATED THREE.LineStrip = 0; THREE.LinePieces = 1; // File:src/objects/LineSegments.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LineSegments = function ( geometry, material ) { THREE.Line.call( this, geometry, material ); this.type = 'LineSegments'; }; THREE.LineSegments.prototype = Object.create( THREE.Line.prototype ); THREE.LineSegments.prototype.constructor = THREE.LineSegments; // File:src/objects/Mesh.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ THREE.Mesh = function ( geometry, material ) { THREE.Object3D.call( this ); this.type = 'Mesh'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff } ); this.drawMode = THREE.TrianglesDrawMode; this.updateMorphTargets(); }; THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype ); THREE.Mesh.prototype.constructor = THREE.Mesh; THREE.Mesh.prototype.setDrawMode = function ( value ) { this.drawMode = value; }; THREE.Mesh.prototype.updateMorphTargets = function () { if ( this.geometry.morphTargets !== undefined && this.geometry.morphTargets.length > 0 ) { this.morphTargetBase = - 1; this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = this.geometry.morphTargets.length; m < ml; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m; } } }; THREE.Mesh.prototype.getMorphTargetIndexByName = function ( name ) { if ( this.morphTargetDictionary[ name ] !== undefined ) { return this.morphTargetDictionary[ name ]; } console.warn( 'THREE.Mesh.getMorphTargetIndexByName: morph target ' + name + ' does not exist. Returning 0.' ); return 0; }; THREE.Mesh.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); var vA = new THREE.Vector3(); var vB = new THREE.Vector3(); var vC = new THREE.Vector3(); var tempA = new THREE.Vector3(); var tempB = new THREE.Vector3(); var tempC = new THREE.Vector3(); var uvA = new THREE.Vector2(); var uvB = new THREE.Vector2(); var uvC = new THREE.Vector2(); var barycoord = new THREE.Vector3(); var intersectionPoint = new THREE.Vector3(); var intersectionPointWorld = new THREE.Vector3(); function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) { THREE.Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord ); uv1.multiplyScalar( barycoord.x ); uv2.multiplyScalar( barycoord.y ); uv3.multiplyScalar( barycoord.z ); uv1.add( uv2 ).add( uv3 ); return uv1.clone(); } function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) { var intersect; var material = object.material; if ( material.side === THREE.BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== THREE.DoubleSide, point ); } if ( intersect === null ) return null; intersectionPointWorld.copy( point ); intersectionPointWorld.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, raycaster, ray, positions, uvs, a, b, c ) { vA.fromArray( positions, a * 3 ); vB.fromArray( positions, b * 3 ); vC.fromArray( positions, c * 3 ); var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint ); if ( intersection ) { if ( uvs ) { uvA.fromArray( uvs, a * 2 ); uvB.fromArray( uvs, b * 2 ); uvC.fromArray( uvs, c * 2 ); intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC ); } intersection.face = new THREE.Face3( a, b, c, THREE.Triangle.normal( vA, vB, vC ) ); intersection.faceIndex = a; } return intersection; } return function raycast( raycaster, intersects ) { var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( ray.intersectsBox( geometry.boundingBox ) === false ) return; } var uvs, intersection; if ( geometry instanceof THREE.BufferGeometry ) { var a, b, c; var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( attributes.uv !== undefined ) { uvs = attributes.uv.array; } if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length; i < l; i += 3 ) { a = indices[ i ]; b = indices[ i + 1 ]; c = indices[ i + 2 ]; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics intersects.push( intersection ); } } } else { for ( var i = 0, l = positions.length; i < l; i += 9 ) { a = i / 3; b = a + 1; c = a + 2; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.index = a; // triangle number in positions buffer semantics intersects.push( intersection ); } } } } else if ( geometry instanceof THREE.Geometry ) { var fvA, fvB, fvC; var isFaceMaterial = material instanceof THREE.MultiMaterial; var materials = isFaceMaterial === true ? material.materials : null; var vertices = geometry.vertices; var faces = geometry.faces; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs; for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var faceMaterial = isFaceMaterial === true ? materials[ face.materialIndex ] : material; if ( faceMaterial === undefined ) continue; fvA = vertices[ face.a ]; fvB = vertices[ face.b ]; fvC = vertices[ face.c ]; if ( faceMaterial.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences; vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence ); vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence ); vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence ); } vA.add( fvA ); vB.add( fvB ); vC.add( fvC ); fvA = vA; fvB = vB; fvC = vC; } intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint ); if ( intersection ) { if ( uvs ) { var uvs_f = uvs[ f ]; uvA.copy( uvs_f[ 0 ] ); uvB.copy( uvs_f[ 1 ] ); uvC.copy( uvs_f[ 2 ] ); intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC ); } intersection.face = face; intersection.faceIndex = f; intersects.push( intersection ); } } } }; }() ); THREE.Mesh.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // File:src/objects/Bone.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.Bone = function ( skin ) { THREE.Object3D.call( this ); this.type = 'Bone'; this.skin = skin; }; THREE.Bone.prototype = Object.create( THREE.Object3D.prototype ); THREE.Bone.prototype.constructor = THREE.Bone; THREE.Bone.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.skin = source.skin; return this; }; // File:src/objects/Skeleton.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ THREE.Skeleton = function ( bones, boneInverses, useVertexTexture ) { this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true; this.identityMatrix = new THREE.Matrix4(); // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); // create a bone texture or an array of floats if ( this.useVertexTexture ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = THREE.Math.nextPowerOfTwo( Math.ceil( size ) ); size = Math.max( size, 4 ); this.boneTextureWidth = size; this.boneTextureHeight = size; this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType ); } else { this.boneMatrices = new Float32Array( 16 * this.bones.length ); } // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton bonInverses is the wrong length.' ); this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { this.boneInverses.push( new THREE.Matrix4() ); } } } }; THREE.Skeleton.prototype.calculateInverses = function () { this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { var inverse = new THREE.Matrix4(); if ( this.bones[ b ] ) { inverse.getInverse( this.bones[ b ].matrixWorld ); } this.boneInverses.push( inverse ); } }; THREE.Skeleton.prototype.pose = function () { var bone; // recover the bind-time world matrices for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ b ] ); } } // compute the local matrices, positions, rotations and scales for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { if ( bone.parent ) { bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } }; THREE.Skeleton.prototype.update = ( function () { var offsetMatrix = new THREE.Matrix4(); return function update() { // flatten bone matrices to array for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { // compute the offset between the current and the original transform var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix; offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] ); offsetMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 ); } if ( this.useVertexTexture ) { this.boneTexture.needsUpdate = true; } }; } )(); THREE.Skeleton.prototype.clone = function () { return new THREE.Skeleton( this.bones, this.boneInverses, this.useVertexTexture ); }; // File:src/objects/SkinnedMesh.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) { THREE.Mesh.call( this, geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = "attached"; this.bindMatrix = new THREE.Matrix4(); this.bindMatrixInverse = new THREE.Matrix4(); // init bones // TODO: remove bone creation as there is no reason (other than // convenience) for THREE.SkinnedMesh to do this. var bones = []; if ( this.geometry && this.geometry.bones !== undefined ) { var bone, gbone; for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; bone = new THREE.Bone( this ); bones.push( bone ); bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl ); } for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; if ( gbone.parent !== - 1 && gbone.parent !== null ) { bones[ gbone.parent ].add( bones[ b ] ); } else { this.add( bones[ b ] ); } } } this.normalizeSkinWeights(); this.updateMatrixWorld( true ); this.bind( new THREE.Skeleton( bones, undefined, useVertexTexture ), this.matrixWorld ); }; THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh; THREE.SkinnedMesh.prototype.bind = function( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }; THREE.SkinnedMesh.prototype.pose = function () { this.skeleton.pose(); }; THREE.SkinnedMesh.prototype.normalizeSkinWeights = function () { if ( this.geometry instanceof THREE.Geometry ) { for ( var i = 0; i < this.geometry.skinWeights.length; i ++ ) { var sw = this.geometry.skinWeights[ i ]; var scale = 1.0 / sw.lengthManhattan(); if ( scale !== Infinity ) { sw.multiplyScalar( scale ); } else { sw.set( 1, 0, 0, 0 ); // do something reasonable } } } else if ( this.geometry instanceof THREE.BufferGeometry ) { var vec = new THREE.Vector4(); var skinWeight = this.geometry.attributes.skinWeight; for ( var i = 0; i < skinWeight.count; i ++ ) { vec.x = skinWeight.getX( i ); vec.y = skinWeight.getY( i ); vec.z = skinWeight.getZ( i ); vec.w = skinWeight.getW( i ); var scale = 1.0 / vec.lengthManhattan(); if ( scale !== Infinity ) { vec.multiplyScalar( scale ); } else { vec.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w ); } } }; THREE.SkinnedMesh.prototype.updateMatrixWorld = function( force ) { THREE.Mesh.prototype.updateMatrixWorld.call( this, true ); if ( this.bindMode === "attached" ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === "detached" ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh unrecognized bindMode: ' + this.bindMode ); } }; THREE.SkinnedMesh.prototype.clone = function() { return new this.constructor( this.geometry, this.material, this.useVertexTexture ).copy( this ); }; // File:src/objects/LOD.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.LOD = function () { THREE.Object3D.call( this ); this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] }, objects: { get: function () { console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels; } } } ); }; THREE.LOD.prototype = Object.create( THREE.Object3D.prototype ); THREE.LOD.prototype.constructor = THREE.LOD; THREE.LOD.prototype.addLevel = function ( object, distance ) { if ( distance === undefined ) distance = 0; distance = Math.abs( distance ); var levels = this.levels; for ( var l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); }; THREE.LOD.prototype.getObjectForDistance = function ( distance ) { var levels = this.levels; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; }; THREE.LOD.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( matrixPosition ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); }; }() ); THREE.LOD.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function update( camera ) { var levels = this.levels; if ( levels.length > 1 ) { v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld ); var distance = v1.distanceTo( v2 ); levels[ 0 ].object.visible = true; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } }; }(); THREE.LOD.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source, false ); var levels = source.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } return this; }; THREE.LOD.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.levels = []; var levels = this.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; }; // File:src/objects/Sprite.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Sprite = function (material) { var indices = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0.5, - 0.5, 0, 0.5, 0.5, 0, - 0.5, 0.5, 0 ] ); var uvs = new Float32Array( [ 0, 0, 1, 0, 1, 1, 0, 1 ] ); var geometry = new THREE.BufferGeometry(); geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); // return function Sprite( material ) { THREE.Object3D.call( this ); this.type = 'Sprite'; this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.SpriteMaterial(); // }; }; THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype ); THREE.Sprite.prototype.constructor = THREE.Sprite; THREE.Sprite.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distanceSq = raycaster.ray.distanceSqToPoint( matrixPosition ); var guessSizeSq = this.scale.x * this.scale.y; if ( distanceSq > guessSizeSq ) { return; } intersects.push( { distance: Math.sqrt( distanceSq ), point: this.position, face: null, object: this } ); }; }() ); THREE.Sprite.prototype.clone = function () { return new this.constructor( this.material ).copy( this ); }; // Backwards compatibility THREE.Particle = THREE.Sprite; // File:src/objects/LensFlare.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlare = function ( texture, size, distance, blending, color ) { THREE.Object3D.call( this ); this.lensFlares = []; this.positionScreen = new THREE.Vector3(); this.customUpdateCallback = undefined; if ( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } }; THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype ); THREE.LensFlare.prototype.constructor = THREE.LensFlare; /* * Add: adds another flare */ THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) { if ( size === undefined ) size = - 1; if ( distance === undefined ) distance = 0; if ( opacity === undefined ) opacity = 1; if ( color === undefined ) color = new THREE.Color( 0xffffff ); if ( blending === undefined ) blending = THREE.NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back scale: 1, // scale rotation: 0, // rotation opacity: opacity, // opacity color: color, // color blending: blending // blending } ); }; /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ THREE.LensFlare.prototype.updateLensFlares = function () { var f, fl = this.lensFlares.length; var flare; var vecX = - this.positionScreen.x * 2; var vecY = - this.positionScreen.y * 2; for ( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } }; THREE.LensFlare.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.positionScreen.copy( source.positionScreen ); this.customUpdateCallback = source.customUpdateCallback; for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) { this.lensFlares.push( source.lensFlares[ i ] ); } return this; }; // File:src/scenes/Scene.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Scene = function () { THREE.Object3D.call( this ); this.type = 'Scene'; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer }; THREE.Scene.prototype = Object.create( THREE.Object3D.prototype ); THREE.Scene.prototype.constructor = THREE.Scene; THREE.Scene.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; }; // File:src/scenes/Fog.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Fog = function ( color, near, far ) { this.name = ''; this.color = new THREE.Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; THREE.Fog.prototype.clone = function () { return new THREE.Fog( this.color.getHex(), this.near, this.far ); }; // File:src/scenes/FogExp2.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.FogExp2 = function ( color, density ) { this.name = ''; this.color = new THREE.Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; }; THREE.FogExp2.prototype.clone = function () { return new THREE.FogExp2( this.color.getHex(), this.density ); }; // File:src/renderers/shaders/ShaderChunk.js THREE.ShaderChunk = {}; // File:src/renderers/shaders/ShaderChunk/alphamap_fragment.glsl THREE.ShaderChunk[ 'alphamap_fragment' ] = "#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/alphamap_pars_fragment.glsl THREE.ShaderChunk[ 'alphamap_pars_fragment' ] = "#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/alphatest_fragment.glsl THREE.ShaderChunk[ 'alphatest_fragment' ] = "#ifdef ALPHATEST\n if ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/ambient_pars.glsl THREE.ShaderChunk[ 'ambient_pars' ] = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n return PI * ambientLightColor;\n}\n"; // File:src/renderers/shaders/ShaderChunk/aomap_fragment.glsl THREE.ShaderChunk[ 'aomap_fragment' ] = "#ifdef USE_AOMAP\n reflectedLight.indirectDiffuse *= ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/aomap_pars_fragment.glsl THREE.ShaderChunk[ 'aomap_pars_fragment' ] = "#ifdef USE_AOMAP\n uniform sampler2D aoMap;\n uniform float aoMapIntensity;\n#endif"; // File:src/renderers/shaders/ShaderChunk/begin_vertex.glsl THREE.ShaderChunk[ 'begin_vertex' ] = "\nvec3 transformed = vec3( position );\n"; // File:src/renderers/shaders/ShaderChunk/beginnormal_vertex.glsl THREE.ShaderChunk[ 'beginnormal_vertex' ] = "\nvec3 objectNormal = vec3( normal );\n"; // File:src/renderers/shaders/ShaderChunk/bsdfs.glsl THREE.ShaderChunk[ 'bsdfs' ] = "float calcLightAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n if ( decayExponent > 0.0 ) {\n return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n }\n return 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n return ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = alpha * alpha;\n float gl = dotNL + pow( a2 + ( 1.0 - a2 ) * dotNL * dotNL, 0.5 );\n float gv = dotNV + pow( a2 + ( 1.0 - a2 ) * dotNV * dotNV, 0.5 );\n return 1.0 / ( gl * gv );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = alpha * alpha;\n float denom = dotNH * dotNH * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / ( denom * denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float alpha = roughness * roughness;\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_GGX_Smith( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( G * D );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n vec4 r = roughness * c0 + c1;\n float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n return specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n return ( 2.0 / square( ggxRoughness + 0.0001 ) - 2.0 );\n}"; // File:src/renderers/shaders/ShaderChunk/bumpmap_pars_fragment.glsl THREE.ShaderChunk[ 'bumpmap_pars_fragment' ] = "#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n vec3 vSigmaX = dFdx( surf_pos );\n vec3 vSigmaY = dFdy( surf_pos );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 );\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/color_fragment.glsl THREE.ShaderChunk[ 'color_fragment' ] = "#ifdef USE_COLOR\n diffuseColor.rgb *= vColor;\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_pars_fragment.glsl THREE.ShaderChunk[ 'color_pars_fragment' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/color_pars_vertex.glsl THREE.ShaderChunk[ 'color_pars_vertex' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_vertex.glsl THREE.ShaderChunk[ 'color_vertex' ] = "#ifdef USE_COLOR\n vColor.xyz = color.xyz;\n#endif"; // File:src/renderers/shaders/ShaderChunk/common.glsl THREE.ShaderChunk[ 'common' ] = "#define PI 3.14159\n#define PI2 6.28318\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat square( const in float x ) { return x*x; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\nstruct GeometricContext {\n vec3 position;\n vec3 normal;\n vec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n float distance = dot( planeNormal, point - pointOnPlane );\n return - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nvec3 inputToLinear( in vec3 a ) {\n #ifdef GAMMA_INPUT\n return pow( a, vec3( float( GAMMA_FACTOR ) ) );\n #else\n return a;\n #endif\n}\nvec3 linearToOutput( in vec3 a ) {\n #ifdef GAMMA_OUTPUT\n return pow( a, vec3( 1.0 / float( GAMMA_FACTOR ) ) );\n #else\n return a;\n #endif\n}\n"; // File:src/renderers/shaders/ShaderChunk/defaultnormal_vertex.glsl THREE.ShaderChunk[ 'defaultnormal_vertex' ] = "#ifdef FLIP_SIDED\n objectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n"; // File:src/renderers/shaders/ShaderChunk/displacementmap_vertex.glsl THREE.ShaderChunk[ 'displacementmap_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n transformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/displacementmap_pars_vertex.glsl THREE.ShaderChunk[ 'displacementmap_pars_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/emissivemap_fragment.glsl THREE.ShaderChunk[ 'emissivemap_fragment' ] = "#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vUv );\n emissiveColor.rgb = inputToLinear( emissiveColor.rgb );\n totalEmissiveLight *= emissiveColor.rgb;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/emissivemap_pars_fragment.glsl THREE.ShaderChunk[ 'emissivemap_pars_fragment' ] = "#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_fragment.glsl THREE.ShaderChunk[ 'envmap_fragment' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToVertex, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n vec4 envColor = texture2D( envMap, sampleUV );\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n #endif\n envColor.xyz = inputToLinear( envColor.xyz );\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_fragment.glsl THREE.ShaderChunk[ 'envmap_pars_fragment' ] = "#if defined( USE_ENVMAP ) || defined( STANDARD )\n uniform float reflectivity;\n uniform float envMapIntenstiy;\n#endif\n#ifdef USE_ENVMAP\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n uniform float flipEnvMap;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( STANDARD )\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_vertex.glsl THREE.ShaderChunk[ 'envmap_pars_vertex' ] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG ) && ! defined( STANDARD )\n varying vec3 vReflect;\n uniform float refractionRatio;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_vertex.glsl THREE.ShaderChunk[ 'envmap_vertex' ] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG ) && ! defined( STANDARD )\n vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/fog_fragment.glsl THREE.ShaderChunk[ 'fog_fragment' ] = "#ifdef USE_FOG\n #ifdef USE_LOGDEPTHBUF_EXT\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n #else\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n #endif\n #ifdef FOG_EXP2\n float fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * depth * depth * LOG2 ) );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, depth );\n #endif\n \n outgoingLight = mix( outgoingLight, fogColor, fogFactor );\n#endif"; // File:src/renderers/shaders/ShaderChunk/fog_pars_fragment.glsl THREE.ShaderChunk[ 'fog_pars_fragment' ] = "#ifdef USE_FOG\n uniform vec3 fogColor;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif"; // File:src/renderers/shaders/ShaderChunk/lightmap_fragment.glsl THREE.ShaderChunk[ 'lightmap_fragment' ] = "#ifdef USE_LIGHTMAP\n reflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lightmap_pars_fragment.glsl THREE.ShaderChunk[ 'lightmap_pars_fragment' ] = "#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif"; // File:src/renderers/shaders/ShaderChunk/lights_lambert_vertex.glsl THREE.ShaderChunk[ 'lights_lambert_vertex' ] = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n vLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n directLight = getPointDirectLight( pointLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n directLight = getSpotDirectLight( spotLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directLight = getDirectionalDirectLight( directionalLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n vLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n #ifdef DOUBLE_SIDED\n vLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n #endif\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_pars.glsl THREE.ShaderChunk[ 'lights_pars' ] = "#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n IncidentLight getDirectionalDirectLight( const in DirectionalLight directionalLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n directLight.color = directionalLight.color;\n directLight.direction = directionalLight.direction;\n return directLight;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n IncidentLight getPointDirectLight( const in PointLight pointLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n vec3 lVector = pointLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n directLight.color = pointLight.color;\n directLight.color *= calcLightAttenuation( length( lVector ), pointLight.distance, pointLight.decay );\n return directLight;\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float angleCos;\n float exponent;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n IncidentLight getSpotDirectLight( const in SpotLight spotLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n vec3 lVector = spotLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float spotEffect = dot( directLight.direction, spotLight.direction );\n if ( spotEffect > spotLight.angleCos ) {\n float spotEffect = dot( spotLight.direction, directLight.direction );\n spotEffect = saturate( pow( saturate( spotEffect ), spotLight.exponent ) );\n directLight.color = spotLight.color;\n directLight.color *= ( spotEffect * calcLightAttenuation( length( lVector ), spotLight.distance, spotLight.decay ) );\n } else {\n directLight.color = vec3( 0.0 );\n }\n return directLight;\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n float dotNL = dot( geometry.normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n return PI * mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n }\n#endif\n#if defined( USE_ENVMAP ) && defined( STANDARD )\n vec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n #else\n vec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n #endif\n #else\n vec3 envMapColor = vec3( 0.0 );\n #endif\n envMapColor.rgb = inputToLinear( envMapColor.rgb );\n return PI * envMapColor.rgb * envMapIntensity;\n }\n float getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n float maxMIPLevelScalar = float( maxMIPLevel );\n float desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( square( blinnShininessExponent ) + 1.0 );\n return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n }\n vec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n #else\n vec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n reflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n float specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n #else\n vec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n #endif\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n #endif\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #endif\n #endif\n envMapColor.rgb = inputToLinear( envMapColor.rgb );\n return envMapColor.rgb * envMapIntensity;\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_fragment.glsl THREE.ShaderChunk[ 'lights_phong_fragment' ] = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_fragment.glsl THREE.ShaderChunk[ 'lights_phong_pars_fragment' ] = "#ifdef USE_ENVMAP\n varying vec3 vWorldPosition;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * PI * directLight.color;\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material ) (0)\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_vertex.glsl THREE.ShaderChunk[ 'lights_phong_pars_vertex' ] = "#ifdef USE_ENVMAP\n varying vec3 vWorldPosition;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_vertex.glsl THREE.ShaderChunk[ 'lights_phong_vertex' ] = "#ifdef USE_ENVMAP\n vWorldPosition = worldPosition.xyz;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_standard_fragment.glsl THREE.ShaderChunk[ 'lights_standard_fragment' ] = "StandardMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\nmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n"; // File:src/renderers/shaders/ShaderChunk/lights_standard_pars_fragment.glsl THREE.ShaderChunk[ 'lights_standard_pars_fragment' ] = "struct StandardMaterial {\n vec3 diffuseColor;\n float specularRoughness;\n vec3 specularColor;\n};\nvoid RE_Direct_Standard( const in IncidentLight directLight, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * PI * directLight.color;\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n}\nvoid RE_IndirectDiffuse_Standard( const in vec3 irradiance, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Standard( const in vec3 radiance, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectSpecular += radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n}\n#define RE_Direct RE_Direct_Standard\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Standard\n#define RE_IndirectSpecular RE_IndirectSpecular_Standard\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\n"; // File:src/renderers/shaders/ShaderChunk/lights_template.glsl THREE.ShaderChunk[ 'lights_template' ] = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n directLight = getPointDirectLight( pointLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n directLight = getSpotDirectLight( spotLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n directLight = getDirectionalDirectLight( directionalLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n #ifdef USE_LIGHTMAP\n irradiance += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n #endif\n #if ( NUM_HEMI_LIGHTS > 0 )\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n }\n #endif\n RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n vec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n RE_IndirectSpecular( radiance, geometry, material, reflectedLight );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/linear_to_gamma_fragment.glsl THREE.ShaderChunk[ 'linear_to_gamma_fragment' ] = "\n outgoingLight = linearToOutput( outgoingLight );\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_fragment' ] = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_fragment' ] = "#ifdef USE_LOGDEPTHBUF\n uniform float logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n uniform float logDepthBufFC;\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n gl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n vFragDepth = 1.0 + gl_Position.w;\n #else\n gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_fragment.glsl THREE.ShaderChunk[ 'map_fragment' ] = "#ifdef USE_MAP\n vec4 texelColor = texture2D( map, vUv );\n texelColor.xyz = inputToLinear( texelColor.xyz );\n diffuseColor *= texelColor;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_pars_fragment.glsl THREE.ShaderChunk[ 'map_pars_fragment' ] = "#ifdef USE_MAP\n uniform sampler2D map;\n#endif"; // File:src/renderers/shaders/ShaderChunk/map_particle_fragment.glsl THREE.ShaderChunk[ 'map_particle_fragment' ] = "#ifdef USE_MAP\n diffuseColor *= texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_particle_pars_fragment.glsl THREE.ShaderChunk[ 'map_particle_pars_fragment' ] = "#ifdef USE_MAP\n uniform vec4 offsetRepeat;\n uniform sampler2D map;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/metalnessmap_fragment.glsl THREE.ShaderChunk[ 'metalnessmap_fragment' ] = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vUv );\n metalnessFactor *= texelMetalness.r;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/metalnessmap_pars_fragment.glsl THREE.ShaderChunk[ 'metalnessmap_pars_fragment' ] = "#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphnormal_vertex.glsl THREE.ShaderChunk[ 'morphnormal_vertex' ] = "#ifdef USE_MORPHNORMALS\n objectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n objectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n objectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n objectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/morphtarget_pars_vertex.glsl THREE.ShaderChunk[ 'morphtarget_pars_vertex' ] = "#ifdef USE_MORPHTARGETS\n #ifndef USE_MORPHNORMALS\n uniform float morphTargetInfluences[ 8 ];\n #else\n uniform float morphTargetInfluences[ 4 ];\n #endif\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphtarget_vertex.glsl THREE.ShaderChunk[ 'morphtarget_vertex' ] = "#ifdef USE_MORPHTARGETS\n transformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n transformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n transformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n transformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n #ifndef USE_MORPHNORMALS\n transformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n transformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n transformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n transformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/normal_fragment.glsl THREE.ShaderChunk[ 'normal_fragment' ] = "#ifdef FLAT_SHADED\n vec3 fdx = dFdx( vViewPosition );\n vec3 fdy = dFdy( vViewPosition );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n #endif\n#endif\n#ifdef USE_NORMALMAP\n normal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/normalmap_pars_fragment.glsl THREE.ShaderChunk[ 'normalmap_pars_fragment' ] = "#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n vec3 S = normalize( q0 * st1.t - q1 * st0.t );\n vec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n vec3 N = normalize( surf_norm );\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy = normalScale * mapN.xy;\n mat3 tsn = mat3( S, T, N );\n return normalize( tsn * mapN );\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/project_vertex.glsl THREE.ShaderChunk[ 'project_vertex' ] = "#ifdef USE_SKINNING\n vec4 mvPosition = modelViewMatrix * skinned;\n#else\n vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n"; // File:src/renderers/shaders/ShaderChunk/roughnessmap_fragment.glsl THREE.ShaderChunk[ 'roughnessmap_fragment' ] = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vUv );\n roughnessFactor *= texelRoughness.r;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/roughnessmap_pars_fragment.glsl THREE.ShaderChunk[ 'roughnessmap_pars_fragment' ] = "#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl THREE.ShaderChunk[ 'shadowmap_pars_fragment' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n float unpackDepth( const in vec4 rgba_depth ) {\n const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n return dot( rgba_depth, bit_shift );\n }\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackDepth( texture2D( depths, uv ) ) );\n }\n float texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n const vec2 offset = vec2( 0.0, 1.0 );\n vec2 texelSize = vec2( 1.0 ) / size;\n vec2 centroidUV = floor( uv * size + 0.5 ) / size;\n float lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n float lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n float rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n float rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n vec2 f = fract( uv * size + 0.5 );\n float a = mix( lb, lt, f.y );\n float b = mix( rb, rt, f.y );\n float c = mix( a, b, f.x );\n return c;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n bool frustumTest = all( frustumTestVec );\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n #endif\n }\n return 1.0;\n }\n vec2 cubeToUV( vec3 v, float texelSizeY ) {\n vec3 absV = abs( v );\n float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n absV *= scaleToCube;\n v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n vec2 planar = v.xy;\n float almostATexel = 1.5 * texelSizeY;\n float almostOne = 1.0 - almostATexel;\n if ( absV.z >= almostOne ) {\n if ( v.z > 0.0 )\n planar.x = 4.0 - v.x;\n } else if ( absV.x >= almostOne ) {\n float signX = sign( v.x );\n planar.x = v.z * signX + 2.0 * signX;\n } else if ( absV.y >= almostOne ) {\n float signY = sign( v.y );\n planar.x = v.x + 2.0 * signY + 2.0;\n planar.y = v.z * signY - 2.0;\n }\n return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n }\n float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n vec3 lightToPosition = shadowCoord.xyz;\n vec3 bd3D = normalize( lightToPosition );\n float dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\n #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec3 offset = vec3( - 1, 0, 1 ) * shadowRadius * 2.0 * texelSize.y;\n return (\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zzz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zxz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xzz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zzx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xzx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zzy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xzy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zyz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.zyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yzz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxz, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yzx, texelSize.y ), dp )\n ) * ( 1.0 / 21.0 );\n #else\n return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n #endif\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_vertex.glsl THREE.ShaderChunk[ 'shadowmap_pars_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmap_vertex.glsl THREE.ShaderChunk[ 'shadowmap_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n }\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmask_pars_fragment.glsl THREE.ShaderChunk[ 'shadowmask_pars_fragment' ] = "float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n shadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n shadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n shadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #endif\n return shadow;\n}\n"; // File:src/renderers/shaders/ShaderChunk/skinbase_vertex.glsl THREE.ShaderChunk[ 'skinbase_vertex' ] = "#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; // File:src/renderers/shaders/ShaderChunk/skinning_pars_vertex.glsl THREE.ShaderChunk[ 'skinning_pars_vertex' ] = "#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n #ifdef BONE_TEXTURE\n uniform sampler2D boneTexture;\n uniform int boneTextureWidth;\n uniform int boneTextureHeight;\n mat4 getBoneMatrix( const in float i ) {\n float j = i * 4.0;\n float x = mod( j, float( boneTextureWidth ) );\n float y = floor( j / float( boneTextureWidth ) );\n float dx = 1.0 / float( boneTextureWidth );\n float dy = 1.0 / float( boneTextureHeight );\n y = dy * ( y + 0.5 );\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n mat4 bone = mat4( v1, v2, v3, v4 );\n return bone;\n }\n #else\n uniform mat4 boneGlobalMatrices[ MAX_BONES ];\n mat4 getBoneMatrix( const in float i ) {\n mat4 bone = boneGlobalMatrices[ int(i) ];\n return bone;\n }\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/skinning_vertex.glsl THREE.ShaderChunk[ 'skinning_vertex' ] = "#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n skinned = bindMatrixInverse * skinned;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/skinnormal_vertex.glsl THREE.ShaderChunk[ 'skinnormal_vertex' ] = "#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/specularmap_fragment.glsl THREE.ShaderChunk[ 'specularmap_fragment' ] = "float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif"; // File:src/renderers/shaders/ShaderChunk/specularmap_pars_fragment.glsl THREE.ShaderChunk[ 'specularmap_pars_fragment' ] = "#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv2_pars_fragment.glsl THREE.ShaderChunk[ 'uv2_pars_fragment' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n varying vec2 vUv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv2_pars_vertex.glsl THREE.ShaderChunk[ 'uv2_pars_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n attribute vec2 uv2;\n varying vec2 vUv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv2_vertex.glsl THREE.ShaderChunk[ 'uv2_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n vUv2 = uv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv_pars_fragment.glsl THREE.ShaderChunk[ 'uv_pars_fragment' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv_pars_vertex.glsl THREE.ShaderChunk[ 'uv_pars_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n uniform vec4 offsetRepeat;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/uv_vertex.glsl THREE.ShaderChunk[ 'uv_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n vUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif"; // File:src/renderers/shaders/ShaderChunk/worldpos_vertex.glsl THREE.ShaderChunk[ 'worldpos_vertex' ] = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( STANDARD ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n #ifdef USE_SKINNING\n vec4 worldPosition = modelMatrix * skinned;\n #else\n vec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n #endif\n#endif\n"; // File:src/renderers/shaders/UniformsUtils.js /** * Uniform Utilities */ THREE.UniformsUtils = { merge: function ( uniforms ) { var merged = {}; for ( var u = 0; u < uniforms.length; u ++ ) { var tmp = this.clone( uniforms[ u ] ); for ( var p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var uniforms_dst = {}; for ( var u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( var p in uniforms_src[ u ] ) { var parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src instanceof THREE.Color || parameter_src instanceof THREE.Vector2 || parameter_src instanceof THREE.Vector3 || parameter_src instanceof THREE.Vector4 || parameter_src instanceof THREE.Matrix3 || parameter_src instanceof THREE.Matrix4 || parameter_src instanceof THREE.Texture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( Array.isArray( parameter_src ) ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; // File:src/renderers/shaders/UniformsLib.js /** * Uniforms library for shared webgl shaders */ THREE.UniformsLib = { common: { "diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity": { type: "f", value: 1.0 }, "map": { type: "t", value: null }, "offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }, "specularMap": { type: "t", value: null }, "alphaMap": { type: "t", value: null }, "envMap": { type: "t", value: null }, "flipEnvMap": { type: "f", value: - 1 }, "reflectivity": { type: "f", value: 1.0 }, "refractionRatio": { type: "f", value: 0.98 } }, aomap: { "aoMap": { type: "t", value: null }, "aoMapIntensity": { type: "f", value: 1 } }, lightmap: { "lightMap": { type: "t", value: null }, "lightMapIntensity": { type: "f", value: 1 } }, emissivemap: { "emissiveMap": { type: "t", value: null } }, bumpmap: { "bumpMap": { type: "t", value: null }, "bumpScale": { type: "f", value: 1 } }, normalmap: { "normalMap": { type: "t", value: null }, "normalScale": { type: "v2", value: new THREE.Vector2( 1, 1 ) } }, displacementmap: { "displacementMap": { type: "t", value: null }, "displacementScale": { type: "f", value: 1 }, "displacementBias": { type: "f", value: 0 } }, roughnessmap: { "roughnessMap": { type: "t", value: null } }, metalnessmap: { "metalnessMap": { type: "t", value: null } }, fog: { "fogDensity": { type: "f", value: 0.00025 }, "fogNear": { type: "f", value: 1 }, "fogFar": { type: "f", value: 2000 }, "fogColor": { type: "c", value: new THREE.Color( 0xffffff ) } }, ambient: { "ambientLightColor": { type: "fv", value: [] } }, lights: { "directionalLights": { type: "sa", value: [], properties: { "direction": { type: "v3" }, "color": { type: "c" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "directionalShadowMap": { type: "tv", value: [] }, "directionalShadowMatrix": { type: "m4v", value: [] }, "spotLights": { type: "sa", value: [], properties: { "color": { type: "c" }, "position": { type: "v3" }, "direction": { type: "v3" }, "distance": { type: "f" }, "angleCos": { type: "f" }, "exponent": { type: "f" }, "decay": { type: "f" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "spotShadowMap": { type: "tv", value: [] }, "spotShadowMatrix": { type: "m4v", value: [] }, "pointLights": { type: "sa", value: [], properties: { "color": { type: "c" }, "position": { type: "v3" }, "decay": { type: "f" }, "distance": { type: "f" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "pointShadowMap": { type: "tv", value: [] }, "pointShadowMatrix": { type: "m4v", value: [] }, "hemisphereLights": { type: "sa", value: [], properties: { "direction": { type: "v3" }, "skyColor": { type: "c" }, "groundColor": { type: "c" } } } }, points: { "diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity": { type: "f", value: 1.0 }, "size": { type: "f", value: 1.0 }, "scale": { type: "f", value: 1.0 }, "map": { type: "t", value: null }, "offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) } } }; // File:src/renderers/shaders/ShaderLib.js /** * Webgl Shader Library for three.js * * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderLib = { 'basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "fog" ] ] ), vertexShader: [ THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "uv_pars_vertex" ], THREE.ShaderChunk[ "uv2_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "uv_vertex" ], THREE.ShaderChunk[ "uv2_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], " #ifdef USE_ENVMAP", THREE.ShaderChunk[ "beginnormal_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], " #endif", THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "#ifndef FLAT_SHADED", " varying vec3 vNormal;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "uv_pars_fragment" ], THREE.ShaderChunk[ "uv2_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "aomap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " vec4 diffuseColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], " ReflectedLight reflectedLight;", " reflectedLight.directDiffuse = vec3( 0.0 );", " reflectedLight.directSpecular = vec3( 0.0 );", " reflectedLight.indirectDiffuse = diffuseColor.rgb;", " reflectedLight.indirectSpecular = vec3( 0.0 );", THREE.ShaderChunk[ "aomap_fragment" ], " vec3 outgoingLight = reflectedLight.indirectDiffuse;", THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'lambert': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "ambient" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) } } ] ), vertexShader: [ "#define LAMBERT", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", " varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "uv_pars_vertex" ], THREE.ShaderChunk[ "uv2_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "bsdfs" ], THREE.ShaderChunk[ "lights_pars" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "uv_vertex" ], THREE.ShaderChunk[ "uv2_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "beginnormal_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "lights_lambert_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform float opacity;", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", " varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "uv_pars_fragment" ], THREE.ShaderChunk[ "uv2_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "aomap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "emissivemap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "bsdfs" ], THREE.ShaderChunk[ "ambient_pars" ], THREE.ShaderChunk[ "lights_pars" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "shadowmask_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " vec4 diffuseColor = vec4( diffuse, opacity );", " ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", " vec3 totalEmissiveLight = emissive;", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], THREE.ShaderChunk[ "emissivemap_fragment" ], // accumulation " reflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );", THREE.ShaderChunk[ "lightmap_fragment" ], " reflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );", " #ifdef DOUBLE_SIDED", " reflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;", " #else", " reflectedLight.directDiffuse = vLightFront;", " #endif", " reflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();", // modulation THREE.ShaderChunk[ "aomap_fragment" ], " vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveLight;", THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'phong': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "bumpmap" ], THREE.UniformsLib[ "normalmap" ], THREE.UniformsLib[ "displacementmap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "ambient" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "specular" : { type: "c", value: new THREE.Color( 0x111111 ) }, "shininess": { type: "f", value: 30 } } ] ), vertexShader: [ "#define PHONG", "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", " varying vec3 vNormal;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "uv_pars_vertex" ], THREE.ShaderChunk[ "uv2_pars_vertex" ], THREE.ShaderChunk[ "displacementmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_phong_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "uv_vertex" ], THREE.ShaderChunk[ "uv2_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "beginnormal_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], "#ifndef FLAT_SHADED", // Normal computed with derivatives when FLAT_SHADED " vNormal = normalize( transformedNormal );", "#endif", THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "displacementmap_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], " vViewPosition = - mvPosition.xyz;", THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "lights_phong_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "#define PHONG", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", "uniform float opacity;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "uv_pars_fragment" ], THREE.ShaderChunk[ "uv2_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "aomap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "emissivemap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "bsdfs" ], THREE.ShaderChunk[ "ambient_pars" ], THREE.ShaderChunk[ "lights_pars" ], THREE.ShaderChunk[ "lights_phong_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "bumpmap_pars_fragment" ], THREE.ShaderChunk[ "normalmap_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " vec4 diffuseColor = vec4( diffuse, opacity );", " ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", " vec3 totalEmissiveLight = emissive;", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], THREE.ShaderChunk[ "normal_fragment" ], THREE.ShaderChunk[ "emissivemap_fragment" ], // accumulation THREE.ShaderChunk[ "lights_phong_fragment" ], THREE.ShaderChunk[ "lights_template" ], // modulation THREE.ShaderChunk[ "aomap_fragment" ], "vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveLight;", THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'standard': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "bumpmap" ], THREE.UniformsLib[ "normalmap" ], THREE.UniformsLib[ "displacementmap" ], THREE.UniformsLib[ "roughnessmap" ], THREE.UniformsLib[ "metalnessmap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "ambient" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "roughness": { type: "f", value: 0.5 }, "metalness": { type: "f", value: 0 }, "envMapIntensity" : { type: "f", value: 1 } // temporary } ] ), vertexShader: [ "#define STANDARD", "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", " varying vec3 vNormal;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "uv_pars_vertex" ], THREE.ShaderChunk[ "uv2_pars_vertex" ], THREE.ShaderChunk[ "displacementmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", // STANDARD THREE.ShaderChunk[ "uv_vertex" ], THREE.ShaderChunk[ "uv2_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "beginnormal_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], "#ifndef FLAT_SHADED", // Normal computed with derivatives when FLAT_SHADED " vNormal = normalize( transformedNormal );", "#endif", THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "displacementmap_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], " vViewPosition = - mvPosition.xyz;", THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "#define STANDARD", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform float roughness;", "uniform float metalness;", "uniform float opacity;", "uniform float envMapIntensity;", // temporary "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", " varying vec3 vNormal;", "#endif", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "uv_pars_fragment" ], THREE.ShaderChunk[ "uv2_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "aomap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "emissivemap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "bsdfs" ], THREE.ShaderChunk[ "ambient_pars" ], THREE.ShaderChunk[ "lights_pars" ], THREE.ShaderChunk[ "lights_standard_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "bumpmap_pars_fragment" ], THREE.ShaderChunk[ "normalmap_pars_fragment" ], THREE.ShaderChunk[ "roughnessmap_pars_fragment" ], THREE.ShaderChunk[ "metalnessmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " vec4 diffuseColor = vec4( diffuse, opacity );", " ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", " vec3 totalEmissiveLight = emissive;", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], THREE.ShaderChunk[ "roughnessmap_fragment" ], THREE.ShaderChunk[ "metalnessmap_fragment" ], THREE.ShaderChunk[ "normal_fragment" ], THREE.ShaderChunk[ "emissivemap_fragment" ], // accumulation THREE.ShaderChunk[ "lights_standard_fragment" ], THREE.ShaderChunk[ "lights_template" ], // modulation THREE.ShaderChunk[ "aomap_fragment" ], "vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveLight;", THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'points': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "points" ], THREE.UniformsLib[ "fog" ] ] ), vertexShader: [ "uniform float size;", "uniform float scale;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "project_vertex" ], " #ifdef USE_SIZEATTENUATION", " gl_PointSize = size * ( scale / - mvPosition.z );", " #else", " gl_PointSize = size;", " #endif", THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_particle_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " vec3 outgoingLight = vec3( 0.0 );", " vec4 diffuseColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_particle_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], " outgoingLight = diffuseColor.rgb;", THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'dashed': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], { "scale" : { type: "f", value: 1 }, "dashSize" : { type: "f", value: 1 }, "totalSize": { type: "f", value: 2 } } ] ), vertexShader: [ "uniform float scale;", "attribute float lineDistance;", "varying float vLineDistance;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], " vLineDistance = scale * lineDistance;", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "uniform float dashSize;", "uniform float totalSize;", "varying float vLineDistance;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " if ( mod( vLineDistance, totalSize ) > dashSize ) {", " discard;", " }", " vec3 outgoingLight = vec3( 0.0 );", " vec4 diffuseColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "color_fragment" ], " outgoingLight = diffuseColor.rgb;", // simple shader THREE.ShaderChunk[ "fog_fragment" ], " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", "}" ].join( "\n" ) }, 'depth': { uniforms: { "mNear": { type: "f", value: 1.0 }, "mFar" : { type: "f", value: 2000.0 }, "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform float mNear;", "uniform float mFar;", "uniform float opacity;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", THREE.ShaderChunk[ "logdepthbuf_fragment" ], " #ifdef USE_LOGDEPTHBUF_EXT", " float depth = gl_FragDepthEXT / gl_FragCoord.w;", " #else", " float depth = gl_FragCoord.z / gl_FragCoord.w;", " #endif", " float color = 1.0 - smoothstep( mNear, mFar, depth );", " gl_FragColor = vec4( vec3( color ), opacity );", "}" ].join( "\n" ) }, 'normal': { uniforms: { "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "varying vec3 vNormal;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", " vNormal = normalize( normalMatrix * normal );", THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform float opacity;", "varying vec3 vNormal;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], "}" ].join( "\n" ) }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ 'cube': { uniforms: { "tCube": { type: "t", value: null }, "tFlip": { type: "f", value: - 1 } }, vertexShader: [ "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", " vWorldPosition = transformDirection( position, modelMatrix );", " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform samplerCube tCube;", "uniform float tFlip;", "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], "}" ].join( "\n" ) }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ 'equirect': { uniforms: { "tEquirect": { type: "t", value: null }, "tFlip": { type: "f", value: - 1 } }, vertexShader: [ "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", " vWorldPosition = transformDirection( position, modelMatrix );", " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "uniform sampler2D tEquirect;", "uniform float tFlip;", "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", // " gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );", "vec3 direction = normalize( vWorldPosition );", "vec2 sampleUV;", "sampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );", "sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;", "gl_FragColor = texture2D( tEquirect, sampleUV );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], "}" ].join( "\n" ) }, /* Depth encoding into RGBA texture * * based on SpiderGL shadow map example * http://spidergl.org/example.php?id=6 * * originally from * http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD * * see also * http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/ */ 'depthRGBA': { uniforms: {}, vertexShader: [ THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join( "\n" ), fragmentShader: [ THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "vec4 pack_depth( const in float depth ) {", " const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );", " const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );", " vec4 res = mod( depth * bit_shift * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );", " res -= res.xxyz * bit_mask;", " return res;", "}", "void main() {", THREE.ShaderChunk[ "logdepthbuf_fragment" ], " #ifdef USE_LOGDEPTHBUF_EXT", " gl_FragData[ 0 ] = pack_depth( gl_FragDepthEXT );", " #else", " gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );", " #endif", //"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z / gl_FragCoord.w );", //"float z = ( ( gl_FragCoord.z / gl_FragCoord.w ) - 3.0 ) / ( 4000.0 - 3.0 );", //"gl_FragData[ 0 ] = pack_depth( z );", //"gl_FragData[ 0 ] = vec4( z, z, z, 1.0 );", "}" ].join( "\n" ) }, 'distanceRGBA': { uniforms: { "lightPos": { type: "v3", value: new THREE.Vector3( 0, 0, 0 ) } }, vertexShader: [ "varying vec4 vWorldPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "begin_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "project_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], "vWorldPosition = worldPosition;", "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 lightPos;", "varying vec4 vWorldPosition;", THREE.ShaderChunk[ "common" ], "vec4 pack1K ( float depth ) {", " depth /= 1000.0;", " const vec4 bitSh = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );", " const vec4 bitMsk = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );", " vec4 res = mod( depth * bitSh * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );", " res -= res.xxyz * bitMsk;", " return res; ", "}", "float unpack1K ( vec4 color ) {", " const vec4 bitSh = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );", " return dot( color, bitSh ) * 1000.0;", "}", "void main () {", " gl_FragColor = pack1K( length( vWorldPosition.xyz - lightPos.xyz ) );", "}" ].join( "\n" ) } }; // File:src/renderers/WebGLRenderTarget.js /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */ /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ THREE.WebGLRenderTarget = function ( width, height, options ) { this.uuid = THREE.Math.generateUUID(); this.width = width; this.height = height; this.scissor = new THREE.Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new THREE.Vector4( 0, 0, width, height ); options = options || {}; if ( options.minFilter === undefined ) options.minFilter = THREE.LinearFilter; this.texture = new THREE.Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy ); this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; }; THREE.WebGLRenderTarget.prototype = { constructor: THREE.WebGLRenderTarget, setSize: function ( width, height ) { if ( this.width !== width || this.height !== height ) { this.width = width; this.height = height; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.width = source.width; this.height = source.height; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.shareDepthFrom = source.shareDepthFrom; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.WebGLRenderTarget.prototype ); // File:src/renderers/WebGLRenderTargetCube.js /** * @author alteredq / http://alteredqualia.com */ THREE.WebGLRenderTargetCube = function ( width, height, options ) { THREE.WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 }; THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype ); THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube; // File:src/renderers/webgl/WebGLBufferRenderer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLBufferRenderer = function ( _gl, extensions, _infoRender ) { var mode; function setMode( value ) { mode = value; } function render( start, count ) { _gl.drawArrays( mode, start, count ); _infoRender.calls ++; _infoRender.vertices += count; if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3; } function renderInstances( geometry ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } var position = geometry.attributes.position; var count = 0; if ( position instanceof THREE.InterleavedBufferAttribute ) { count = position.data.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } else { count = position.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } _infoRender.calls ++; _infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3; } this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; }; // File:src/renderers/webgl/WebGLIndexedBufferRenderer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLIndexedBufferRenderer = function ( _gl, extensions, _infoRender ) { var mode; function setMode( value ) { mode = value; } var type, size; function setIndex( index ) { if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) { type = _gl.UNSIGNED_INT; size = 4; } else { type = _gl.UNSIGNED_SHORT; size = 2; } } function render( start, count ) { _gl.drawElements( mode, count, type, start * size ); _infoRender.calls ++; _infoRender.vertices += count; if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3; } function renderInstances( geometry, start, count ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount ); _infoRender.calls ++; _infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3; } this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; }; // File:src/renderers/webgl/WebGLExtensions.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLExtensions = function ( gl ) { var extensions = {}; this.get = function ( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } var extension; switch ( name ) { case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; case 'WEBGL_compressed_texture_etc1': extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' ); break; default: extension = gl.getExtension( name ); } if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } extensions[ name ] = extension; return extension; }; }; // File:src/renderers/webgl/WebGLCapabilities.js THREE.WebGLCapabilities = function ( gl, extensions, parameters ) { function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } this.getMaxPrecision = getMaxPrecision; this.precision = parameters.precision !== undefined ? parameters.precision : 'highp', this.logarithmicDepthBuffer = parameters.logarithmicDepthBuffer !== undefined ? parameters.logarithmicDepthBuffer : false; this.maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); this.maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); this.maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); this.maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); this.maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); this.maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); this.maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); this.maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); this.vertexTextures = this.maxVertexTextures > 0; this.floatFragmentTextures = !! extensions.get( 'OES_texture_float' ); this.floatVertexTextures = this.vertexTextures && this.floatFragmentTextures; var _maxPrecision = getMaxPrecision( this.precision ); if ( _maxPrecision !== this.precision ) { console.warn( 'THREE.WebGLRenderer:', this.precision, 'not supported, using', _maxPrecision, 'instead.' ); this.precision = _maxPrecision; } if ( this.logarithmicDepthBuffer ) { this.logarithmicDepthBuffer = !! extensions.get( 'EXT_frag_depth' ); } }; // File:src/renderers/webgl/WebGLGeometries.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLGeometries = function ( gl, properties, info ) { var geometries = {}; function get( object ) { var geometry = object.geometry; if ( geometries[ geometry.id ] !== undefined ) { return geometries[ geometry.id ]; } geometry.addEventListener( 'dispose', onGeometryDispose ); var buffergeometry; if ( geometry instanceof THREE.BufferGeometry ) { buffergeometry = geometry; } else if ( geometry instanceof THREE.Geometry ) { if ( geometry._bufferGeometry === undefined ) { geometry._bufferGeometry = new THREE.BufferGeometry().setFromObject( object ); } buffergeometry = geometry._bufferGeometry; } geometries[ geometry.id ] = buffergeometry; info.memory.geometries ++; return buffergeometry; } function onGeometryDispose( event ) { var geometry = event.target; var buffergeometry = geometries[ geometry.id ]; if ( buffergeometry.index !== null ) { deleteAttribute( buffergeometry.index ); } deleteAttributes( buffergeometry.attributes ); geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; // TODO var property = properties.get( geometry ); if ( property.wireframe ) { deleteAttribute( property.wireframe ); } properties.delete( geometry ); var bufferproperty = properties.get( buffergeometry ); if ( bufferproperty.wireframe ) { deleteAttribute( bufferproperty.wireframe ); } properties.delete( buffergeometry ); // info.memory.geometries --; } function getAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function deleteAttribute( attribute ) { var buffer = getAttributeBuffer( attribute ); if ( buffer !== undefined ) { gl.deleteBuffer( buffer ); removeAttributeBuffer( attribute ); } } function deleteAttributes( attributes ) { for ( var name in attributes ) { deleteAttribute( attributes[ name ] ); } } function removeAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { properties.delete( attribute.data ); } else { properties.delete( attribute ); } } this.get = get; }; // File:src/renderers/webgl/WebGLLights.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLLights = function () { var lights = {}; this.get = function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new THREE.Vector3(), color: new THREE.Color(), shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'SpotLight': uniforms = { position: new THREE.Vector3(), direction: new THREE.Vector3(), color: new THREE.Color(), distance: 0, angleCos: 0, exponent: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'PointLight': uniforms = { position: new THREE.Vector3(), color: new THREE.Color(), distance: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'HemisphereLight': uniforms = { direction: new THREE.Vector3(), skyColor: new THREE.Color(), groundColor: new THREE.Color() }; break; } lights[ light.id ] = uniforms; return uniforms; }; }; // File:src/renderers/webgl/WebGLObjects.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLObjects = function ( gl, properties, info ) { var geometries = new THREE.WebGLGeometries( gl, properties, info ); // function update( object ) { // TODO: Avoid updating twice (when using shadowMap). Maybe add frame counter. var geometry = geometries.get( object ); if ( object.geometry instanceof THREE.Geometry ) { geometry.updateFromObject( object ); } var index = geometry.index; var attributes = geometry.attributes; if ( index !== null ) { updateAttribute( index, gl.ELEMENT_ARRAY_BUFFER ); } for ( var name in attributes ) { updateAttribute( attributes[ name ], gl.ARRAY_BUFFER ); } // morph targets var morphAttributes = geometry.morphAttributes; for ( var name in morphAttributes ) { var array = morphAttributes[ name ]; for ( var i = 0, l = array.length; i < l; i ++ ) { updateAttribute( array[ i ], gl.ARRAY_BUFFER ); } } return geometry; } function updateAttribute( attribute, bufferType ) { var data = ( attribute instanceof THREE.InterleavedBufferAttribute ) ? attribute.data : attribute; var attributeProperties = properties.get( data ); if ( attributeProperties.__webglBuffer === undefined ) { createBuffer( attributeProperties, data, bufferType ); } else if ( attributeProperties.version !== data.version ) { updateBuffer( attributeProperties, data, bufferType ); } } function createBuffer( attributeProperties, data, bufferType ) { attributeProperties.__webglBuffer = gl.createBuffer(); gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); var usage = data.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW; gl.bufferData( bufferType, data.array, usage ); attributeProperties.version = data.version; } function updateBuffer( attributeProperties, data, bufferType ) { gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); if ( data.dynamic === false || data.updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, data.array ); } else if ( data.updateRange.count === 0 ) { console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' ); } else { gl.bufferSubData( bufferType, data.updateRange.offset * data.array.BYTES_PER_ELEMENT, data.array.subarray( data.updateRange.offset, data.updateRange.offset + data.updateRange.count ) ); data.updateRange.count = 0; // reset range } attributeProperties.version = data.version; } function getAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function getWireframeAttribute( geometry ) { var property = properties.get( geometry ); if ( property.wireframe !== undefined ) { return property.wireframe; } var indices = []; var index = geometry.index; var attributes = geometry.attributes; var position = attributes.position; // console.time( 'wireframe' ); if ( index !== null ) { var edges = {}; var array = index.array; for ( var i = 0, l = array.length; i < l; i += 3 ) { var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ]; if ( checkEdge( edges, a, b ) ) indices.push( a, b ); if ( checkEdge( edges, b, c ) ) indices.push( b, c ); if ( checkEdge( edges, c, a ) ) indices.push( c, a ); } } else { var array = attributes.position.array; for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { var a = i + 0; var b = i + 1; var c = i + 2; indices.push( a, b, b, c, c, a ); } } // console.timeEnd( 'wireframe' ); var TypeArray = position.count > 65535 ? Uint32Array : Uint16Array; var attribute = new THREE.BufferAttribute( new TypeArray( indices ), 1 ); updateAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER ); property.wireframe = attribute; return attribute; } function checkEdge( edges, a, b ) { if ( a > b ) { var tmp = a; a = b; b = tmp; } var list = edges[ a ]; if ( list === undefined ) { edges[ a ] = [ b ]; return true; } else if ( list.indexOf( b ) === -1 ) { list.push( b ); return true; } return false; } this.getAttributeBuffer = getAttributeBuffer; this.getWireframeAttribute = getWireframeAttribute; this.update = update; }; // File:src/renderers/webgl/WebGLProgram.js THREE.WebGLProgram = ( function () { var programIdCount = 0; // TODO: Combine the regex var structRe = /^([\w\d_]+)\.([\w\d_]+)$/; var arrayStructRe = /^([\w\d_]+)\[(\d+)\]\.([\w\d_]+)$/; var arrayRe = /^([\w\d_]+)\[0\]$/; function generateExtensions( extensions, parameters, rendererExtensions ) { extensions = extensions || {}; var chunks = [ ( extensions.derivatives || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '', ( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '', ( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '', ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { var chunks = []; for ( var name in defines ) { var value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchUniformLocations( gl, program, identifiers ) { var uniforms = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveUniform( program, i ); var name = info.name; var location = gl.getUniformLocation( program, name ); //console.log("THREE.WebGLProgram: ACTIVE UNIFORM:", name); var matches = structRe.exec( name ); if ( matches ) { var structName = matches[ 1 ]; var structProperty = matches[ 2 ]; var uniformsStruct = uniforms[ structName ]; if ( ! uniformsStruct ) { uniformsStruct = uniforms[ structName ] = {}; } uniformsStruct[ structProperty ] = location; continue; } matches = arrayStructRe.exec( name ); if ( matches ) { var arrayName = matches[ 1 ]; var arrayIndex = matches[ 2 ]; var arrayProperty = matches[ 3 ]; var uniformsArray = uniforms[ arrayName ]; if ( ! uniformsArray ) { uniformsArray = uniforms[ arrayName ] = []; } var uniformsArrayIndex = uniformsArray[ arrayIndex ]; if ( ! uniformsArrayIndex ) { uniformsArrayIndex = uniformsArray[ arrayIndex ] = {}; } uniformsArrayIndex[ arrayProperty ] = location; continue; } matches = arrayRe.exec( name ); if ( matches ) { var arrayName = matches[ 1 ]; uniforms[ arrayName ] = location; continue; } uniforms[ name ] = location; } return uniforms; } function fetchAttributeLocations( gl, program, identifiers ) { var attributes = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveAttrib( program, i ); var name = info.name; // console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i ); attributes[ name ] = gl.getAttribLocation( program, name ); } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ); } function unrollLoops( string ) { var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; function replace( match, start, end, snippet ) { var unroll = ''; for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' ); } return unroll; } return string.replace( pattern, replace ); } return function WebGLProgram( renderer, code, material, parameters ) { var gl = renderer.context; var extensions = material.extensions; var defines = material.defines; var vertexShader = material.__webglShader.vertexShader; var fragmentShader = material.__webglShader.fragmentShader; var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === THREE.PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === THREE.PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; if ( parameters.envMap ) { switch ( material.envMap.mapping ) { case THREE.CubeReflectionMapping: case THREE.CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case THREE.EquirectangularReflectionMapping: case THREE.EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; break; case THREE.SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE'; break; } switch ( material.envMap.mapping ) { case THREE.CubeRefractionMapping: case THREE.EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } switch ( material.combine ) { case THREE.MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case THREE.MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case THREE.AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; // console.log( 'building new program ' ); // var customExtensions = generateExtensions( extensions, parameters, renderer.extensions ); var customDefines = generateDefines( defines ); // var program = gl.createProgram(); var prefixVertex, prefixFragment; if ( material instanceof THREE.RawShaderMaterial ) { prefixVertex = ''; prefixFragment = ''; } else { prefixVertex = [ 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', renderer.gammaInput ? '#define GAMMA_INPUT' : '', renderer.gammaOutput ? '#define GAMMA_OUTPUT' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.pointLightShadows > 0 ? '#define POINT_LIGHT_SHADOWS' : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '', renderer.gammaInput ? '#define GAMMA_INPUT' : '', renderer.gammaOutput ? '#define GAMMA_OUTPUT' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.pointLightShadows > 0 ? '#define POINT_LIGHT_SHADOWS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = replaceLightNums( vertexShader, parameters ); fragmentShader = replaceLightNums( fragmentShader, parameters ); if ( material instanceof THREE.ShaderMaterial === false ) { vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); } var vertexGlsl = prefixVertex + vertexShader; var fragmentGlsl = prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = THREE.WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); var glFragmentShader = THREE.WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( material.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, material.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); var programLog = gl.getProgramInfoLog( program ); var vertexLog = gl.getShaderInfoLog( glVertexShader ); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ); var runnable = true; var haveDiagnostics = true; // console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) ); if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, material: material, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } // clean up gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations var cachedUniforms; this.getUniforms = function() { if ( cachedUniforms === undefined ) { cachedUniforms = fetchUniformLocations( gl, program ); } return cachedUniforms; }; // set up caching for attribute locations var cachedAttributes; this.getAttributes = function() { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function() { gl.deleteProgram( program ); this.program = undefined; }; // DEPRECATED Object.defineProperties( this, { uniforms: { get: function() { console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' ); return this.getUniforms(); } }, attributes: { get: function() { console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' ); return this.getAttributes(); } } } ); // this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; }; } )(); // File:src/renderers/webgl/WebGLPrograms.js THREE.WebGLPrograms = function ( renderer, capabilities ) { var programs = []; var shaderIDs = { MeshDepthMaterial: 'depth', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshStandardMaterial: 'standard', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points' }; var parameterNames = [ "precision", "supportsVertexTextures", "map", "envMap", "envMapMode", "lightMap", "aoMap", "emissiveMap", "bumpMap", "normalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "shadowMapEnabled", "pointLightShadows", "shadowMapType", "alphaTest", "doubleSided", "flipSided" ]; function allocateBones ( object ) { if ( capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = capabilities.maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = nVertexMatrices; if ( object !== undefined && object instanceof THREE.SkinnedMesh ) { maxBones = Math.min( object.skeleton.bones.length, maxBones ); if ( maxBones < object.skeleton.bones.length ) { console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' ); } } return maxBones; } } this.getParameters = function ( material, lights, fog, object ) { var shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = allocateBones( object ); var precision = renderer.getPrecision(); if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } var parameters = { shaderID: shaderID, precision: precision, supportsVertexTextures: capabilities.vertexTextures, map: !! material.map, envMap: !! material.envMap, envMapMode: material.envMap && material.envMap.mapping, lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, combine: material.combine, vertexColors: material.vertexColors, fog: fog, useFog: material.fog, fogExp: fog instanceof THREE.FogExp2, flatShading: material.shading === THREE.FlatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer, skinning: material.skinning, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numHemiLights: lights.hemi.length, pointLightShadows: lights.shadowsPointLight, shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0, shadowMapType: renderer.shadowMap.type, alphaTest: material.alphaTest, doubleSided: material.side === THREE.DoubleSide, flipSided: material.side === THREE.BackSide }; return parameters; }; this.getProgramCode = function ( material, parameters ) { var chunks = []; if ( parameters.shaderID ) { chunks.push( parameters.shaderID ); } else { chunks.push( material.fragmentShader ); chunks.push( material.vertexShader ); } if ( material.defines !== undefined ) { for ( var name in material.defines ) { chunks.push( name ); chunks.push( material.defines[ name ] ); } } for ( var i = 0; i < parameterNames.length; i ++ ) { var parameterName = parameterNames[ i ]; chunks.push( parameterName ); chunks.push( parameters[ parameterName ] ); } return chunks.join(); }; this.acquireProgram = function ( material, parameters, code ) { var program; // Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) { var programInfo = programs[ p ]; if ( programInfo.code === code ) { program = programInfo; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new THREE.WebGLProgram( renderer, code, material, parameters ); programs.push( program ); } return program; }; this.releaseProgram = function( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } }; // Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs; }; // File:src/renderers/webgl/WebGLProperties.js /** * @author fordacious / fordacious.github.io */ THREE.WebGLProperties = function () { var properties = {}; this.get = function ( object ) { var uuid = object.uuid; var map = properties[ uuid ]; if ( map === undefined ) { map = {}; properties[ uuid ] = map; } return map; }; this.delete = function ( object ) { delete properties[ object.uuid ]; }; this.clear = function () { properties = {}; }; }; // File:src/renderers/webgl/WebGLShader.js THREE.WebGLShader = ( function () { function addLineNumbers( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } return function WebGLShader( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) { console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' ); } if ( gl.getShaderInfoLog( shader ) !== '' ) { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) ); } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader; }; } )(); // File:src/renderers/webgl/WebGLShadowMap.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLShadowMap = function ( _renderer, _lights, _objects ) { var _gl = _renderer.context, _state = _renderer.state, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _lookTarget = new THREE.Vector3(), _lightPositionWorld = new THREE.Vector3(), _renderList = [], _MorphingFlag = 1, _SkinningFlag = 2, _NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1, _depthMaterials = new Array( _NumberOfMaterialVariants ), _distanceMaterials = new Array( _NumberOfMaterialVariants ); var cubeDirections = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( - 1, 0, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, - 1, 0 ) ]; var cubeUps = [ new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 ) ]; var cube2DViewPorts = [ new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4() ]; // init var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); var distanceShader = THREE.ShaderLib[ "distanceRGBA" ]; var distanceUniforms = THREE.UniformsUtils.clone( distanceShader.uniforms ); for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) { var useMorphing = ( i & _MorphingFlag ) !== 0; var useSkinning = ( i & _SkinningFlag ) !== 0; var depthMaterial = new THREE.ShaderMaterial( { uniforms: depthUniforms, vertexShader: depthShader.vertexShader, fragmentShader: depthShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning } ); depthMaterial._shadowPass = true; _depthMaterials[ i ] = depthMaterial; var distanceMaterial = new THREE.ShaderMaterial( { uniforms: distanceUniforms, vertexShader: distanceShader.vertexShader, fragmentShader: distanceShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning } ); distanceMaterial._shadowPass = true; _distanceMaterials[ i ] = distanceMaterial; } // var scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = THREE.PCFShadowMap; this.cullFace = THREE.CullFaceFront; this.render = function ( scene, camera ) { var faceCount, isPointLight; if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; // Set GL state for depth map. _state.clearColor( 1, 1, 1, 1 ); _state.disable( _gl.BLEND ); _state.enable( _gl.CULL_FACE ); _gl.frontFace( _gl.CCW ); _gl.cullFace( scope.cullFace === THREE.CullFaceFront ? _gl.FRONT : _gl.BACK ); _state.setDepthTest( true ); _state.setScissorTest( false ); // render depth map var shadows = _lights.shadows; for ( var i = 0, il = shadows.length; i < il; i ++ ) { var light = shadows[ i ]; var shadow = light.shadow; var shadowCamera = shadow.camera; var shadowMapSize = shadow.mapSize; if ( light instanceof THREE.PointLight ) { faceCount = 6; isPointLight = true; var vpWidth = shadowMapSize.x / 4.0; var vpHeight = shadowMapSize.y / 2.0; // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight ); // negative X cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight ); // positive Z cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight ); // negative Z cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight ); // positive Y cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight ); // negative Y cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight ); } else { faceCount = 1; isPointLight = false; } if ( shadow.map === null ) { var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; shadow.map = new THREE.WebGLRenderTarget( shadowMapSize.x, shadowMapSize.y, pars ); // if ( light instanceof THREE.SpotLight ) { shadowCamera.aspect = shadowMapSize.x / shadowMapSize.y; } shadowCamera.updateProjectionMatrix(); } var shadowMap = shadow.map; var shadowMatrix = shadow.matrix; _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld ); _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // render shadow map for each cube face (if omni-directional) or // run a single pass if not for ( var face = 0; face < faceCount; face ++ ) { if ( isPointLight ) { _lookTarget.copy( shadowCamera.position ); _lookTarget.add( cubeDirections[ face ] ); shadowCamera.up.copy( cubeUps[ face ] ); shadowCamera.lookAt( _lookTarget ); var vpDimensions = cube2DViewPorts[ face ]; _state.viewport( vpDimensions ); } else { _lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget ); } shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // set object matrices & frustum culling _renderList.length = 0; projectObject( scene, camera, shadowCamera ); // render shadow map // render regular objects for ( var j = 0, jl = _renderList.length; j < jl; j ++ ) { var object = _renderList[ j ]; var geometry = _objects.update( object ); var material = object.material; if ( material instanceof THREE.MultiMaterial ) { var groups = geometry.groups; var materials = material.materials; for ( var k = 0, kl = groups.length; k < kl; k ++ ) { var group = groups[ k ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else { var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } // We must call _renderer.resetGLState() at the end of each iteration of // the light loop in order to force material updates for each light. _renderer.resetGLState(); } // Restore GL state. var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _renderer.setClearColor( clearColor, clearAlpha ); _state.enable( _gl.BLEND ); if ( scope.cullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.BACK ); } _renderer.resetGLState(); scope.needsUpdate = false; }; function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) { var geometry = object.geometry; var newMaterial = null; var materialVariants = _depthMaterials; var customMaterial = object.customDepthMaterial; if ( isPointLight ) { materialVariants = _distanceMaterials; customMaterial = object.customDistanceMaterial; } if ( ! customMaterial ) { var useMorphing = geometry.morphTargets !== undefined && geometry.morphTargets.length > 0 && material.morphTargets; var useSkinning = object instanceof THREE.SkinnedMesh && material.skinning; var variantIndex = 0; if ( useMorphing ) variantIndex |= _MorphingFlag; if ( useSkinning ) variantIndex |= _SkinningFlag; newMaterial = materialVariants[ variantIndex ]; } else { newMaterial = customMaterial; } newMaterial.visible = material.visible; newMaterial.wireframe = material.wireframe; newMaterial.wireframeLinewidth = material.wireframeLinewidth; if ( isPointLight && newMaterial.uniforms.lightPos !== undefined ) { newMaterial.uniforms.lightPos.value.copy( lightPositionWorld ); } return newMaterial; } function projectObject( object, camera, shadowCamera ) { if ( object.visible === false ) return; if ( object.layers.test( camera.layers ) && ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) ) { if ( object.castShadow && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) { var material = object.material; if ( material.visible === true ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderList.push( object ); } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, shadowCamera ); } } }; // File:src/renderers/webgl/WebGLState.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLState = function ( gl, extensions, paramThreeToGL ) { var _this = this; var color = new THREE.Vector4(); var newAttributes = new Uint8Array( 16 ); var enabledAttributes = new Uint8Array( 16 ); var attributeDivisors = new Uint8Array( 16 ); var capabilities = {}; var compressedTextureFormats = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentDepthFunc = null; var currentDepthWrite = null; var currentColorWrite = null; var currentStencilWrite = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentFlipSided = null; var currentLineWidth = null; var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null; var currentScissorTest = null; var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var currentTextureSlot = undefined; var currentBoundTextures = {}; var currentClearColor = new THREE.Vector4(); var currentClearDepth = null; var currentClearStencil = null; var currentScissor = new THREE.Vector4(); var currentViewport = new THREE.Vector4(); this.init = function () { this.clearColor( 0, 0, 0, 1 ); this.clearDepth( 1 ); this.clearStencil( 0 ); this.enable( gl.DEPTH_TEST ); gl.depthFunc( gl.LEQUAL ); gl.frontFace( gl.CCW ); gl.cullFace( gl.BACK ); this.enable( gl.CULL_FACE ); this.enable( gl.BLEND ); gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA ); }; this.initAttributes = function () { for ( var i = 0, l = newAttributes.length; i < l; i ++ ) { newAttributes[ i ] = 0; } }; this.enableAttribute = function ( attribute ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== 0 ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); extension.vertexAttribDivisorANGLE( attribute, 0 ); attributeDivisors[ attribute ] = 0; } }; this.enableAttributeAndDivisor = function ( attribute, meshPerAttribute, extension ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } }; this.disableUnusedAttributes = function () { for ( var i = 0, l = enabledAttributes.length; i < l; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } }; this.enable = function ( id ) { if ( capabilities[ id ] !== true ) { gl.enable( id ); capabilities[ id ] = true; } }; this.disable = function ( id ) { if ( capabilities[ id ] !== false ) { gl.disable( id ); capabilities[ id ] = false; } }; this.getCompressedTextureFormats = function () { if ( compressedTextureFormats === null ) { compressedTextureFormats = []; if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) || extensions.get( 'WEBGL_compressed_texture_s3tc' ) || extensions.get( 'WEBGL_compressed_texture_etc1' )) { var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS ); for ( var i = 0; i < formats.length; i ++ ) { compressedTextureFormats.push( formats[ i ] ); } } } return compressedTextureFormats; }; this.setBlending = function ( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha ) { if ( blending === THREE.NoBlending ) { this.disable( gl.BLEND ); } else { this.enable( gl.BLEND ); } if ( blending !== currentBlending ) { if ( blending === THREE.AdditiveBlending ) { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); } else if ( blending === THREE.SubtractiveBlending ) { // TODO: Find blendFuncSeparate() combination gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR ); } else if ( blending === THREE.MultiplyBlending ) { // TODO: Find blendFuncSeparate() combination gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); } else { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } currentBlending = blending; } if ( blending === THREE.CustomBlending ) { blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } } else { currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; } }; this.setDepthFunc = function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case THREE.NeverDepth: gl.depthFunc( gl.NEVER ); break; case THREE.AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case THREE.LessDepth: gl.depthFunc( gl.LESS ); break; case THREE.LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case THREE.EqualDepth: gl.depthFunc( gl.EQUAL ); break; case THREE.GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case THREE.GreaterDepth: gl.depthFunc( gl.GREATER ); break; case THREE.NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } } else { gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }; this.setDepthTest = function ( depthTest ) { if ( depthTest ) { this.enable( gl.DEPTH_TEST ); } else { this.disable( gl.DEPTH_TEST ); } }; this.setDepthWrite = function ( depthWrite ) { // TODO: Rename to setDepthMask if ( currentDepthWrite !== depthWrite ) { gl.depthMask( depthWrite ); currentDepthWrite = depthWrite; } }; this.setColorWrite = function ( colorWrite ) { // TODO: Rename to setColorMask if ( currentColorWrite !== colorWrite ) { gl.colorMask( colorWrite, colorWrite, colorWrite, colorWrite ); currentColorWrite = colorWrite; } }; this.setStencilFunc = function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilMask = stencilMask; } }; this.setStencilOp = function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }; this.setStencilTest = function ( stencilTest ) { if ( stencilTest ) { this.enable( gl.STENCIL_TEST ); } else { this.disable( gl.STENCIL_TEST ); } }; this.setStencilWrite = function ( stencilWrite ) { // TODO: Rename to setStencilMask if ( currentStencilWrite !== stencilWrite ) { gl.stencilMask( stencilWrite ); currentStencilWrite = stencilWrite; } }; this.setFlipSided = function ( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } }; this.setLineWidth = function ( width ) { if ( width !== currentLineWidth ) { gl.lineWidth( width ); currentLineWidth = width; } }; this.setPolygonOffset = function ( polygonOffset, factor, units ) { if ( polygonOffset ) { this.enable( gl.POLYGON_OFFSET_FILL ); } else { this.disable( gl.POLYGON_OFFSET_FILL ); } if ( polygonOffset && ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } }; this.getScissorTest = function () { return currentScissorTest; }; this.setScissorTest = function ( scissorTest ) { currentScissorTest = scissorTest; if ( scissorTest ) { this.enable( gl.SCISSOR_TEST ); } else { this.disable( gl.SCISSOR_TEST ); } }; // texture this.activeTexture = function ( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } }; this.bindTexture = function ( webglType, webglTexture ) { if ( currentTextureSlot === undefined ) { _this.activeTexture(); } var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } }; this.compressedTexImage2D = function () { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } }; this.texImage2D = function () { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } }; // clear values this.clearColor = function ( r, g, b, a ) { color.set( r, g, b, a ); if ( currentClearColor.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentClearColor.copy( color ); } }; this.clearDepth = function ( depth ) { if ( currentClearDepth !== depth ) { gl.clearDepth( depth ); currentClearDepth = depth; } }; this.clearStencil = function ( stencil ) { if ( currentClearStencil !== stencil ) { gl.clearStencil( stencil ); currentClearStencil = stencil; } }; // this.scissor = function ( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } }; this.viewport = function ( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } }; // this.reset = function () { for ( var i = 0; i < enabledAttributes.length; i ++ ) { if ( enabledAttributes[ i ] === 1 ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } capabilities = {}; compressedTextureFormats = null; currentBlending = null; currentColorWrite = null; currentDepthWrite = null; currentStencilWrite = null; currentFlipSided = null; }; }; // File:src/renderers/webgl/plugins/LensFlarePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlarePlugin = function ( renderer, flares ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var hasVertexTexture; var tempTexture, occlusionTexture; function init() { var vertices = new Float32Array( [ - 1, - 1, 0, 0, 1, - 1, 1, 0, 1, 1, 1, 1, - 1, 1, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); // buffers vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); // textures tempTexture = gl.createTexture(); occlusionTexture = gl.createTexture(); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); hasVertexTexture = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) > 0; var shader; if ( hasVertexTexture ) { shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = visibility.r / 9.0;", "vVisibility *= 1.0 - visibility.g / 9.0;", "vVisibility *= visibility.b / 9.0;", "vVisibility *= 1.0 - visibility.a / 9.0;", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform lowp int renderType;", "uniform sampler2D map;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; } else { shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform lowp int renderType;", "uniform sampler2D map;", "uniform sampler2D occlusionMap;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;", "visibility = ( 1.0 - visibility / 4.0 );", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * visibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; } program = createProgram( shader ); attributes = { vertex: gl.getAttribLocation ( program, "position" ), uv: gl.getAttribLocation ( program, "uv" ) }; uniforms = { renderType: gl.getUniformLocation( program, "renderType" ), map: gl.getUniformLocation( program, "map" ), occlusionMap: gl.getUniformLocation( program, "occlusionMap" ), opacity: gl.getUniformLocation( program, "opacity" ), color: gl.getUniformLocation( program, "color" ), scale: gl.getUniformLocation( program, "scale" ), rotation: gl.getUniformLocation( program, "rotation" ), screenPosition: gl.getUniformLocation( program, "screenPosition" ) }; } /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. */ this.render = function ( scene, camera, viewport ) { if ( flares.length === 0 ) return; var tempPosition = new THREE.Vector3(); var invAspect = viewport.w / viewport.z, halfViewportWidth = viewport.z * 0.5, halfViewportHeight = viewport.w * 0.5; var size = 16 / viewport.w, scale = new THREE.Vector2( size * invAspect, size ); var screenPosition = new THREE.Vector3( 1, 1, 0 ), screenPositionPixels = new THREE.Vector2( 1, 1 ); if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.vertex ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/uniforms gl.uniform1i( uniforms.occlusionMap, 0 ); gl.uniform1i( uniforms.map, 1 ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); state.disable( gl.CULL_FACE ); state.setDepthWrite( false ); for ( var i = 0, l = flares.length; i < l; i ++ ) { size = 16 / viewport.w; scale.set( size * invAspect, size ); // calc object screen position var flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] ); tempPosition.applyMatrix4( camera.matrixWorldInverse ); tempPosition.applyProjection( camera.projectionMatrix ); // setup arrays for gl programs screenPosition.copy( tempPosition ); screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth; screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight; // screen cull if ( hasVertexTexture || ( screenPositionPixels.x > 0 && screenPositionPixels.x < viewport.z && screenPositionPixels.y > 0 && screenPositionPixels.y < viewport.w ) ) { // save current RGB to temp texture state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, null ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, viewport.x + screenPositionPixels.x - 8, viewport.y + screenPositionPixels.y - 8, 16, 16, 0 ); // render pink quad gl.uniform1i( uniforms.renderType, 0 ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); state.disable( gl.BLEND ); state.enable( gl.DEPTH_TEST ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, viewport.x + screenPositionPixels.x - 8, viewport.y + screenPositionPixels.y - 8, 16, 16, 0 ); // restore graphics gl.uniform1i( uniforms.renderType, 1 ); state.disable( gl.DEPTH_TEST ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ); if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares gl.uniform1i( uniforms.renderType, 2 ); state.enable( gl.BLEND ); for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { var sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewport.w; scale.x = size * invAspect; scale.y = size; gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform1f( uniforms.rotation, sprite.rotation ); gl.uniform1f( uniforms.opacity, sprite.opacity ); gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); renderer.setTexture( sprite.texture, 1 ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl state.enable( gl.CULL_FACE ); state.enable( gl.DEPTH_TEST ); state.setDepthWrite( true ); renderer.resetGLState(); }; function createProgram ( shader ) { var program = gl.createProgram(); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var prefix = "precision " + renderer.getPrecision() + " float;\n"; gl.shaderSource( fragmentShader, prefix + shader.fragmentShader ); gl.shaderSource( vertexShader, prefix + shader.vertexShader ); gl.compileShader( fragmentShader ); gl.compileShader( vertexShader ); gl.attachShader( program, fragmentShader ); gl.attachShader( program, vertexShader ); gl.linkProgram( program ); return program; } }; // File:src/renderers/webgl/plugins/SpritePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SpritePlugin = function ( renderer, sprites ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var texture; // decompose matrixWorld var spritePosition = new THREE.Vector3(); var spriteRotation = new THREE.Quaternion(); var spriteScale = new THREE.Vector3(); function init() { var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0.5, - 0.5, 1, 0, 0.5, 0.5, 1, 1, - 0.5, 0.5, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); program = createProgram(); attributes = { position: gl.getAttribLocation ( program, 'position' ), uv: gl.getAttribLocation ( program, 'uv' ) }; uniforms = { uvOffset: gl.getUniformLocation( program, 'uvOffset' ), uvScale: gl.getUniformLocation( program, 'uvScale' ), rotation: gl.getUniformLocation( program, 'rotation' ), scale: gl.getUniformLocation( program, 'scale' ), color: gl.getUniformLocation( program, 'color' ), map: gl.getUniformLocation( program, 'map' ), opacity: gl.getUniformLocation( program, 'opacity' ), modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ), projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ), fogType: gl.getUniformLocation( program, 'fogType' ), fogDensity: gl.getUniformLocation( program, 'fogDensity' ), fogNear: gl.getUniformLocation( program, 'fogNear' ), fogFar: gl.getUniformLocation( program, 'fogFar' ), fogColor: gl.getUniformLocation( program, 'fogColor' ), alphaTest: gl.getUniformLocation( program, 'alphaTest' ) }; var canvas = document.createElement( 'canvas' ); canvas.width = 8; canvas.height = 8; var context = canvas.getContext( '2d' ); context.fillStyle = 'white'; context.fillRect( 0, 0, 8, 8 ); texture = new THREE.Texture( canvas ); texture.needsUpdate = true; } this.render = function ( scene, camera ) { if ( sprites.length === 0 ) return; // setup gl if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.position ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); state.disable( gl.CULL_FACE ); state.enable( gl.BLEND ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); state.activeTexture( gl.TEXTURE0 ); gl.uniform1i( uniforms.map, 0 ); var oldFogType = 0; var sceneFogType = 0; var fog = scene.fog; if ( fog ) { gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b ); if ( fog instanceof THREE.Fog ) { gl.uniform1f( uniforms.fogNear, fog.near ); gl.uniform1f( uniforms.fogFar, fog.far ); gl.uniform1i( uniforms.fogType, 1 ); oldFogType = 1; sceneFogType = 1; } else if ( fog instanceof THREE.FogExp2 ) { gl.uniform1f( uniforms.fogDensity, fog.density ); gl.uniform1i( uniforms.fogType, 2 ); oldFogType = 2; sceneFogType = 2; } } else { gl.uniform1i( uniforms.fogType, 0 ); oldFogType = 0; sceneFogType = 0; } // update positions and sort for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite.modelViewMatrix.elements[ 14 ]; } sprites.sort( painterSortStable ); // render all sprites var scale = []; for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; gl.uniform1f( uniforms.alphaTest, material.alphaTest ); gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements ); sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale ); scale[ 0 ] = spriteScale.x; scale[ 1 ] = spriteScale.y; var fogType = 0; if ( scene.fog && material.fog ) { fogType = sceneFogType; } if ( oldFogType !== fogType ) { gl.uniform1i( uniforms.fogType, fogType ); oldFogType = fogType; } if ( material.map !== null ) { gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y ); gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y ); } else { gl.uniform2f( uniforms.uvOffset, 0, 0 ); gl.uniform2f( uniforms.uvScale, 1, 1 ); } gl.uniform1f( uniforms.opacity, material.opacity ); gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b ); gl.uniform1f( uniforms.rotation, material.rotation ); gl.uniform2fv( uniforms.scale, scale ); state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); if ( material.map && material.map.image && material.map.image.width ) { renderer.setTexture( material.map, 0 ); } else { renderer.setTexture( texture, 0 ); } gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } // restore gl state.enable( gl.CULL_FACE ); renderer.resetGLState(); }; function createProgram () { var program = gl.createProgram(); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); gl.shaderSource( vertexShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'void main() {', 'vUV = uvOffset + uv * uvScale;', 'vec2 alignedPosition = position * scale;', 'vec2 rotatedPosition;', 'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', 'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', 'vec4 finalPosition;', 'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', 'finalPosition.xy += rotatedPosition;', 'finalPosition = projectionMatrix * finalPosition;', 'gl_Position = finalPosition;', '}' ].join( '\n' ) ); gl.shaderSource( fragmentShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'void main() {', 'vec4 texture = texture2D( map, vUV );', 'if ( texture.a < alphaTest ) discard;', 'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', 'if ( fogType > 0 ) {', 'float depth = gl_FragCoord.z / gl_FragCoord.w;', 'float fogFactor = 0.0;', 'if ( fogType == 1 ) {', 'fogFactor = smoothstep( fogNear, fogFar, depth );', '} else {', 'const float LOG2 = 1.442695;', 'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );', 'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', '}', 'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );', '}', '}' ].join( '\n' ) ); gl.compileShader( vertexShader ); gl.compileShader( fragmentShader ); gl.attachShader( program, vertexShader ); gl.attachShader( program, fragmentShader ); gl.linkProgram( program ); return program; } function painterSortStable ( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return b.id - a.id; } } }; // File:src/Three.Legacy.js /** * @author mrdoob / http://mrdoob.com/ */ Object.defineProperties( THREE.Box2.prototype, { empty: { value: function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); } }, isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } } } ); Object.defineProperties( THREE.Box3.prototype, { empty: { value: function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); } }, isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } }, isIntersectionSphere: { value: function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } } ); Object.defineProperties( THREE.Matrix3.prototype, { multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); } }, multiplyVector3Array: { value: function ( a ) { console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); } } } ); Object.defineProperties( THREE.Matrix4.prototype, { extractPosition: { value: function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); } }, setRotationFromQuaternion: { value: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); } }, multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' ); return vector.applyProjection( this ); } }, multiplyVector4: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); } }, multiplyVector3Array: { value: function ( a ) { console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); } }, rotateAxis: { value: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); } }, crossVector: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); } }, translate: { value: function ( v ) { console.error( 'THREE.Matrix4: .translate() has been removed.' ); } }, rotateX: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); } }, rotateY: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); } }, rotateZ: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); } }, rotateByAxis: { value: function ( axis, angle ) { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); } } } ); Object.defineProperties( THREE.Plane.prototype, { isIntersectionLine: { value: function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); } } } ); Object.defineProperties( THREE.Quaternion.prototype, { multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); } } } ); Object.defineProperties( THREE.Ray.prototype, { isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } }, isIntersectionPlane: { value: function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); } }, isIntersectionSphere: { value: function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } } ); Object.defineProperties( THREE.Vector3.prototype, { setEulerFromRotationMatrix: { value: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); } }, setEulerFromQuaternion: { value: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); } }, getPositionFromMatrix: { value: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); } }, getScaleFromMatrix: { value: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); } }, getColumnFromMatrix: { value: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( index, matrix ); } } } ); // THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) { console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); return new THREE.Face3( a, b, c, normal, color, materialIndex ); }; // Object.defineProperties( THREE.Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, getChildByName: { value: function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); } }, renderDepth: { set: function ( value ) { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); } }, translate: { value: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function ( value ) { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); // Object.defineProperties( THREE, { PointCloud: { value: function ( geometry, material ) { console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new THREE.Points( geometry, material ); } }, ParticleSystem: { value: function ( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new THREE.Points( geometry, material ); } } } ); // Object.defineProperties( THREE.Light.prototype, { onlyShadow: { set: function ( value ) { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function ( value ) { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( THREE.BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' ); return this.array.length; } } } ); Object.defineProperties( THREE.BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } }, addIndex: { value: function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); } }, addDrawCall: { value: function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); } }, clearDrawCalls: { value: function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); } }, computeTangents: { value: function () { console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); } }, computeOffsets: { value: function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); } } } ); // Object.defineProperties( THREE.Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapRGB has been removed.' ); return new THREE.Color(); } } } ); Object.defineProperties( THREE, { PointCloudMaterial: { value: function ( parameters ) { console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } }, ParticleBasicMaterial: { value: function ( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } }, ParticleSystemMaterial:{ value: function ( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } } } ); Object.defineProperties( THREE.MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false; }, set: function ( value ) { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); } } } ); Object.defineProperties( THREE.ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // // WebGLRenderer is not included in Qt builds, so remove legacy support for it, too //Object.defineProperties( THREE.WebGLRenderer.prototype, { // supportsFloatTextures: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); // return this.extensions.get( 'OES_texture_float' ); // } // }, // supportsHalfFloatTextures: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); // return this.extensions.get( 'OES_texture_half_float' ); // } // }, // supportsStandardDerivatives: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); // return this.extensions.get( 'OES_standard_derivatives' ); // } // }, // supportsCompressedTextureS3TC: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); // return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); // } // }, // supportsCompressedTexturePVRTC: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); // return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); // } // }, // supportsBlendMinMax: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); // return this.extensions.get( 'EXT_blend_minmax' ); // } // }, // supportsVertexTextures: { // value: function () { // return this.capabilities.vertexTextures; // } // }, // supportsInstancedArrays: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); // return this.extensions.get( 'ANGLE_instanced_arrays' ); // } // }, // enableScissorTest: { // value: function ( boolean ) { // console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); // this.setScissorTest( boolean ); // } // }, // initMaterial: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); // } // }, // addPrePlugin: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); // } // }, // addPostPlugin: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); // } // }, // updateShadowMap: { // value: function () { // console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); // } // }, // shadowMapEnabled: { // get: function () { // return this.shadowMap.enabled; // }, // set: function ( value ) { // console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); // this.shadowMap.enabled = value; // } // }, // shadowMapType: { // get: function () { // return this.shadowMap.type; // }, // set: function ( value ) { // console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); // this.shadowMap.type = value; // } // }, // shadowMapCullFace: { // get: function () { // return this.shadowMap.cullFace; // }, // set: function ( value ) { // console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' ); // this.shadowMap.cullFace = value; // } // } //} ); // Object.defineProperties( THREE.WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // THREE.GeometryUtils = { merge: function ( geometry1, geometry2, materialIndexOffset ) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix; if ( geometry2 instanceof THREE.Mesh ) { geometry2.matrixAutoUpdate && geometry2.updateMatrix(); matrix = geometry2.matrix; geometry2 = geometry2.geometry; } geometry1.merge( geometry2, matrix, materialIndexOffset ); }, center: function ( geometry ) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center(); } }; THREE.ImageUtils = { crossOrigin: undefined, loadTexture: function ( url, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); var loader = new THREE.TextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( url, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadTextureCube: function ( urls, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); var loader = new THREE.CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( urls, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadCompressedTexture: function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); }, loadCompressedTextureCube: function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); } }; // THREE.Projector = function () { console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' ); this.projectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .projectVector() is now vector.project().' ); vector.project( camera ); }; this.unprojectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' ); vector.unproject( camera ); }; this.pickingRay = function ( vector, camera ) { console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' ); }; }; // THREE.CanvasRenderer = function () { console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' ); this.domElement = document.createElement( 'canvas' ); this.clear = function () {}; this.render = function () {}; this.setClearColor = function () {}; this.setSize = function () {}; }; // THREE.MeshFaceMaterial = THREE.MultiMaterial; // File:src/extras/CurveUtils.js /** * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.CurveUtils = { tangentQuadraticBezier: function ( t, p0, p1, p2 ) { return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 ); }, // Puay Bing, thanks for helping with this derivative! tangentCubicBezier: function ( t, p0, p1, p2, p3 ) { return - 3 * p0 * ( 1 - t ) * ( 1 - t ) + 3 * p1 * ( 1 - t ) * ( 1 - t ) - 6 * t * p1 * ( 1 - t ) + 6 * t * p2 * ( 1 - t ) - 3 * t * t * p2 + 3 * t * t * p3; }, tangentSpline: function ( t, p0, p1, p2, p3 ) { // To check if my formulas are correct var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1 var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t var h01 = - 6 * t * t + 6 * t; // − 2t3 + 3t2 var h11 = 3 * t * t - 2 * t; // t3 − t2 return h00 + h10 + h01 + h11; }, // Catmull-Rom interpolate: function( p0, p1, p2, p3, t ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; // File:src/extras/SceneUtils.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SceneUtils = { createMultiMaterialObject: function ( geometry, materials ) { var group = new THREE.Group(); for ( var i = 0, l = materials.length; i < l; i ++ ) { group.add( new THREE.Mesh( geometry, materials[ i ] ) ); } return group; }, detach: function ( child, parent, scene ) { child.applyMatrix( parent.matrixWorld ); parent.remove( child ); scene.add( child ); }, attach: function ( child, scene, parent ) { var matrixWorldInverse = new THREE.Matrix4(); matrixWorldInverse.getInverse( parent.matrixWorld ); child.applyMatrix( matrixWorldInverse ); scene.remove( child ); parent.add( child ); } }; // File:src/extras/ShapeUtils.js /** * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.ShapeUtils = { // calculate area of the contour polygon area: function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }, triangulate: ( function () { /** * This code is a quick port of code written in C++ which was submitted to * flipcode.com by John W. Ratcliff // July 22, 2000 * See original code and more information here: * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml * * ported to actionscript by Zevan Rosser * www.actionsnippet.com * * ported to javascript by Joshua Koo * http://www.lab4games.net/zz85/blog * */ function snip( contour, u, v, w, n, verts ) { var p; var ax, ay, bx, by; var cx, cy, px, py; ax = contour[ verts[ u ] ].x; ay = contour[ verts[ u ] ].y; bx = contour[ verts[ v ] ].x; by = contour[ verts[ v ] ].y; cx = contour[ verts[ w ] ].x; cy = contour[ verts[ w ] ].y; if ( Number.EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false; var aX, aY, bX, bY, cX, cY; var apx, apy, bpx, bpy, cpx, cpy; var cCROSSap, bCROSScp, aCROSSbp; aX = cx - bx; aY = cy - by; bX = ax - cx; bY = ay - cy; cX = bx - ax; cY = by - ay; for ( p = 0; p < n; p ++ ) { px = contour[ verts[ p ] ].x; py = contour[ verts[ p ] ].y; if ( ( ( px === ax ) && ( py === ay ) ) || ( ( px === bx ) && ( py === by ) ) || ( ( px === cx ) && ( py === cy ) ) ) continue; apx = px - ax; apy = py - ay; bpx = px - bx; bpy = py - by; cpx = px - cx; cpy = py - cy; // see if p is inside triangle abc aCROSSbp = aX * bpy - aY * bpx; cCROSSap = cX * apy - cY * apx; bCROSScp = bX * cpy - bY * cpx; if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false; } return true; } // takes in an contour array and returns return function ( contour, indices ) { var n = contour.length; if ( n < 3 ) return null; var result = [], verts = [], vertIndices = []; /* we want a counter-clockwise polygon in verts */ var u, v, w; if ( THREE.ShapeUtils.area( contour ) > 0.0 ) { for ( v = 0; v < n; v ++ ) verts[ v ] = v; } else { for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v; } var nv = n; /* remove nv - 2 vertices, creating 1 triangle every time */ var count = 2 * nv; /* error detection */ for ( v = nv - 1; nv > 2; ) { /* if we loop, it is probably a non-simple polygon */ if ( ( count -- ) <= 0 ) { //** Triangulate: ERROR - probable bad polygon! //throw ( "Warning, unable to triangulate polygon!" ); //return null; // Sometimes warning is fine, especially polygons are triangulated in reverse. console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' ); if ( indices ) return vertIndices; return result; } /* three consecutive vertices in current polygon, */ u = v; if ( nv <= u ) u = 0; /* previous */ v = u + 1; if ( nv <= v ) v = 0; /* new v */ w = v + 1; if ( nv <= w ) w = 0; /* next */ if ( snip( contour, u, v, w, nv, verts ) ) { var a, b, c, s, t; /* true names of the vertices */ a = verts[ u ]; b = verts[ v ]; c = verts[ w ]; /* output Triangle */ result.push( [ contour[ a ], contour[ b ], contour[ c ] ] ); vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] ); /* remove v from the remaining polygon */ for ( s = v, t = v + 1; t < nv; s ++, t ++ ) { verts[ s ] = verts[ t ]; } nv --; /* reset error detection counter */ count = 2 * nv; } } if ( indices ) return vertIndices; return result; } } )(), triangulateShape: function ( contour, holes ) { function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) { // inOtherPt needs to be collinear to the inSegment if ( inSegPt1.x !== inSegPt2.x ) { if ( inSegPt1.x < inSegPt2.x ) { return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) ); } else { return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) ); } } else { if ( inSegPt1.y < inSegPt2.y ) { return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) ); } else { return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) ); } } } function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) { var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y; var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y; var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x; var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y; var limit = seg1dy * seg2dx - seg1dx * seg2dy; var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy; if ( Math.abs( limit ) > Number.EPSILON ) { // not parallel var perpSeg2; if ( limit > 0 ) { if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return []; } else { if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return []; } // i.e. to reduce rounding errors // intersection at endpoint of segment#1? if ( perpSeg2 === 0 ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt1 ]; } if ( perpSeg2 === limit ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt2 ]; } // intersection at endpoint of segment#2? if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ]; if ( perpSeg1 === limit ) return [ inSeg2Pt2 ]; // return real intersection point var factorSeg1 = perpSeg2 / limit; return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ]; } else { // parallel or collinear if ( ( perpSeg1 !== 0 ) || ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return []; // they are collinear or degenerate var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point? var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point? // both segments are points if ( seg1Pt && seg2Pt ) { if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) || ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points return [ inSeg1Pt1 ]; // they are the same point } // segment#1 is a single point if ( seg1Pt ) { if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2 return [ inSeg1Pt1 ]; } // segment#2 is a single point if ( seg2Pt ) { if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1 return [ inSeg2Pt1 ]; } // they are collinear segments, which might overlap var seg1min, seg1max, seg1minVal, seg1maxVal; var seg2min, seg2max, seg2minVal, seg2maxVal; if ( seg1dx !== 0 ) { // the segments are NOT on a vertical line if ( inSeg1Pt1.x < inSeg1Pt2.x ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x; } if ( inSeg2Pt1.x < inSeg2Pt2.x ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x; } } else { // the segments are on a vertical line if ( inSeg1Pt1.y < inSeg1Pt2.y ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y; } if ( inSeg2Pt1.y < inSeg2Pt2.y ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y; } } if ( seg1minVal <= seg2minVal ) { if ( seg1maxVal < seg2minVal ) return []; if ( seg1maxVal === seg2minVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg2min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ]; return [ seg2min, seg2max ]; } else { if ( seg1minVal > seg2maxVal ) return []; if ( seg1minVal === seg2maxVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg1min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ]; return [ seg1min, seg2max ]; } } } function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) { // The order of legs is important // translation of all points, so that Vertex is at (0,0) var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y; var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y; var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y; // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg. var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX; var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX; if ( Math.abs( from2toAngle ) > Number.EPSILON ) { // angle != 180 deg. var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX; // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle ); if ( from2toAngle > 0 ) { // main angle < 180 deg. return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) ); } else { // main angle > 180 deg. return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) ); } } else { // angle == 180 deg. // console.log( "from2to: 180 deg., from2other: " + from2otherAngle ); return ( from2otherAngle > 0 ); } } function removeHoles( contour, holes ) { var shape = contour.concat(); // work on this shape var hole; function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) { // Check if hole point lies within angle around shape point var lastShapeIdx = shape.length - 1; var prevShapeIdx = inShapeIdx - 1; if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx; var nextShapeIdx = inShapeIdx + 1; if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0; var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y ); return false; } // Check if shape point lies within angle around hole point var lastHoleIdx = hole.length - 1; var prevHoleIdx = inHoleIdx - 1; if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx; var nextHoleIdx = inHoleIdx + 1; if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0; insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y ); return false; } return true; } function intersectsShapeEdge( inShapePt, inHolePt ) { // checks for intersections with shape edges var sIdx, nextIdx, intersection; for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) { nextIdx = sIdx + 1; nextIdx %= shape.length; intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } return false; } var indepHoles = []; function intersectsHoleEdge( inShapePt, inHolePt ) { // checks for intersections with hole edges var ihIdx, chkHole, hIdx, nextIdx, intersection; for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) { chkHole = holes[ indepHoles[ ihIdx ]]; for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) { nextIdx = hIdx + 1; nextIdx %= chkHole.length; intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } } return false; } var holeIndex, shapeIndex, shapePt, holePt, holeIdx, cutKey, failedCuts = [], tmpShape1, tmpShape2, tmpHole1, tmpHole2; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { indepHoles.push( h ); } var minShapeIndex = 0; var counter = indepHoles.length * 2; while ( indepHoles.length > 0 ) { counter --; if ( counter < 0 ) { console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" ); break; } // search for shape-vertex and hole-vertex, // which can be connected without intersections for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) { shapePt = shape[ shapeIndex ]; holeIndex = - 1; // search for hole which can be reached without intersections for ( var h = 0; h < indepHoles.length; h ++ ) { holeIdx = indepHoles[ h ]; // prevent multiple checks cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx; if ( failedCuts[ cutKey ] !== undefined ) continue; hole = holes[ holeIdx ]; for ( var h2 = 0; h2 < hole.length; h2 ++ ) { holePt = hole[ h2 ]; if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue; if ( intersectsShapeEdge( shapePt, holePt ) ) continue; if ( intersectsHoleEdge( shapePt, holePt ) ) continue; holeIndex = h2; indepHoles.splice( h, 1 ); tmpShape1 = shape.slice( 0, shapeIndex + 1 ); tmpShape2 = shape.slice( shapeIndex ); tmpHole1 = hole.slice( holeIndex ); tmpHole2 = hole.slice( 0, holeIndex + 1 ); shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 ); minShapeIndex = shapeIndex; // Debug only, to show the selected cuts // glob_CutLines.push( [ shapePt, holePt ] ); break; } if ( holeIndex >= 0 ) break; // hole-vertex found failedCuts[ cutKey ] = true; // remember failure } if ( holeIndex >= 0 ) break; // hole-vertex found } } return shape; /* shape with no holes */ } var i, il, f, face, key, index, allPointsMap = {}; // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first. var allpoints = contour.concat(); for ( var h = 0, hl = holes.length; h < hl; h ++ ) { Array.prototype.push.apply( allpoints, holes[ h ] ); } //console.log( "allpoints",allpoints, allpoints.length ); // prepare all points map for ( i = 0, il = allpoints.length; i < il; i ++ ) { key = allpoints[ i ].x + ":" + allpoints[ i ].y; if ( allPointsMap[ key ] !== undefined ) { console.warn( "THREE.Shape: Duplicate point", key ); } allPointsMap[ key ] = i; } // remove holes by cutting paths to holes and adding them to the shape var shapeWithoutHoles = removeHoles( contour, holes ); var triangles = THREE.ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape //console.log( "triangles",triangles, triangles.length ); // check all face vertices against all points map for ( i = 0, il = triangles.length; i < il; i ++ ) { face = triangles[ i ]; for ( f = 0; f < 3; f ++ ) { key = face[ f ].x + ":" + face[ f ].y; index = allPointsMap[ key ]; if ( index !== undefined ) { face[ f ] = index; } } } return triangles.concat(); }, isClockWise: function ( pts ) { return THREE.ShapeUtils.area( pts ) < 0; }, // Bezier Curves formulas obtained from // http://en.wikipedia.org/wiki/B%C3%A9zier_curve // Quad Bezier Functions b2: ( function () { function b2p0( t, p ) { var k = 1 - t; return k * k * p; } function b2p1( t, p ) { return 2 * ( 1 - t ) * t * p; } function b2p2( t, p ) { return t * t * p; } return function ( t, p0, p1, p2 ) { return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 ); }; } )(), // Cubic Bezier Functions b3: ( function () { function b3p0( t, p ) { var k = 1 - t; return k * k * k * p; } function b3p1( t, p ) { var k = 1 - t; return 3 * k * k * t * p; } function b3p2( t, p ) { var k = 1 - t; return 3 * k * t * t * p; } function b3p3( t, p ) { return t * t * t * p; } return function ( t, p0, p1, p2, p3 ) { return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 ); }; } )() }; // File:src/extras/core/Curve.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of Curve methods * .getPoint(t), getTangent(t) * .getPointAt(u), getTagentAt(u) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following classes subclasses THREE.Curve: * * -- 2d classes -- * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.CubicBezierCurve * THREE.SplineCurve * THREE.ArcCurve * THREE.EllipseCurve * * -- 3d classes -- * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * THREE.CubicBezierCurve3 * THREE.SplineCurve3 * THREE.ClosedSplineCurve3 * * A series of curves can be represented as a THREE.CurvePath * **/ /************************************************************** * Abstract Curve base class **************************************************************/ THREE.Curve = function () { }; THREE.Curve.prototype = { constructor: THREE.Curve, // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function ( t ) { console.warn( "THREE.Curve: Warning, getPoint() not implemented!" ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getPoint( t ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPoint( d / divisions ) ); } return pts; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPointAt( d / divisions ) ); } return pts; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( ! divisions ) divisions = ( this.__arcLengthDivisions ) ? ( this.__arcLengthDivisions ) : 200; if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { //console.log( "cached", this.cacheArcLengths ); return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint ( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum:sum }; Sum is in the last element. }, updateArcLengths: function() { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } //var time = Date.now(); // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; //console.log('b' , i, low, high, Date.now()- time); if ( arcLengths[ i ] === targetArcLength ) { var t = i / ( il - 1 ); return t; } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub( pt1 ); return vec.normalize(); }, getTangentAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); } }; // TODO: Transformation for Curves? /************************************************************** * 3D Curves **************************************************************/ // A Factory method for creating new curve subclasses THREE.Curve.create = function ( constructor, getPointFunc ) { constructor.prototype = Object.create( THREE.Curve.prototype ); constructor.prototype.constructor = constructor; constructor.prototype.getPoint = getPointFunc; return constructor; }; // File:src/extras/core/CurvePath.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ THREE.CurvePath = function () { this.curves = []; this.autoClose = false; // Automatically closes the path }; THREE.CurvePath.prototype = Object.create( THREE.Curve.prototype ); THREE.CurvePath.prototype.constructor = THREE.CurvePath; THREE.CurvePath.prototype.add = function ( curve ) { this.curves.push( curve ); }; /* THREE.CurvePath.prototype.checkConnection = function() { // TODO // If the ending of curve is not connected to the starting // or the next curve, then, this is not a real path }; */ THREE.CurvePath.prototype.closePath = function() { // TODO Test // and verify for vector3 (needs to implement equals) // Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new THREE.LineCurve( endPoint, startPoint ) ); } }; // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') THREE.CurvePath.prototype.getPoint = function( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { var diff = curveLengths[ i ] - d; var curve = this.curves[ i ]; var u = 1 - diff / curve.getLength(); return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( var j = 1; j <= divisions; j ++ ) { var t = j / divisions; tx = b2( t, cpx0, cpx1, cpx ); ty = b2( t, cpy0, cpy1, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case 'bezierCurveTo': cpx = args[ 4 ]; cpy = args[ 5 ]; cpx1 = args[ 0 ]; cpy1 = args[ 1 ]; cpx2 = args[ 2 ]; cpy2 = args[ 3 ]; if ( points.length > 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( var j = 1; j <= divisions; j ++ ) { var t = j / divisions; tx = b3( t, cpx0, cpx1, cpx2, cpx ); ty = b3( t, cpy0, cpy1, cpy2, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case 'splineThru': laste = this.actions[ i - 1 ].args; var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] ); var spts = [ last ]; var n = divisions * args[ 0 ].length; spts = spts.concat( args[ 0 ] ); var spline = new THREE.SplineCurve( spts ); for ( var j = 1; j <= n; j ++ ) { points.push( spline.getPointAt( j / n ) ); } break; case 'arc': var aX = args[ 0 ], aY = args[ 1 ], aRadius = args[ 2 ], aStartAngle = args[ 3 ], aEndAngle = args[ 4 ], aClockwise = !! args[ 5 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; for ( var j = 1; j <= tdivisions; j ++ ) { var t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + aRadius * Math.cos( angle ); ty = aY + aRadius * Math.sin( angle ); //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; case 'ellipse': var aX = args[ 0 ], aY = args[ 1 ], xRadius = args[ 2 ], yRadius = args[ 3 ], aStartAngle = args[ 4 ], aEndAngle = args[ 5 ], aClockwise = !! args[ 6 ], aRotation = args[ 7 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; var cos, sin; if ( aRotation !== 0 ) { cos = Math.cos( aRotation ); sin = Math.sin( aRotation ); } for ( var j = 1; j <= tdivisions; j ++ ) { var t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + xRadius * Math.cos( angle ); ty = aY + yRadius * Math.sin( angle ); if ( aRotation !== 0 ) { var x = tx, y = ty; // Rotate the point about the center of the ellipse. tx = ( x - aX ) * cos - ( y - aY ) * sin + aX; ty = ( x - aX ) * sin + ( y - aY ) * cos + aY; } //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; } // end switch } // Normalize to remove the closing point by default. var lastPoint = points[ points.length - 1 ]; if ( Math.abs( lastPoint.x - points[ 0 ].x ) < Number.EPSILON && Math.abs( lastPoint.y - points[ 0 ].y ) < Number.EPSILON ) points.splice( points.length - 1, 1 ); if ( this.autoClose ) { points.push( points[ 0 ] ); } return points; }; // // Breaks path into shapes // // Assumptions (if parameter isCCW==true the opposite holds): // - solid shapes are defined clockwise (CW) // - holes are defined counterclockwise (CCW) // // If parameter noHoles==true: // - all subPaths are regarded as solid shapes // - definition order CW/CCW has no relevance // THREE.Path.prototype.toShapes = function( isCCW, noHoles ) { function extractSubpaths( inActions ) { var subPaths = [], lastPath = new THREE.Path(); for ( var i = 0, l = inActions.length; i < l; i ++ ) { var item = inActions[ i ]; var args = item.args; var action = item.action; if ( action === 'moveTo' ) { if ( lastPath.actions.length !== 0 ) { subPaths.push( lastPath ); lastPath = new THREE.Path(); } } lastPath[ action ].apply( lastPath, args ); } if ( lastPath.actions.length !== 0 ) { subPaths.push( lastPath ); } // console.log(subPaths); return subPaths; } function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } //console.log("shape", shapes); return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } var isClockWise = THREE.ShapeUtils.isClockWise; var subPaths = extractSubpaths( this.actions ); if ( subPaths.length === 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); var solid, tmpPath, tmpShape, shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( var i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new THREE.Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.actions = tmpPath.actions; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { var ambiguous = false; var toChange = []; for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { var sho = newShapeHoles[ sIdx ]; for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[ hIdx ]; var hole_unassigned = true; for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles; } } var tmpHoles; for ( var i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; }; // File:src/extras/core/Shape.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. THREE.Shape = function () { THREE.Path.apply( this, arguments ); this.holes = []; }; THREE.Shape.prototype = Object.create( THREE.Path.prototype ); THREE.Shape.prototype.constructor = THREE.Shape; // Convenience method to return ExtrudeGeometry THREE.Shape.prototype.extrude = function ( options ) { return new THREE.ExtrudeGeometry( this, options ); }; // Convenience method to return ShapeGeometry THREE.Shape.prototype.makeGeometry = function ( options ) { return new THREE.ShapeGeometry( this, options ); }; // Get points of holes THREE.Shape.prototype.getPointsHoles = function ( divisions ) { var holesPts = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; }; // Get points of shape and holes (keypoints based on segments parameter) THREE.Shape.prototype.extractAllPoints = function ( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }; THREE.Shape.prototype.extractPoints = function ( divisions ) { return this.extractAllPoints( divisions ); }; // File:src/extras/curves/LineCurve.js /************************************************************** * Line **************************************************************/ THREE.LineCurve = function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }; THREE.LineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.LineCurve.prototype.constructor = THREE.LineCurve; THREE.LineCurve.prototype.getPoint = function ( t ) { var point = this.v2.clone().sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); return point; }; // Line curve is linear, so we can overwrite default getPointAt THREE.LineCurve.prototype.getPointAt = function ( u ) { return this.getPoint( u ); }; THREE.LineCurve.prototype.getTangent = function( t ) { var tangent = this.v2.clone().sub( this.v1 ); return tangent.normalize(); }; // File:src/extras/curves/QuadraticBezierCurve.js /************************************************************** * Quadratic Bezier curve **************************************************************/ THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }; THREE.QuadraticBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve; THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) { var b2 = THREE.ShapeUtils.b2; return new THREE.Vector2( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ) ); }; THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) { var tangentQuadraticBezier = THREE.CurveUtils.tangentQuadraticBezier; return new THREE.Vector2( tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ), tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y ) ).normalize(); }; // File:src/extras/curves/CubicBezierCurve.js /************************************************************** * Cubic Bezier curve **************************************************************/ THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }; THREE.CubicBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve; THREE.CubicBezierCurve.prototype.getPoint = function ( t ) { var b3 = THREE.ShapeUtils.b3; return new THREE.Vector2( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ); }; THREE.CubicBezierCurve.prototype.getTangent = function( t ) { var tangentCubicBezier = THREE.CurveUtils.tangentCubicBezier; return new THREE.Vector2( tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ).normalize(); }; // File:src/extras/curves/SplineCurve.js /************************************************************** * Spline curve **************************************************************/ THREE.SplineCurve = function ( points /* array of Vector2 */ ) { this.points = ( points == undefined ) ? [] : points; }; THREE.SplineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.SplineCurve.prototype.constructor = THREE.SplineCurve; THREE.SplineCurve.prototype.getPoint = function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = THREE.CurveUtils.interpolate; return new THREE.Vector2( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ) ); }; // File:src/extras/curves/EllipseCurve.js /************************************************************** * Ellipse curve **************************************************************/ THREE.EllipseCurve = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation || 0; }; THREE.EllipseCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.EllipseCurve.prototype.constructor = THREE.EllipseCurve; THREE.EllipseCurve.prototype.getPoint = function ( t ) { var deltaAngle = this.aEndAngle - this.aStartAngle; if ( deltaAngle < 0 ) deltaAngle += Math.PI * 2; if ( deltaAngle > Math.PI * 2 ) deltaAngle -= Math.PI * 2; var angle; if ( this.aClockwise === true ) { angle = this.aEndAngle + ( 1 - t ) * ( Math.PI * 2 - deltaAngle ); } else { angle = this.aStartAngle + t * deltaAngle; } var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation ); var tx = x, ty = y; // Rotate the point about the center of the ellipse. x = ( tx - this.aX ) * cos - ( ty - this.aY ) * sin + this.aX; y = ( tx - this.aX ) * sin + ( ty - this.aY ) * cos + this.aY; } return new THREE.Vector2( x, y ); }; // File:src/extras/curves/ArcCurve.js /************************************************************** * Arc curve **************************************************************/ THREE.ArcCurve = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { THREE.EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); }; THREE.ArcCurve.prototype = Object.create( THREE.EllipseCurve.prototype ); THREE.ArcCurve.prototype.constructor = THREE.ArcCurve; // File:src/extras/curves/LineCurve3.js /************************************************************** * Line3D **************************************************************/ THREE.LineCurve3 = THREE.Curve.create( function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }, function ( t ) { var vector = new THREE.Vector3(); vector.subVectors( this.v2, this.v1 ); // diff vector.multiplyScalar( t ); vector.add( this.v1 ); return vector; } ); // File:src/extras/curves/QuadraticBezierCurve3.js /************************************************************** * Quadratic Bezier 3D curve **************************************************************/ THREE.QuadraticBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }, function ( t ) { var b2 = THREE.ShapeUtils.b2; return new THREE.Vector3( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ), b2( t, this.v0.z, this.v1.z, this.v2.z ) ); } ); // File:src/extras/curves/CubicBezierCurve3.js /************************************************************** * Cubic Bezier 3D curve **************************************************************/ THREE.CubicBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }, function ( t ) { var b3 = THREE.ShapeUtils.b3; return new THREE.Vector3( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ), b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z ) ); } ); // File:src/extras/curves/SplineCurve3.js /************************************************************** * Spline 3D curve **************************************************************/ THREE.SplineCurve3 = THREE.Curve.create( function ( points /* array of Vector3 */ ) { console.warn( 'THREE.SplineCurve3 will be deprecated. Please use THREE.CatmullRomCurve3' ); this.points = ( points == undefined ) ? [] : points; }, function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = THREE.CurveUtils.interpolate; return new THREE.Vector3( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ), interpolate( point0.z, point1.z, point2.z, point3.z, weight ) ); } ); // File:src/extras/curves/CatmullRomCurve3.js /** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ THREE.CatmullRomCurve3 = ( function() { var tmp = new THREE.Vector3(), px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { } /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ CubicPoly.prototype.init = function( x0, x1, t0, t1 ) { this.c0 = x0; this.c1 = t0; this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; this.c3 = 2 * x0 - 2 * x1 + t0 + t1; }; CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; // initCubicPoly this.init( x1, x2, t1, t2 ); }; // standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4 CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) { this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }; CubicPoly.prototype.calc = function( t ) { var t2 = t * t; var t3 = t2 * t; return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3; }; // Subclass Three.js curve return THREE.Curve.create( function ( p /* array of Vector3 */ ) { this.points = p || []; this.closed = false; }, function ( t ) { var points = this.points, point, intPoint, weight, l; l = points.length; if ( l < 2 ) console.log( 'duh, you need at least 2 points' ); point = ( l - ( this.closed ? 0 : 1 ) ) * t; intPoint = Math.floor( point ); weight = point - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } var p0, p1, p2, p3; // 4 points if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } p1 = points[ intPoint % l ]; p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom var pow = this.type === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.type === 'catmullrom' ) { var tension = this.tension !== undefined ? this.tension : 0.5; px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension ); } var v = new THREE.Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return v; } ); } )(); // File:src/extras/curves/ClosedSplineCurve3.js /************************************************************** * Closed Spline 3D curve **************************************************************/ THREE.ClosedSplineCurve3 = function ( points ) { console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Please use THREE.CatmullRomCurve3.' ); THREE.CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; this.closed = true; }; THREE.ClosedSplineCurve3.prototype = Object.create( THREE.CatmullRomCurve3.prototype ); // File:src/extras/geometries/BoxGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as */ THREE.BoxGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) { THREE.Geometry.call( this ); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.widthSegments = widthSegments || 1; this.heightSegments = heightSegments || 1; this.depthSegments = depthSegments || 1; var scope = this; var width_half = width / 2; var height_half = height / 2; var depth_half = depth / 2; buildPlane( 'z', 'y', - 1, - 1, depth, height, width_half, 0 ); // px buildPlane( 'z', 'y', 1, - 1, depth, height, - width_half, 1 ); // nx buildPlane( 'x', 'z', 1, 1, width, depth, height_half, 2 ); // py buildPlane( 'x', 'z', 1, - 1, width, depth, - height_half, 3 ); // ny buildPlane( 'x', 'y', 1, - 1, width, height, depth_half, 4 ); // pz buildPlane( 'x', 'y', - 1, - 1, width, height, - depth_half, 5 ); // nz function buildPlane( u, v, udir, vdir, width, height, depth, materialIndex ) { var w, ix, iy, gridX = scope.widthSegments, gridY = scope.heightSegments, width_half = width / 2, height_half = height / 2, offset = scope.vertices.length; if ( ( u === 'x' && v === 'y' ) || ( u === 'y' && v === 'x' ) ) { w = 'z'; } else if ( ( u === 'x' && v === 'z' ) || ( u === 'z' && v === 'x' ) ) { w = 'y'; gridY = scope.depthSegments; } else if ( ( u === 'z' && v === 'y' ) || ( u === 'y' && v === 'z' ) ) { w = 'x'; gridX = scope.depthSegments; } var gridX1 = gridX + 1, gridY1 = gridY + 1, segment_width = width / gridX, segment_height = height / gridY, normal = new THREE.Vector3(); normal[ w ] = depth > 0 ? 1 : - 1; for ( iy = 0; iy < gridY1; iy ++ ) { for ( ix = 0; ix < gridX1; ix ++ ) { var vector = new THREE.Vector3(); vector[ u ] = ( ix * segment_width - width_half ) * udir; vector[ v ] = ( iy * segment_height - height_half ) * vdir; vector[ w ] = depth; scope.vertices.push( vector ); } } for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; var uva = new THREE.Vector2( ix / gridX, 1 - iy / gridY ); var uvb = new THREE.Vector2( ix / gridX, 1 - ( iy + 1 ) / gridY ); var uvc = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - ( iy + 1 ) / gridY ); var uvd = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - iy / gridY ); var face = new THREE.Face3( a + offset, b + offset, d + offset ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); face.materialIndex = materialIndex; scope.faces.push( face ); scope.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); face = new THREE.Face3( b + offset, c + offset, d + offset ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); face.materialIndex = materialIndex; scope.faces.push( face ); scope.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } } this.mergeVertices(); }; THREE.BoxGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.BoxGeometry.prototype.constructor = THREE.BoxGeometry; THREE.CubeGeometry = THREE.BoxGeometry; // File:src/extras/geometries/CircleGeometry.js /** * @author hughes */ THREE.CircleGeometry = function ( radius, segments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); }; THREE.CircleGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.CircleGeometry.prototype.constructor = THREE.CircleGeometry; // File:src/extras/geometries/CircleBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.CircleBufferGeometry = function ( radius, segments, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'CircleBufferGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; var vertices = segments + 2; var positions = new Float32Array( vertices * 3 ); var normals = new Float32Array( vertices * 3 ); var uvs = new Float32Array( vertices * 2 ); // center data is already zero, but need to set a few extras normals[ 2 ] = 1.0; uvs[ 0 ] = 0.5; uvs[ 1 ] = 0.5; for ( var s = 0, i = 3, ii = 2 ; s <= segments; s ++, i += 3, ii += 2 ) { var segment = thetaStart + s / segments * thetaLength; positions[ i ] = radius * Math.cos( segment ); positions[ i + 1 ] = radius * Math.sin( segment ); normals[ i + 2 ] = 1; // normal z uvs[ ii ] = ( positions[ i ] / radius + 1 ) / 2; uvs[ ii + 1 ] = ( positions[ i + 1 ] / radius + 1 ) / 2; } var indices = []; for ( var i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } this.setIndex( new THREE.BufferAttribute( new Uint16Array( indices ), 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.CircleBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.CircleBufferGeometry.prototype.constructor = THREE.CircleBufferGeometry; // File:src/extras/geometries/CylinderGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; radiusTop = radiusTop !== undefined ? radiusTop : 20; radiusBottom = radiusBottom !== undefined ? radiusBottom : 20; height = height !== undefined ? height : 100; radialSegments = radialSegments || 8; heightSegments = heightSegments || 1; openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : 2 * Math.PI; var heightHalf = height / 2; var x, y, vertices = [], uvs = []; for ( y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var uvsRow = []; var v = y / heightSegments; var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var vertex = new THREE.Vector3(); vertex.x = radius * Math.sin( u * thetaLength + thetaStart ); vertex.y = - v * height + heightHalf; vertex.z = radius * Math.cos( u * thetaLength + thetaStart ); this.vertices.push( vertex ); verticesRow.push( this.vertices.length - 1 ); uvsRow.push( new THREE.Vector2( u, 1 - v ) ); } vertices.push( verticesRow ); uvs.push( uvsRow ); } var tanTheta = ( radiusBottom - radiusTop ) / height; var na, nb; for ( x = 0; x < radialSegments; x ++ ) { if ( radiusTop !== 0 ) { na = this.vertices[ vertices[ 0 ][ x ] ].clone(); nb = this.vertices[ vertices[ 0 ][ x + 1 ] ].clone(); } else { na = this.vertices[ vertices[ 1 ][ x ] ].clone(); nb = this.vertices[ vertices[ 1 ][ x + 1 ] ].clone(); } na.setY( Math.sqrt( na.x * na.x + na.z * na.z ) * tanTheta ).normalize(); nb.setY( Math.sqrt( nb.x * nb.x + nb.z * nb.z ) * tanTheta ).normalize(); for ( y = 0; y < heightSegments; y ++ ) { var v1 = vertices[ y ][ x ]; var v2 = vertices[ y + 1 ][ x ]; var v3 = vertices[ y + 1 ][ x + 1 ]; var v4 = vertices[ y ][ x + 1 ]; var n1 = na.clone(); var n2 = na.clone(); var n3 = nb.clone(); var n4 = nb.clone(); var uv1 = uvs[ y ][ x ].clone(); var uv2 = uvs[ y + 1 ][ x ].clone(); var uv3 = uvs[ y + 1 ][ x + 1 ].clone(); var uv4 = uvs[ y ][ x + 1 ].clone(); this.faces.push( new THREE.Face3( v1, v2, v4, [ n1, n2, n4 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv4 ] ); this.faces.push( new THREE.Face3( v2, v3, v4, [ n2.clone(), n3, n4.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uv2.clone(), uv3, uv4.clone() ] ); } } // top cap if ( openEnded === false && radiusTop > 0 ) { this.vertices.push( new THREE.Vector3( 0, heightHalf, 0 ) ); for ( x = 0; x < radialSegments; x ++ ) { var v1 = vertices[ 0 ][ x ]; var v2 = vertices[ 0 ][ x + 1 ]; var v3 = this.vertices.length - 1; var n1 = new THREE.Vector3( 0, 1, 0 ); var n2 = new THREE.Vector3( 0, 1, 0 ); var n3 = new THREE.Vector3( 0, 1, 0 ); var uv1 = uvs[ 0 ][ x ].clone(); var uv2 = uvs[ 0 ][ x + 1 ].clone(); var uv3 = new THREE.Vector2( uv2.x, 0 ); this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ], undefined, 1 ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] ); } } // bottom cap if ( openEnded === false && radiusBottom > 0 ) { this.vertices.push( new THREE.Vector3( 0, - heightHalf, 0 ) ); for ( x = 0; x < radialSegments; x ++ ) { var v1 = vertices[ heightSegments ][ x + 1 ]; var v2 = vertices[ heightSegments ][ x ]; var v3 = this.vertices.length - 1; var n1 = new THREE.Vector3( 0, - 1, 0 ); var n2 = new THREE.Vector3( 0, - 1, 0 ); var n3 = new THREE.Vector3( 0, - 1, 0 ); var uv1 = uvs[ heightSegments ][ x + 1 ].clone(); var uv2 = uvs[ heightSegments ][ x ].clone(); var uv3 = new THREE.Vector2( uv2.x, 1 ); this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ], undefined, 2 ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] ); } } this.computeFaceNormals(); }; THREE.CylinderGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.CylinderGeometry.prototype.constructor = THREE.CylinderGeometry; // File:src/extras/geometries/EdgesGeometry.js /** * @author WestLangley / http://github.com/WestLangley */ THREE.EdgesGeometry = function ( geometry, thresholdAngle ) { THREE.BufferGeometry.call( this ); thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; var thresholdDot = Math.cos( THREE.Math.degToRad( thresholdAngle ) ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; var geometry2; if ( geometry instanceof THREE.BufferGeometry ) { geometry2 = new THREE.Geometry(); geometry2.fromBufferGeometry( geometry ); } else { geometry2 = geometry.clone(); } geometry2.mergeVertices(); geometry2.computeFaceNormals(); var vertices = geometry2.vertices; var faces = geometry2.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined }; } else { hash[ key ].face2 = i; } } } var coords = []; for ( var key in hash ) { var h = hash[ key ]; if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) <= thresholdDot ) { var vertex = vertices[ h.vert1 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); vertex = vertices[ h.vert2 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); } } this.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( coords ), 3 ) ); }; THREE.EdgesGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.EdgesGeometry.prototype.constructor = THREE.EdgesGeometry; // File:src/extras/geometries/ExtrudeGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined) * frames: // containing arrays of tangents, normals, binormals * * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ExtrudeGeometry = function ( shapes, options ) { if ( typeof( shapes ) === "undefined" ) { shapes = []; return; } THREE.Geometry.call( this ); this.type = 'ExtrudeGeometry'; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); }; THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry; THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } }; THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) { var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // Reuse TNB from TubeGeomtry for now. // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames( extrudePath, steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new THREE.Vector3(); normal = new THREE.Vector3(); position2 = new THREE.Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initialization var ahole, h, hl; // looping of holes var scope = this; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( THREE.ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)! } var faces = THREE.ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2 ( pt, vec, size ) { if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new THREE.Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //z = bevelThickness * t; bs = bevelSize * ( Math.sin ( t * Math.PI / 2 ) ); // curved //bs = bevelSize * t; // linear // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) ); bs = bevelSize * Math.sin ( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { if ( bevelEnabled ) { var layer = 0; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } } // Create faces for the z-sides of the shape function buildSideFaces() { var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( -- i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); } function f3( a, b, c ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; scope.faces.push( new THREE.Face3( a, b, c, null, null, 0 ) ); var uvs = uvgen.generateTopUV( scope, a, b, c ); scope.faceVertexUvs[ 0 ].push( uvs ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; d += shapesOffset; scope.faces.push( new THREE.Face3( a, b, d, null, null, 1 ) ); scope.faces.push( new THREE.Face3( b, c, d, null, null, 1 ) ); var uvs = uvgen.generateSideWallUV( scope, a, b, c, d ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] ); } }; THREE.ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function ( geometry, indexA, indexB, indexC ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; return [ new THREE.Vector2( a.x, a.y ), new THREE.Vector2( b.x, b.y ), new THREE.Vector2( c.x, c.y ) ]; }, generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; var d = vertices[ indexD ]; if ( Math.abs( a.y - b.y ) < 0.01 ) { return [ new THREE.Vector2( a.x, 1 - a.z ), new THREE.Vector2( b.x, 1 - b.z ), new THREE.Vector2( c.x, 1 - c.z ), new THREE.Vector2( d.x, 1 - d.z ) ]; } else { return [ new THREE.Vector2( a.y, 1 - a.z ), new THREE.Vector2( b.y, 1 - b.z ), new THREE.Vector2( c.y, 1 - c.z ), new THREE.Vector2( d.y, 1 - d.z ) ]; } } }; // File:src/extras/geometries/ShapeGeometry.js /** * @author jonobr1 / http://jonobr1.com * * Creates a one-sided polygonal geometry from a path shape. Similar to * ExtrudeGeometry. * * parameters = { * * curveSegments: , // number of points on the curves. NOT USED AT THE MOMENT. * * material: // material index for front and back faces * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ShapeGeometry = function ( shapes, options ) { THREE.Geometry.call( this ); this.type = 'ShapeGeometry'; if ( Array.isArray( shapes ) === false ) shapes = [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); }; THREE.ShapeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ShapeGeometry.prototype.constructor = THREE.ShapeGeometry; /** * Add an array of shapes to THREE.ShapeGeometry. */ THREE.ShapeGeometry.prototype.addShapeList = function ( shapes, options ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { this.addShape( shapes[ i ], options ); } return this; }; /** * Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry. */ THREE.ShapeGeometry.prototype.addShape = function ( shape, options ) { if ( options === undefined ) options = {}; var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var material = options.material; var uvgen = options.UVGenerator === undefined ? THREE.ExtrudeGeometry.WorldUVGenerator : options.UVGenerator; // var i, l, hole; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe... for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; if ( THREE.ShapeUtils.isClockWise( hole ) ) { holes[ i ] = hole.reverse(); } } reverse = false; } var faces = THREE.ShapeUtils.triangulateShape( vertices, holes ); // Vertices for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; vertices = vertices.concat( hole ); } // var vert, vlen = vertices.length; var face, flen = faces.length; for ( i = 0; i < vlen; i ++ ) { vert = vertices[ i ]; this.vertices.push( new THREE.Vector3( vert.x, vert.y, 0 ) ); } for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; var a = face[ 0 ] + shapesOffset; var b = face[ 1 ] + shapesOffset; var c = face[ 2 ] + shapesOffset; this.faces.push( new THREE.Face3( a, b, c, null, null, material ) ); this.faceVertexUvs[ 0 ].push( uvgen.generateTopUV( this, a, b, c ) ); } }; // File:src/extras/geometries/LatheGeometry.js /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2*PI) range of the lathed section // 2*pi is a closed lathe, less than 2PI is a portion. THREE.LatheGeometry = function ( points, segments, phiStart, phiLength ) { THREE.Geometry.call( this ); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = segments || 12; phiStart = phiStart || 0; phiLength = phiLength || 2 * Math.PI; var inversePointLength = 1.0 / ( points.length - 1 ); var inverseSegments = 1.0 / segments; for ( var i = 0, il = segments; i <= il; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var sin = Math.sin( phi ); var cos = Math.cos( phi ); for ( var j = 0, jl = points.length; j < jl; j ++ ) { var point = points[ j ]; var vertex = new THREE.Vector3(); vertex.x = point.x * sin; vertex.y = point.y; vertex.z = point.x * cos; this.vertices.push( vertex ); } } var np = points.length; for ( var i = 0, il = segments; i < il; i ++ ) { for ( var j = 0, jl = points.length - 1; j < jl; j ++ ) { var base = j + np * i; var a = base; var b = base + np; var c = base + 1 + np; var d = base + 1; var u0 = i * inverseSegments; var v0 = j * inversePointLength; var u1 = u0 + inverseSegments; var v1 = v0 + inversePointLength; this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ new THREE.Vector2( u0, v0 ), new THREE.Vector2( u1, v0 ), new THREE.Vector2( u0, v1 ) ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ new THREE.Vector2( u1, v0 ), new THREE.Vector2( u1, v1 ), new THREE.Vector2( u0, v1 ) ] ); } } this.mergeVertices(); this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.LatheGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.LatheGeometry.prototype.constructor = THREE.LatheGeometry; // File:src/extras/geometries/PlaneGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ THREE.PlaneGeometry = function ( width, height, widthSegments, heightSegments ) { THREE.Geometry.call( this ); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; this.fromBufferGeometry( new THREE.PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); }; THREE.PlaneGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.PlaneGeometry.prototype.constructor = THREE.PlaneGeometry; // File:src/extras/geometries/PlaneBufferGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ THREE.PlaneBufferGeometry = function ( width, height, widthSegments, heightSegments ) { THREE.BufferGeometry.call( this ); this.type = 'PlaneBufferGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; var width_half = width / 2; var height_half = height / 2; var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var segment_width = width / gridX; var segment_height = height / gridY; var vertices = new Float32Array( gridX1 * gridY1 * 3 ); var normals = new Float32Array( gridX1 * gridY1 * 3 ); var uvs = new Float32Array( gridX1 * gridY1 * 2 ); var offset = 0; var offset2 = 0; for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segment_height - height_half; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; vertices[ offset ] = x; vertices[ offset + 1 ] = - y; normals[ offset + 2 ] = 1; uvs[ offset2 ] = ix / gridX; uvs[ offset2 + 1 ] = 1 - ( iy / gridY ); offset += 3; offset2 += 2; } } offset = 0; var indices = new ( ( vertices.length / 3 ) > 65535 ? Uint32Array : Uint16Array )( gridX * gridY * 6 ); for ( var iy = 0; iy < gridY; iy ++ ) { for ( var ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; indices[ offset ] = a; indices[ offset + 1 ] = b; indices[ offset + 2 ] = d; indices[ offset + 3 ] = b; indices[ offset + 4 ] = c; indices[ offset + 5 ] = d; offset += 6; } } this.setIndex( new THREE.BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); }; THREE.PlaneBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.PlaneBufferGeometry.prototype.constructor = THREE.PlaneBufferGeometry; // File:src/extras/geometries/RingGeometry.js /** * @author Kaleb Murphy */ THREE.RingGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; innerRadius = innerRadius || 0; outerRadius = outerRadius || 50; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 8; var i, o, uvs = [], radius = innerRadius, radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); for ( i = 0; i < phiSegments + 1; i ++ ) { // concentric circles inside ring for ( o = 0; o < thetaSegments + 1; o ++ ) { // number of segments per circle var vertex = new THREE.Vector3(); var segment = thetaStart + o / thetaSegments * thetaLength; vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); this.vertices.push( vertex ); uvs.push( new THREE.Vector2( ( vertex.x / outerRadius + 1 ) / 2, ( vertex.y / outerRadius + 1 ) / 2 ) ); } radius += radiusStep; } var n = new THREE.Vector3( 0, 0, 1 ); for ( i = 0; i < phiSegments; i ++ ) { // concentric circles inside ring var thetaSegment = i * ( thetaSegments + 1 ); for ( o = 0; o < thetaSegments ; o ++ ) { // number of segments per circle var segment = o + thetaSegment; var v1 = segment; var v2 = segment + thetaSegments + 1; var v3 = segment + thetaSegments + 2; this.faces.push( new THREE.Face3( v1, v2, v3, [ n.clone(), n.clone(), n.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uvs[ v1 ].clone(), uvs[ v2 ].clone(), uvs[ v3 ].clone() ] ); v1 = segment; v2 = segment + thetaSegments + 2; v3 = segment + 1; this.faces.push( new THREE.Face3( v1, v2, v3, [ n.clone(), n.clone(), n.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uvs[ v1 ].clone(), uvs[ v2 ].clone(), uvs[ v3 ].clone() ] ); } } this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.RingGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.RingGeometry.prototype.constructor = THREE.RingGeometry; // File:src/extras/geometries/SphereGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.SphereGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); }; THREE.SphereGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.SphereGeometry.prototype.constructor = THREE.SphereGeometry; // File:src/extras/geometries/SphereBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams * based on THREE.SphereGeometry */ THREE.SphereBufferGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'SphereBufferGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var thetaEnd = thetaStart + thetaLength; var vertexCount = ( ( widthSegments + 1 ) * ( heightSegments + 1 ) ); var positions = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); var index = 0, vertices = [], normal = new THREE.Vector3(); for ( var y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var v = y / heightSegments; for ( var x = 0; x <= widthSegments; x ++ ) { var u = x / widthSegments; var px = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); var py = radius * Math.cos( thetaStart + v * thetaLength ); var pz = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); normal.set( px, py, pz ).normalize(); positions.setXYZ( index, px, py, pz ); normals.setXYZ( index, normal.x, normal.y, normal.z ); uvs.setXY( index, u, 1 - v ); verticesRow.push( index ); index ++; } vertices.push( verticesRow ); } var indices = []; for ( var y = 0; y < heightSegments; y ++ ) { for ( var x = 0; x < widthSegments; x ++ ) { var v1 = vertices[ y ][ x + 1 ]; var v2 = vertices[ y ][ x ]; var v3 = vertices[ y + 1 ][ x ]; var v4 = vertices[ y + 1 ][ x + 1 ]; if ( y !== 0 || thetaStart > 0 ) indices.push( v1, v2, v4 ); if ( y !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( v2, v3, v4 ); } } this.setIndex( new ( positions.count > 65535 ? THREE.Uint32Attribute : THREE.Uint16Attribute )( indices, 1 ) ); this.addAttribute( 'position', positions ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.SphereBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.SphereBufferGeometry.prototype.constructor = THREE.SphereBufferGeometry; // File:src/extras/geometries/TextGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: // how far from text outline is bevel * } */ THREE.TextGeometry = function ( text, parameters ) { parameters = parameters || {}; var font = parameters.font; if ( font instanceof THREE.Font === false ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new THREE.Geometry(); } var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments ); // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; THREE.ExtrudeGeometry.call( this, shapes, parameters ); this.type = 'TextGeometry'; }; THREE.TextGeometry.prototype = Object.create( THREE.ExtrudeGeometry.prototype ); THREE.TextGeometry.prototype.constructor = THREE.TextGeometry; // File:src/extras/geometries/TorusGeometry.js /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888 */ THREE.TorusGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) { THREE.Geometry.call( this ); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 100; tube = tube || 40; radialSegments = radialSegments || 8; tubularSegments = tubularSegments || 6; arc = arc || Math.PI * 2; var center = new THREE.Vector3(), uvs = [], normals = []; for ( var j = 0; j <= radialSegments; j ++ ) { for ( var i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); var vertex = new THREE.Vector3(); vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); this.vertices.push( vertex ); uvs.push( new THREE.Vector2( i / tubularSegments, j / radialSegments ) ); normals.push( vertex.clone().sub( center ).normalize() ); } } for ( var j = 1; j <= radialSegments; j ++ ) { for ( var i = 1; i <= tubularSegments; i ++ ) { var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; var face = new THREE.Face3( a, b, d, [ normals[ a ].clone(), normals[ b ].clone(), normals[ d ].clone() ] ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uvs[ a ].clone(), uvs[ b ].clone(), uvs[ d ].clone() ] ); face = new THREE.Face3( b, c, d, [ normals[ b ].clone(), normals[ c ].clone(), normals[ d ].clone() ] ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uvs[ b ].clone(), uvs[ c ].clone(), uvs[ d ].clone() ] ); } } this.computeFaceNormals(); }; THREE.TorusGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TorusGeometry.prototype.constructor = THREE.TorusGeometry; // File:src/extras/geometries/TorusKnotGeometry.js /** * @author oosmoxiecode * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 */ THREE.TorusKnotGeometry = function ( radius, tube, radialSegments, tubularSegments, p, q, heightScale ) { THREE.Geometry.call( this ); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, p: p, q: q, heightScale: heightScale }; radius = radius || 100; tube = tube || 40; radialSegments = radialSegments || 64; tubularSegments = tubularSegments || 8; p = p || 2; q = q || 3; heightScale = heightScale || 1; var grid = new Array( radialSegments ); var tang = new THREE.Vector3(); var n = new THREE.Vector3(); var bitan = new THREE.Vector3(); for ( var i = 0; i < radialSegments; ++ i ) { grid[ i ] = new Array( tubularSegments ); var u = i / radialSegments * 2 * p * Math.PI; var p1 = getPos( u, q, p, radius, heightScale ); var p2 = getPos( u + 0.01, q, p, radius, heightScale ); tang.subVectors( p2, p1 ); n.addVectors( p2, p1 ); bitan.crossVectors( tang, n ); n.crossVectors( bitan, tang ); bitan.normalize(); n.normalize(); for ( var j = 0; j < tubularSegments; ++ j ) { var v = j / tubularSegments * 2 * Math.PI; var cx = - tube * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. var cy = tube * Math.sin( v ); var pos = new THREE.Vector3(); pos.x = p1.x + cx * n.x + cy * bitan.x; pos.y = p1.y + cx * n.y + cy * bitan.y; pos.z = p1.z + cx * n.z + cy * bitan.z; grid[ i ][ j ] = this.vertices.push( pos ) - 1; } } for ( var i = 0; i < radialSegments; ++ i ) { for ( var j = 0; j < tubularSegments; ++ j ) { var ip = ( i + 1 ) % radialSegments; var jp = ( j + 1 ) % tubularSegments; var a = grid[ i ][ j ]; var b = grid[ ip ][ j ]; var c = grid[ ip ][ jp ]; var d = grid[ i ][ jp ]; var uva = new THREE.Vector2( i / radialSegments, j / tubularSegments ); var uvb = new THREE.Vector2( ( i + 1 ) / radialSegments, j / tubularSegments ); var uvc = new THREE.Vector2( ( i + 1 ) / radialSegments, ( j + 1 ) / tubularSegments ); var uvd = new THREE.Vector2( i / radialSegments, ( j + 1 ) / tubularSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); function getPos( u, in_q, in_p, radius, heightScale ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = in_q / in_p * u; var cs = Math.cos( quOverP ); var tx = radius * ( 2 + cs ) * 0.5 * cu; var ty = radius * ( 2 + cs ) * su * 0.5; var tz = heightScale * radius * Math.sin( quOverP ) * 0.5; return new THREE.Vector3( tx, ty, tz ); } }; THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TorusKnotGeometry.prototype.constructor = THREE.TorusKnotGeometry; // File:src/extras/geometries/TubeGeometry.js /** * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * * Modified from the TorusKnotGeometry by @oosmoxiecode * * Creates a tube which extrudes along a 3d spline * * Uses parallel transport frames as described in * http://www.cs.indiana.edu/pub/techreports/TR425.pdf */ THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed, taper ) { THREE.Geometry.call( this ); this.type = 'TubeGeometry'; this.parameters = { path: path, segments: segments, radius: radius, radialSegments: radialSegments, closed: closed, taper: taper }; segments = segments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; taper = taper || THREE.TubeGeometry.NoTaper; var grid = []; var scope = this, tangent, normal, binormal, numpoints = segments + 1, u, v, r, cx, cy, pos, pos2 = new THREE.Vector3(), i, j, ip, jp, a, b, c, d, uva, uvb, uvc, uvd; var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ), tangents = frames.tangents, normals = frames.normals, binormals = frames.binormals; // proxy internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; function vert( x, y, z ) { return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1; } // construct the grid for ( i = 0; i < numpoints; i ++ ) { grid[ i ] = []; u = i / ( numpoints - 1 ); pos = path.getPointAt( u ); tangent = tangents[ i ]; normal = normals[ i ]; binormal = binormals[ i ]; r = radius * taper( u ); for ( j = 0; j < radialSegments; j ++ ) { v = j / radialSegments * 2 * Math.PI; cx = - r * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. cy = r * Math.sin( v ); pos2.copy( pos ); pos2.x += cx * normal.x + cy * binormal.x; pos2.y += cx * normal.y + cy * binormal.y; pos2.z += cx * normal.z + cy * binormal.z; grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z ); } } // construct the mesh for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < radialSegments; j ++ ) { ip = ( closed ) ? ( i + 1 ) % segments : i + 1; jp = ( j + 1 ) % radialSegments; a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! *** b = grid[ ip ][ j ]; c = grid[ ip ][ jp ]; d = grid[ i ][ jp ]; uva = new THREE.Vector2( i / segments, j / radialSegments ); uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments ); uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments ); uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry; THREE.TubeGeometry.NoTaper = function ( u ) { return 1; }; THREE.TubeGeometry.SinusoidalTaper = function ( u ) { return Math.sin( Math.PI * u ); }; // For computing of Frenet frames, exposing the tangents, normals and binormals the spline THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) { var normal = new THREE.Vector3(), tangents = [], normals = [], binormals = [], vec = new THREE.Vector3(), mat = new THREE.Matrix4(), numpoints = segments + 1, theta, smallest, tx, ty, tz, i, u; // expose internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; // compute the tangent vectors for each segment on the path for ( i = 0; i < numpoints; i ++ ) { u = i / ( numpoints - 1 ); tangents[ i ] = path.getTangentAt( u ); tangents[ i ].normalize(); } initialNormal3(); /* function initialNormal1(lastBinormal) { // fixed start binormal. Has dangers of 0 vectors normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 ); normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize(); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } function initialNormal2() { // This uses the Frenet-Serret formula for deriving binormal var t2 = path.getTangentAt( epsilon ); normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize(); binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] ); normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } */ function initialNormal3() { // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the smallest tangent xyz component normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); smallest = Number.MAX_VALUE; tx = Math.abs( tangents[ 0 ].x ); ty = Math.abs( tangents[ 0 ].y ); tz = Math.abs( tangents[ 0 ].z ); if ( tx <= smallest ) { smallest = tx; normal.set( 1, 0, 0 ); } if ( ty <= smallest ) { smallest = ty; normal.set( 0, 1, 0 ); } if ( tz <= smallest ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); } // compute the slowly-varying normal and binormal vectors for each segment on the path for ( i = 1; i < numpoints; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); theta = Math.acos( THREE.Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed ) { theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints - 1 ] ), - 1, 1 ) ); theta /= ( numpoints - 1 ); if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints - 1 ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i < numpoints; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } }; // File:src/extras/geometries/PolyhedronGeometry.js /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley */ THREE.PolyhedronGeometry = function ( vertices, indices, radius, detail ) { THREE.Geometry.call( this ); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; radius = radius || 1; detail = detail || 0; var that = this; for ( var i = 0, l = vertices.length; i < l; i += 3 ) { prepare( new THREE.Vector3( vertices[ i ], vertices[ i + 1 ], vertices[ i + 2 ] ) ); } var p = this.vertices; var faces = []; for ( var i = 0, j = 0, l = indices.length; i < l; i += 3, j ++ ) { var v1 = p[ indices[ i ] ]; var v2 = p[ indices[ i + 1 ] ]; var v3 = p[ indices[ i + 2 ] ]; faces[ j ] = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, j ); } var centroid = new THREE.Vector3(); for ( var i = 0, l = faces.length; i < l; i ++ ) { subdivide( faces[ i ], detail ); } // Handle case when face straddles the seam for ( var i = 0, l = this.faceVertexUvs[ 0 ].length; i < l; i ++ ) { var uvs = this.faceVertexUvs[ 0 ][ i ]; var x0 = uvs[ 0 ].x; var x1 = uvs[ 1 ].x; var x2 = uvs[ 2 ].x; var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 ); if ( max > 0.9 && min < 0.1 ) { // 0.9 is somewhat arbitrary if ( x0 < 0.2 ) uvs[ 0 ].x += 1; if ( x1 < 0.2 ) uvs[ 1 ].x += 1; if ( x2 < 0.2 ) uvs[ 2 ].x += 1; } } // Apply radius for ( var i = 0, l = this.vertices.length; i < l; i ++ ) { this.vertices[ i ].multiplyScalar( radius ); } // Merge vertices this.mergeVertices(); this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); // Project vector onto sphere's surface function prepare( vector ) { var vertex = vector.normalize().clone(); vertex.index = that.vertices.push( vertex ) - 1; // Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle. var u = azimuth( vector ) / 2 / Math.PI + 0.5; var v = inclination( vector ) / Math.PI + 0.5; vertex.uv = new THREE.Vector2( u, 1 - v ); return vertex; } // Approximate a curved face with recursively sub-divided triangles. function make( v1, v2, v3, materialIndex ) { var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, materialIndex ); that.faces.push( face ); centroid.copy( v1 ).add( v2 ).add( v3 ).divideScalar( 3 ); var azi = azimuth( centroid ); that.faceVertexUvs[ 0 ].push( [ correctUV( v1.uv, v1, azi ), correctUV( v2.uv, v2, azi ), correctUV( v3.uv, v3, azi ) ] ); } // Analytically subdivide a face to the required detail level. function subdivide( face, detail ) { var cols = Math.pow( 2, detail ); var a = prepare( that.vertices[ face.a ] ); var b = prepare( that.vertices[ face.b ] ); var c = prepare( that.vertices[ face.c ] ); var v = []; var materialIndex = face.materialIndex; // Construct all of the vertices for this subdivision. for ( var i = 0 ; i <= cols; i ++ ) { v[ i ] = []; var aj = prepare( a.clone().lerp( c, i / cols ) ); var bj = prepare( b.clone().lerp( c, i / cols ) ); var rows = cols - i; for ( var j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = prepare( aj.clone().lerp( bj, j / rows ) ); } } } // Construct all of the faces. for ( var i = 0; i < cols ; i ++ ) { for ( var j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { var k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { make( v[ i ][ k + 1 ], v[ i + 1 ][ k ], v[ i ][ k ], materialIndex ); } else { make( v[ i ][ k + 1 ], v[ i + 1 ][ k + 1 ], v[ i + 1 ][ k ], materialIndex ); } } } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } // Texture fixing helper. Spheres have some odd behaviours. function correctUV( uv, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) uv = new THREE.Vector2( uv.x - 1, uv.y ); if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) uv = new THREE.Vector2( azimuth / 2 / Math.PI + 0.5, uv.y ); return uv.clone(); } }; THREE.PolyhedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.PolyhedronGeometry.prototype.constructor = THREE.PolyhedronGeometry; // File:src/extras/geometries/DodecahedronGeometry.js /** * @author Abe Pazos / https://hamoid.com */ THREE.DodecahedronGeometry = function ( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t; var vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.DodecahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.DodecahedronGeometry.prototype.constructor = THREE.DodecahedronGeometry; // File:src/extras/geometries/IcosahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.IcosahedronGeometry = function ( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.IcosahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.IcosahedronGeometry.prototype.constructor = THREE.IcosahedronGeometry; // File:src/extras/geometries/OctahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.OctahedronGeometry = function ( radius, detail ) { var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.OctahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.OctahedronGeometry.prototype.constructor = THREE.OctahedronGeometry; // File:src/extras/geometries/TetrahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.TetrahedronGeometry = function ( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.TetrahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.TetrahedronGeometry.prototype.constructor = THREE.TetrahedronGeometry; // File:src/extras/geometries/ParametricGeometry.js /** * @author zz85 / https://github.com/zz85 * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 * * new THREE.ParametricGeometry( parametricFunction, uSegments, ySegements ); * */ THREE.ParametricGeometry = function ( func, slices, stacks ) { THREE.Geometry.call( this ); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; var verts = this.vertices; var faces = this.faces; var uvs = this.faceVertexUvs[ 0 ]; var i, j, p; var u, v; var sliceCount = slices + 1; for ( i = 0; i <= stacks; i ++ ) { v = i / stacks; for ( j = 0; j <= slices; j ++ ) { u = j / slices; p = func( u, v ); verts.push( p ); } } var a, b, c, d; var uva, uvb, uvc, uvd; for ( i = 0; i < stacks; i ++ ) { for ( j = 0; j < slices; j ++ ) { a = i * sliceCount + j; b = i * sliceCount + j + 1; c = ( i + 1 ) * sliceCount + j + 1; d = ( i + 1 ) * sliceCount + j; uva = new THREE.Vector2( j / slices, i / stacks ); uvb = new THREE.Vector2( ( j + 1 ) / slices, i / stacks ); uvc = new THREE.Vector2( ( j + 1 ) / slices, ( i + 1 ) / stacks ); uvd = new THREE.Vector2( j / slices, ( i + 1 ) / stacks ); faces.push( new THREE.Face3( a, b, d ) ); uvs.push( [ uva, uvb, uvd ] ); faces.push( new THREE.Face3( b, c, d ) ); uvs.push( [ uvb.clone(), uvc, uvd.clone() ] ); } } // console.log(this); // magic bullet // var diff = this.mergeVertices(); // console.log('removed ', diff, ' vertices by merging'); this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.ParametricGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ParametricGeometry.prototype.constructor = THREE.ParametricGeometry; // File:src/extras/geometries/WireframeGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WireframeGeometry = function ( geometry ) { THREE.BufferGeometry.call( this ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var faces = geometry.faces; var numEdges = 0; // allocate maximal size var edges = new Uint32Array( 6 * faces.length ); for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var vertex = vertices[ edges [ 2 * i + j ] ]; var index = 6 * i + 3 * j; coords[ index + 0 ] = vertex.x; coords[ index + 1 ] = vertex.y; coords[ index + 2 ] = vertex.z; } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else if ( geometry instanceof THREE.BufferGeometry ) { if ( geometry.index !== null ) { // Indexed BufferGeometry var indices = geometry.index.array; var vertices = geometry.attributes.position; var groups = geometry.groups; var numEdges = 0; if ( groups.length === 0 ) { geometry.addGroup( 0, indices.length ); } // allocate maximal size var edges = new Uint32Array( 2 * indices.length ); for ( var o = 0, ol = groups.length; o < ol; ++ o ) { var group = groups[ o ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = indices[ i + j ]; edge[ 1 ] = indices[ i + ( j + 1 ) % 3 ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var index = 6 * i + 3 * j; var index2 = edges[ 2 * i + j ]; coords[ index + 0 ] = vertices.getX( index2 ); coords[ index + 1 ] = vertices.getY( index2 ); coords[ index + 2 ] = vertices.getZ( index2 ); } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else { // non-indexed BufferGeometry var vertices = geometry.attributes.position.array; var numEdges = vertices.length / 3; var numTris = numEdges / 3; var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numTris; i < l; i ++ ) { for ( var j = 0; j < 3; j ++ ) { var index = 18 * i + 6 * j; var index1 = 9 * i + 3 * j; coords[ index + 0 ] = vertices[ index1 ]; coords[ index + 1 ] = vertices[ index1 + 1 ]; coords[ index + 2 ] = vertices[ index1 + 2 ]; var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 ); coords[ index + 3 ] = vertices[ index2 ]; coords[ index + 4 ] = vertices[ index2 + 1 ]; coords[ index + 5 ] = vertices[ index2 + 2 ]; } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } } }; THREE.WireframeGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.WireframeGeometry.prototype.constructor = THREE.WireframeGeometry; // File:src/extras/helpers/AxisHelper.js /** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */ THREE.AxisHelper = function ( size ) { size = size || 1; var vertices = new Float32Array( [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ] ); var colors = new Float32Array( [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ] ); var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) ); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); THREE.LineSegments.call( this, geometry, material ); }; THREE.AxisHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.AxisHelper.prototype.constructor = THREE.AxisHelper; // File:src/extras/helpers/ArrowHelper.js /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ THREE.ArrowHelper = ( function () { var lineGeometry = new THREE.Geometry(); lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ), new THREE.Vector3( 0, 1, 0 ) ); var coneGeometry = new THREE.CylinderGeometry( 0, 0.5, 1, 5, 1 ); coneGeometry.translate( 0, - 0.5, 0 ); return function ArrowHelper( dir, origin, length, color, headLength, headWidth ) { // dir is assumed to be normalized THREE.Object3D.call( this ); if ( color === undefined ) color = 0xffff00; if ( length === undefined ) length = 1; if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.position.copy( origin ); this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: color } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: color } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } }() ); THREE.ArrowHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.ArrowHelper.prototype.constructor = THREE.ArrowHelper; THREE.ArrowHelper.prototype.setDirection = ( function () { var axis = new THREE.Vector3(); var radians; return function setDirection( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { axis.set( dir.z, 0, - dir.x ).normalize(); radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( axis, radians ); } }; }() ); THREE.ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) { if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 ); this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); }; THREE.ArrowHelper.prototype.setColor = function ( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); }; // File:src/extras/helpers/BoxHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BoxHelper = function ( object ) { var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 ); var geometry = new THREE.BufferGeometry(); geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: 0xffff00 } ) ); if ( object !== undefined ) { this.update( object ); } }; THREE.BoxHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.BoxHelper.prototype.constructor = THREE.BoxHelper; THREE.BoxHelper.prototype.update = ( function () { var box = new THREE.Box3(); return function ( object ) { box.setFromObject( object ); if ( box.isEmpty() ) return; var min = box.min; var max = box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position; var array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); }; } )(); // File:src/extras/helpers/BoundingBoxHelper.js /** * @author WestLangley / http://github.com/WestLangley */ // a helper to show the world-axis-aligned bounding box for an object THREE.BoundingBoxHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0x888888; this.object = object; this.box = new THREE.Box3(); THREE.Mesh.call( this, new THREE.BoxGeometry( 1, 1, 1 ), new THREE.MeshBasicMaterial( { color: color, wireframe: true } ) ); }; THREE.BoundingBoxHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.BoundingBoxHelper.prototype.constructor = THREE.BoundingBoxHelper; THREE.BoundingBoxHelper.prototype.update = function () { this.box.setFromObject( this.object ); this.box.size( this.scale ); this.box.center( this.position ); }; // File:src/extras/helpers/CameraHelper.js /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ THREE.CameraHelper = function ( camera ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } ); var pointMap = {}; // colors var hexFrustum = 0xffaa00; var hexCone = 0xff0000; var hexUp = 0x00aaff; var hexTarget = 0xffffff; var hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( hex ) ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( geometry.vertices.length - 1 ); } THREE.LineSegments.call( this, geometry, material ); this.camera = camera; this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); }; THREE.CameraHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.CameraHelper.prototype.constructor = THREE.CameraHelper; THREE.CameraHelper.prototype.update = function () { var geometry, pointMap; var vector = new THREE.Vector3(); var camera = new THREE.Camera(); function setPoint( point, x, y, z ) { vector.set( x, y, z ).unproject( camera ); var points = pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { geometry.vertices[ points[ i ] ].copy( vector ); } } } return function () { geometry = this.geometry; pointMap = this.pointMap; var w = 1, h = 1; // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy( this.camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, - 1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", - w, - h, - 1 ); setPoint( "n2", w, - h, - 1 ); setPoint( "n3", - w, h, - 1 ); setPoint( "n4", w, h, - 1 ); // far setPoint( "f1", - w, - h, 1 ); setPoint( "f2", w, - h, 1 ); setPoint( "f3", - w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, - 1 ); setPoint( "u2", - w * 0.7, h * 1.1, - 1 ); setPoint( "u3", 0, h * 2, - 1 ); // cross setPoint( "cf1", - w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, - h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", - w, 0, - 1 ); setPoint( "cn2", w, 0, - 1 ); setPoint( "cn3", 0, - h, - 1 ); setPoint( "cn4", 0, h, - 1 ); geometry.verticesNeedUpdate = true; }; }(); // File:src/extras/helpers/DirectionalLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.DirectionalLightHelper = function ( light, size ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; size = size || 1; var geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3( - size, size, 0 ), new THREE.Vector3( size, size, 0 ), new THREE.Vector3( size, - size, 0 ), new THREE.Vector3( - size, - size, 0 ), new THREE.Vector3( - size, size, 0 ) ); var material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.lightPlane = new THREE.Line( geometry, material ); this.add( this.lightPlane ); geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3(), new THREE.Vector3() ); material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine = new THREE.Line( geometry, material ); this.add( this.targetLine ); this.update(); }; THREE.DirectionalLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.DirectionalLightHelper.prototype.constructor = THREE.DirectionalLightHelper; THREE.DirectionalLightHelper.prototype.dispose = function () { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); }; THREE.DirectionalLightHelper.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var v3 = new THREE.Vector3(); return function () { v1.setFromMatrixPosition( this.light.matrixWorld ); v2.setFromMatrixPosition( this.light.target.matrixWorld ); v3.subVectors( v2, v1 ); this.lightPlane.lookAt( v3 ); this.lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine.geometry.vertices[ 1 ].copy( v3 ); this.targetLine.geometry.verticesNeedUpdate = true; this.targetLine.material.color.copy( this.lightPlane.material.color ); }; }(); // File:src/extras/helpers/EdgesHelper.js /** * @author WestLangley / http://github.com/WestLangley * @param object THREE.Mesh whose geometry will be used * @param hex line color * @param thresholdAngle the minimum angle (in degrees), * between the face normals of adjacent faces, * that is required to render an edge. A value of 10 means * an edge is only rendered if the angle is at least 10 degrees. */ THREE.EdgesHelper = function ( object, hex, thresholdAngle ) { var color = ( hex !== undefined ) ? hex : 0xffffff; THREE.LineSegments.call( this, new THREE.EdgesGeometry( object.geometry, thresholdAngle ), new THREE.LineBasicMaterial( { color: color } ) ); this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; }; THREE.EdgesHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.EdgesHelper.prototype.constructor = THREE.EdgesHelper; // File:src/extras/helpers/FaceNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.FaceNormalsHelper = function ( object, size, hex, linewidth ) { // FaceNormalsHelper only supports THREE.Geometry this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xffff00; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { nNormals = objGeometry.faces.length; } else { console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' ); } // var geometry = new THREE.BufferGeometry(); var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); }; THREE.FaceNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.FaceNormalsHelper.prototype.constructor = THREE.FaceNormalsHelper; THREE.FaceNormalsHelper.prototype.update = ( function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var normalMatrix = new THREE.Matrix3(); return function update() { this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; var normal = face.normal; v1.copy( vertices[ face.a ] ) .add( vertices[ face.b ] ) .add( vertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } position.needsUpdate = true; return this; } }() ); // File:src/extras/helpers/GridHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.GridHelper = function ( size, step ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); this.color1 = new THREE.Color( 0x444444 ); this.color2 = new THREE.Color( 0x888888 ); for ( var i = - size; i <= size; i += step ) { geometry.vertices.push( new THREE.Vector3( - size, 0, i ), new THREE.Vector3( size, 0, i ), new THREE.Vector3( i, 0, - size ), new THREE.Vector3( i, 0, size ) ); var color = i === 0 ? this.color1 : this.color2; geometry.colors.push( color, color, color, color ); } THREE.LineSegments.call( this, geometry, material ); }; THREE.GridHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.GridHelper.prototype.constructor = THREE.GridHelper; THREE.GridHelper.prototype.setColors = function( colorCenterLine, colorGrid ) { this.color1.set( colorCenterLine ); this.color2.set( colorGrid ); this.geometry.colorsNeedUpdate = true; }; // File:src/extras/helpers/HemisphereLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.HemisphereLightHelper = function ( light, sphereSize ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.colors = [ new THREE.Color(), new THREE.Color() ]; var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); geometry.rotateX( - Math.PI / 2 ); for ( var i = 0, il = 8; i < il; i ++ ) { geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ]; } var material = new THREE.MeshBasicMaterial( { vertexColors: THREE.FaceColors, wireframe: true } ); this.lightSphere = new THREE.Mesh( geometry, material ); this.add( this.lightSphere ); this.update(); }; THREE.HemisphereLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.HemisphereLightHelper.prototype.constructor = THREE.HemisphereLightHelper; THREE.HemisphereLightHelper.prototype.dispose = function () { this.lightSphere.geometry.dispose(); this.lightSphere.material.dispose(); }; THREE.HemisphereLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); return function () { this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity ); this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity ); this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() ); this.lightSphere.geometry.colorsNeedUpdate = true; } }(); // File:src/extras/helpers/PointLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.PointLightHelper = function ( light, sphereSize ) { this.light = light; this.light.updateMatrixWorld(); var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); THREE.Mesh.call( this, geometry, material ); this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; /* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); var d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ }; THREE.PointLightHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.PointLightHelper.prototype.constructor = THREE.PointLightHelper; THREE.PointLightHelper.prototype.dispose = function () { this.geometry.dispose(); this.material.dispose(); }; THREE.PointLightHelper.prototype.update = function () { this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); /* var d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ }; // File:src/extras/helpers/SkeletonHelper.js /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com */ THREE.SkeletonHelper = function ( object ) { this.bones = this.getBoneList( object ); var geometry = new THREE.Geometry(); for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { geometry.vertices.push( new THREE.Vector3() ); geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( 0, 0, 1 ) ); geometry.colors.push( new THREE.Color( 0, 1, 0 ) ); } } geometry.dynamic = true; var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors, depthTest: false, depthWrite: false, transparent: true } ); THREE.LineSegments.call( this, geometry, material ); this.root = object; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; this.update(); }; THREE.SkeletonHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.SkeletonHelper.prototype.constructor = THREE.SkeletonHelper; THREE.SkeletonHelper.prototype.getBoneList = function( object ) { var boneList = []; if ( object instanceof THREE.Bone ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) ); } return boneList; }; THREE.SkeletonHelper.prototype.update = function () { var geometry = this.geometry; var matrixWorldInv = new THREE.Matrix4().getInverse( this.root.matrixWorld ); var boneMatrix = new THREE.Matrix4(); var j = 0; for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); geometry.vertices[ j ].setFromMatrixPosition( boneMatrix ); boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix ); j += 2; } } geometry.verticesNeedUpdate = true; geometry.computeBoundingSphere(); }; // File:src/extras/helpers/SpotLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.SpotLightHelper = function ( light ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; var geometry = new THREE.CylinderGeometry( 0, 1, 1, 8, 1, true ); geometry.translate( 0, - 0.5, 0 ); geometry.rotateX( - Math.PI / 2 ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); this.cone = new THREE.Mesh( geometry, material ); this.add( this.cone ); this.update(); }; THREE.SpotLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.SpotLightHelper.prototype.constructor = THREE.SpotLightHelper; THREE.SpotLightHelper.prototype.dispose = function () { this.cone.geometry.dispose(); this.cone.material.dispose(); }; THREE.SpotLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); var vector2 = new THREE.Vector3(); return function () { var coneLength = this.light.distance ? this.light.distance : 10000; var coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); vector.setFromMatrixPosition( this.light.matrixWorld ); vector2.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( vector2.sub( vector ) ); this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); }; }(); // File:src/extras/helpers/VertexNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.VertexNormalsHelper = function ( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xff0000; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { nNormals = objGeometry.faces.length * 3; } else if ( objGeometry instanceof THREE.BufferGeometry ) { nNormals = objGeometry.attributes.normal.count } // var geometry = new THREE.BufferGeometry(); var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); }; THREE.VertexNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.VertexNormalsHelper.prototype.constructor = THREE.VertexNormalsHelper; THREE.VertexNormalsHelper.prototype.update = ( function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var normalMatrix = new THREE.Matrix3(); return function update() { var keys = [ 'a', 'b', 'c' ]; this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { var vertex = vertices[ face[ keys[ j ] ] ]; var normal = face.vertexNormals[ j ]; v1.copy( vertex ).applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } } else if ( objGeometry instanceof THREE.BufferGeometry ) { var objPos = objGeometry.attributes.position; var objNorm = objGeometry.attributes.normal; var idx = 0; // for simplicity, ignore index and drawcalls, and render every normal for ( var j = 0, jl = objPos.count; j < jl; j ++ ) { v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld ); v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) ); v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } position.needsUpdate = true; return this; } }() ); // File:src/extras/helpers/WireframeHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WireframeHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0xffffff; THREE.LineSegments.call( this, new THREE.WireframeGeometry( object.geometry ), new THREE.LineBasicMaterial( { color: color } ) ); this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; }; THREE.WireframeHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.WireframeHelper.prototype.constructor = THREE.WireframeHelper; // File:src/extras/objects/ImmediateRenderObject.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.ImmediateRenderObject = function ( material ) { THREE.Object3D.call( this ); this.material = material; this.render = function ( renderCallback ) {}; }; THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype ); THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject; // File:src/extras/objects/MorphBlendMesh.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.MorphBlendMesh = function( geometry, material ) { THREE.Mesh.call( this, geometry, material ); this.animationsMap = {}; this.animationsList = []; // prepare default animation // (all frames played together in 1 second) var numFrames = this.geometry.morphTargets.length; var name = "__default"; var startFrame = 0; var endFrame = numFrames - 1; var fps = numFrames / 1; this.createAnimation( name, startFrame, endFrame, fps ); this.setAnimationWeight( name, 1 ); }; THREE.MorphBlendMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.MorphBlendMesh.prototype.constructor = THREE.MorphBlendMesh; THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) { var animation = { start: start, end: end, length: end - start + 1, fps: fps, duration: ( end - start ) / fps, lastFrame: 0, currentFrame: 0, active: false, time: 0, direction: 1, weight: 1, directionBackwards: false, mirroredLoop: false }; this.animationsMap[ name ] = animation; this.animationsList.push( animation ); }; THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) { var pattern = /([a-z]+)_?(\d+)/i; var firstAnimation, frameRanges = {}; var geometry = this.geometry; for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) { var morph = geometry.morphTargets[ i ]; var chunks = morph.name.match( pattern ); if ( chunks && chunks.length > 1 ) { var name = chunks[ 1 ]; if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity }; var range = frameRanges[ name ]; if ( i < range.start ) range.start = i; if ( i > range.end ) range.end = i; if ( ! firstAnimation ) firstAnimation = name; } } for ( var name in frameRanges ) { var range = frameRanges[ name ]; this.createAnimation( name, range.start, range.end, fps ); } this.firstAnimation = firstAnimation; }; THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = 1; animation.directionBackwards = false; } }; THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = - 1; animation.directionBackwards = true; } }; THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.fps = fps; animation.duration = ( animation.end - animation.start ) / animation.fps; } }; THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.duration = duration; animation.fps = ( animation.end - animation.start ) / animation.duration; } }; THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.weight = weight; } }; THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = time; } }; THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) { var time = 0; var animation = this.animationsMap[ name ]; if ( animation ) { time = animation.time; } return time; }; THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) { var duration = - 1; var animation = this.animationsMap[ name ]; if ( animation ) { duration = animation.duration; } return duration; }; THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = 0; animation.active = true; } else { console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" ); } }; THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.active = false; } }; THREE.MorphBlendMesh.prototype.update = function ( delta ) { for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) { var animation = this.animationsList[ i ]; if ( ! animation.active ) continue; var frameTime = animation.duration / animation.length; animation.time += animation.direction * delta; if ( animation.mirroredLoop ) { if ( animation.time > animation.duration || animation.time < 0 ) { animation.direction *= - 1; if ( animation.time > animation.duration ) { animation.time = animation.duration; animation.directionBackwards = true; } if ( animation.time < 0 ) { animation.time = 0; animation.directionBackwards = false; } } } else { animation.time = animation.time % animation.duration; if ( animation.time < 0 ) animation.time += animation.duration; } var keyframe = animation.start + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 ); var weight = animation.weight; if ( keyframe !== animation.currentFrame ) { this.morphTargetInfluences[ animation.lastFrame ] = 0; this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight; this.morphTargetInfluences[ keyframe ] = 0; animation.lastFrame = animation.currentFrame; animation.currentFrame = keyframe; } var mix = ( animation.time % frameTime ) / frameTime; if ( animation.directionBackwards ) mix = 1 - mix; if ( animation.currentFrame !== animation.lastFrame ) { this.morphTargetInfluences[ animation.currentFrame ] = mix * weight; this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight; } else { this.morphTargetInfluences[ animation.currentFrame ] = weight; } } }; // File:src/qml/QmlImageElement.js var __texImageToImageMap = {}; function Image () { this.crossOrigin = undefined; this._src = undefined; this._onSuccessCallback = undefined; this._onProgressCallback = undefined; this._onErrorCallback = undefined; this._width = 0; this._height = 0; this._texImage = TextureImageFactory.newTexImage(); __texImageToImageMap[""+this._texImage.id()] = this; // Setup mapping between the native QObject image and this image var _this = this; this._texImage.imageLoaded.connect(function() { _this.notifySuccess(_this) }); this._texImage.imageLoadingFailed.connect(function() { _this.notifyError(_this) }); this.__defineGetter__("src", function(){ return _this._src; }); this.__defineSetter__("src", function(url){ if (url && url !== '' && url !== _this._src) { _this._texImage.src = ""+url; _this._texImage.name = ""+url; } _this._src = url; }); this.__defineGetter__("width", function(){ return (_this._texImage !== undefined)?_this._texImage.width:0; }); this.__defineSetter__("width", function(url){ console.log("TODO: Implement image resize"); }); this.__defineGetter__("height", function(){ return (_this._texImage !== undefined)?_this._texImage.height:0; }); this.__defineSetter__("height", function(url){ console.log("TODO: Implement image resize"); }); }; Image.prototype = { constructor: Image, addEventListener: function( eventName, callback, flag ) { if (eventName === 'load') { this._onSuccessCallback = callback; } else if (eventName === 'progress') { this._onProgressCallback = callback; } else if (eventName === 'error') { this._onErrorCallback = callback; } }, notifySuccess: function(image) { if (this._onSuccessCallback !== undefined) { this._onSuccessCallback(new Event()); } }, notifyProgress: function(image) { if (this._onProgressCallback !== undefined) { this._onProgressCallback(new Event()); } }, notifyError: function(image) { if (this._onErrorCallback !== undefined) { this._onErrorCallback(new Event()); } }, texImage: function() { return this._texImage; }, data: function() { console.error("Image.data not implemented!"); } }; // TODO: Support for resizing: //where.image.width = width; //where.image.height = height; //where.image.getContext( '2d' ).drawImage( this, 0, 0, width, height ); // File:src/qml/QmlHtmlElements.js // HTML document and Element wrappers/stubs function document() { } document.createElement = function(type) { if (type === "img") { return new Image(); } else if (type === 'div') { return new HtmlDiv(); } return new HtmlElement(); } document.createTextNode = function(value) { return new HtmlElement(); } function Event() { } Event.prototype = { constructor: Event } function HtmlStyle() { this.position = undefined; this.right = undefined; this.top = undefined; this.fontSize = undefined; this.textAlign = undefined; this.background = undefined; this.color = undefined; this.width = undefined; this.width = undefined; this.padding = undefined; this.zIndex = undefined; } function HtmlElement() { this.style = new HtmlStyle(); } HtmlElement.prototype = { constructor: HtmlElement, appendChild: function(child) { } } function HtmlDiv() { this.innerHTML = ""; this.style = new HtmlStyle(); } // File:src/qml/Canvas3DRenderer.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ * @author pasikeranen / pasi.keranen@theqtcompany.com */ THREE.Canvas3DRenderer = function ( parameters ) { console.log( 'THREE.Canvas3DRenderer', THREE.REVISION ); parameters = parameters || {}; if (parameters.canvas === undefined) { console.error("THREE.Canvas3DRenderer: parameter.canvas must be set when using THREE.Canvas3DRenderer"); return; } var _canvas = parameters.canvas, _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false; var lights = []; var opaqueObjects = []; var opaqueObjectsLastIndex = - 1; var transparentObjects = []; var transparentObjectsLastIndex = - 1; var morphInfluences = new Float32Array( 8 ); var sprites = []; var lensFlares = []; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.gammaInput = false; this.gammaOutput = false; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // flags this.autoScaleCubemaps = true; // internal properties var _this = this, // internal state cache _currentProgram = null, _currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = - 1, _currentGeometryProgram = '', _currentCamera = null, _currentScissor = new THREE.Vector4(), _currentScissorTest = null, _currentViewport = new THREE.Vector4(), // _usedTextureUnits = 0, // _clearColor = new THREE.Color( 0x000000 ), _clearAlpha = parameters.clearAlpha !== undefined ? parameters.clearAlpha : 0, _width = _canvas.width, _height = _canvas.height, _pixelRatio = 1, _scissor = new THREE.Vector4( 0, 0, _width, _height ), _scissorTest = false, _viewport = new THREE.Vector4( 0, 0, _width, _height ), // frustum _frustum = new THREE.Frustum(), // camera matrices cache _projScreenMatrix = new THREE.Matrix4(), _vector3 = new THREE.Vector3(), // light arrays cache _lights = { hash: '', ambient: [ 0, 0, 0 ], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], shadows: [], shadowsPointLight: 0 }, // info _infoMemory = { geometries: 0, textures: 0 }, _infoRender = { calls: 0, vertices: 0, faces: 0, points: 0 }; this.info = { render: _infoRender, memory: _infoMemory, programs: null }; _pixelRatio = parameters.devicePixelRatio !== undefined ? parameters.devicePixelRatio : self.pixelRatio !== undefined ? self.pixelRatio : 1; // initialize var _gl; try { var attributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer }; _gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes ); if ( _gl === null ) { if ( _canvas.getContext( 'webgl' ) !== null ) { throw 'Error creating WebGL context with your selected attributes.'; } else { throw 'Error creating WebGL context.'; } } // _canvas.addEventListener( 'webglcontextlost', function ( event ) { // // event.preventDefault(); // // resetGLState(); // setDefaultGLState(); // // _webglObjects = {}; // // }, false); // } catch ( error ) { console.error( 'THREE.Canvas3DRenderer: ' + error ); } var extensions = new THREE.WebGLExtensions( _gl ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_float_linear' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'ANGLE_instanced_arrays' ); if ( extensions.get( 'OES_element_index_uint' ) ) { THREE.BufferGeometry.MaxIndex = 4294967296; } var capabilities = new THREE.WebGLCapabilities( _gl, extensions, parameters ); var state = new THREE.WebGLState( _gl, extensions, paramThreeToGL ); var properties = new THREE.WebGLProperties(); var objects = new THREE.WebGLObjects( _gl, properties, this.info ); var programCache = new THREE.WebGLPrograms( this, capabilities ); var lightCache = new THREE.WebGLLights(); this.info.programs = programCache.programs; var bufferRenderer = new THREE.WebGLBufferRenderer( _gl, extensions, _infoRender ); var indexedBufferRenderer = new THREE.WebGLIndexedBufferRenderer( _gl, extensions, _infoRender ); // function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } function glClearColor( r, g, b, a ) { if ( _premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } state.clearColor( r, g, b, a ); } function setDefaultGLState() { state.init(); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) ); glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); } function resetGLState() { _currentProgram = null; _currentCamera = null; _currentGeometryProgram = ''; _currentMaterialId = - 1; state.reset(); } setDefaultGLState(); this.context = _gl; this.capabilities = capabilities; this.extensions = extensions; this.properties = properties; this.state = state; // shadow map var shadowMap = new THREE.WebGLShadowMap( this, _lights, objects ); this.shadowMap = shadowMap; // Plugins var spritePlugin = new THREE.SpritePlugin( this, sprites ); var lensFlarePlugin = new THREE.LensFlarePlugin( this, lensFlares ); // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { //extensions.get( 'WEBGL_lose_context' ).loseContext(); }; this.getMaxAnisotropy = ( function () { var value; return function getMaxAnisotropy() { if ( value !== undefined ) return value; var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension !== null ) { value = _gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { value = 0; } return value; }; } )(); this.getPrecision = function () { return capabilities.precision; }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _viewport.z, _viewport.w, false ); }; this.getSize = function () { return { width: _width, height: _height }; }; this.setSize = function ( width, height, updateStyle ) { _width = width; _height = height; _canvas.pixelSize = Qt.size(width * _pixelRatio, height * _pixelRatio) // if ( updateStyle !== false ) { // Update styles is ignored in Canvas3D // _canvas.style.width = width + 'px'; // _canvas.style.height = height + 'px'; // } this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { state.viewport( _viewport.set( x, y, width, height ) ); }; this.setScissor = function ( x, y, width, height ) { state.scissor( _scissor.set( x, y, width, height ) ); }; this.setScissorTest = function ( enable ) { _scissorTest = enable; state.setScissorTest( enable ); }; // Clearing this.getClearColor = function () { return _clearColor; }; this.setClearColor = function ( color, alpha ) { _clearColor.set( color ); _clearAlpha = alpha !== undefined ? alpha : 1; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.getClearAlpha = function () { return _clearAlpha; }; this.setClearAlpha = function ( alpha ) { _clearAlpha = alpha; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Reset this.resetGLState = resetGLState; this.dispose = function() { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); }; // Events function onContextLost( event ) { event.preventDefault(); resetGLState(); setDefaultGLState(); properties.clear(); } function onTextureDispose( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); _infoMemory.textures --; } function onRenderTargetDispose( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); _infoMemory.textures --; } function onMaterialDispose( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateTexture( texture ) { var textureProperties = properties.get( texture ); if ( texture.image && textureProperties.__image__webglTextureCube ) { // cube texture _gl.deleteTexture( textureProperties.__image__webglTextureCube ); } else { // 2D texture if ( textureProperties.__webglInit === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); } // remove all webgl properties properties.delete( texture ); } function deallocateRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); if ( ! renderTarget || textureProperties.__webglTexture === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } properties.delete( renderTarget.texture ); properties.delete( renderTarget ); } function deallocateMaterial( material ) { releaseMaterialProgramReference( material ); properties.delete( material ); } function releaseMaterialProgramReference( material ) { var programInfo = properties.get( material ).program; material.program = undefined; if ( programInfo !== undefined ) { programCache.releaseProgram( programInfo ); } } // Buffer rendering this.renderBufferImmediate = function ( object, program, material ) { state.initAttributes(); var buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer(); var attributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal ); if ( material.type !== 'MeshPhongMaterial' && material.type !== 'MeshStandardMaterial' && material.shading === THREE.FlatShading ) { for ( var i = 0, l = object.count * 3; i < l; i += 9 ) { var array = object.normalArray; var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3; var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3; var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3; array[ i + 0 ] = nx; array[ i + 1 ] = ny; array[ i + 2 ] = nz; array[ i + 3 ] = nx; array[ i + 4 ] = ny; array[ i + 5 ] = nz; array[ i + 6 ] = nx; array[ i + 7 ] = ny; array[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.normal ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.uv ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== THREE.NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.color ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } state.disableUnusedAttributes(); _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) { setMaterial( material ); var program = setProgram( camera, fog, material, object ); var updateBuffers = false; var geometryProgram = geometry.id + '_' + program.id + '_' + material.wireframe; if ( geometryProgram !== _currentGeometryProgram ) { _currentGeometryProgram = geometryProgram; updateBuffers = true; } // morph targets var morphTargetInfluences = object.morphTargetInfluences; if ( morphTargetInfluences !== undefined ) { var activeInfluences = []; for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) { var influence = morphTargetInfluences[ i ]; activeInfluences.push( [ influence, i ] ); } activeInfluences.sort( absNumericalSort ); if ( activeInfluences.length > 8 ) { activeInfluences.length = 8; } var morphAttributes = geometry.morphAttributes; for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) { var influence = activeInfluences[ i ]; morphInfluences[ i ] = influence[ 0 ]; if ( influence[ 0 ] !== 0 ) { var index = influence[ 1 ]; if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] ); if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] ); } else { if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i ); if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i ); } } var uniforms = program.getUniforms(); if ( uniforms.morphTargetInfluences !== null ) { _gl.uniform1fv( uniforms.morphTargetInfluences, morphInfluences ); } updateBuffers = true; } // var index = geometry.index; var position = geometry.attributes.position; if ( material.wireframe === true ) { index = objects.getWireframeAttribute( geometry ); } var renderer; if ( index !== null ) { renderer = indexedBufferRenderer; renderer.setIndex( index ); } else { renderer = bufferRenderer; } if ( updateBuffers ) { setupVertexAttributes( material, program, geometry ); if ( index !== null ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, objects.getAttributeBuffer( index ) ); } } // var dataStart = 0; var dataCount = Infinity; if ( index !== null ) { dataCount = index.count; } else if ( position !== undefined ) { dataCount = position.count; } var rangeStart = geometry.drawRange.start; var rangeCount = geometry.drawRange.count; var groupStart = group !== null ? group.start : 0; var groupCount = group !== null ? group.count : Infinity; var drawStart = Math.max( dataStart, rangeStart, groupStart ); var drawEnd = Math.min( dataStart + dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); // if ( object instanceof THREE.Mesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { switch ( object.drawMode ) { case THREE.TrianglesDrawMode: renderer.setMode( _gl.TRIANGLES ); break; case THREE.TriangleStripDrawMode: renderer.setMode( _gl.TRIANGLE_STRIP ); break; case THREE.TriangleFanDrawMode: renderer.setMode( _gl.TRIANGLE_FAN ); break; } } } else if ( object instanceof THREE.Line ) { var lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object instanceof THREE.LineSegments ) { renderer.setMode( _gl.LINES ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object instanceof THREE.Points ) { renderer.setMode( _gl.POINTS ); } if ( geometry instanceof THREE.InstancedBufferGeometry && geometry.maxInstancedCount > 0 ) { renderer.renderInstances( geometry, drawStart, drawCount ); } else { renderer.render( drawStart, drawCount ); } }; function setupVertexAttributes( material, program, geometry, startIndex ) { var extension; if ( geometry instanceof THREE.InstancedBufferGeometry ) { extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.Canvas3DRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } if ( startIndex === undefined ) startIndex = 0; state.initAttributes(); var geometryAttributes = geometry.attributes; var programAttributes = program.getAttributes(); var materialDefaultAttributeValues = material.defaultAttributeValues; for ( var name in programAttributes ) { var programAttribute = programAttributes[ name ]; if ( programAttribute >= 0 ) { var geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute !== undefined ) { var size = geometryAttribute.itemSize; var buffer = objects.getAttributeBuffer( geometryAttribute ); if ( geometryAttribute instanceof THREE.InterleavedBufferAttribute ) { var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset; if ( data instanceof THREE.InstancedInterleavedBuffer ) { state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = data.meshPerAttribute * data.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, _gl.FLOAT, false, stride * data.array.BYTES_PER_ELEMENT, ( startIndex * stride + offset ) * data.array.BYTES_PER_ELEMENT ); } else { if ( geometryAttribute instanceof THREE.InstancedBufferAttribute ) { state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, _gl.FLOAT, false, 0, startIndex * size * 4 ); // 4 bytes per Float32 } } else if ( materialDefaultAttributeValues !== undefined ) { var value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: _gl.vertexAttrib2fv( programAttribute, value ); break; case 3: _gl.vertexAttrib3fv( programAttribute, value ); break; case 4: _gl.vertexAttrib4fv( programAttribute, value ); break; default: _gl.vertexAttrib1fv( programAttribute, value ); } } } } } state.disableUnusedAttributes(); } // Sorting function absNumericalSort( a, b ) { return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] ); } function painterSortStable ( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable ( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { if ( camera instanceof THREE.Camera === false ) { console.error( 'THREE.Canvas3DRenderer.render: camera is not an instance of THREE.Camera.' ); return; } var fog = scene.fog; // reset caching for this frame _currentGeometryProgram = ''; _currentMaterialId = - 1; _currentCamera = null; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); lights.length = 0; opaqueObjectsLastIndex = - 1; transparentObjectsLastIndex = - 1; sprites.length = 0; lensFlares.length = 0; projectObject( scene, camera ); opaqueObjects.length = opaqueObjectsLastIndex + 1; transparentObjects.length = transparentObjectsLastIndex + 1; if ( _this.sortObjects === true ) { opaqueObjects.sort( painterSortStable ); transparentObjects.sort( reversePainterSortStable ); } setupLights( lights, camera ); // shadowMap.render( scene, camera ); // _infoRender.calls = 0; _infoRender.vertices = 0; _infoRender.faces = 0; _infoRender.points = 0; if ( renderTarget === undefined ) { renderTarget = null; } this.setRenderTarget( renderTarget ); if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } // if ( scene.overrideMaterial ) { var overrideMaterial = scene.overrideMaterial; renderObjects( opaqueObjects, camera, fog, overrideMaterial ); renderObjects( transparentObjects, camera, fog, overrideMaterial ); } else { // opaque pass (front-to-back order) state.setBlending( THREE.NoBlending ); renderObjects( opaqueObjects, camera, fog ); // transparent pass (back-to-front order) renderObjects( transparentObjects, camera, fog ); } // custom render plugins (post pass) spritePlugin.render( scene, camera ); lensFlarePlugin.render( scene, camera, _currentViewport ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget ) { var texture = renderTarget.texture; if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) && texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) { updateRenderTargetMipmap( renderTarget ); } } // Ensure depth buffer writing is enabled so it can be cleared on next render state.setDepthTest( true ); state.setDepthWrite( true ); state.setColorWrite( true ); // _gl.finish(); }; function pushRenderItem( object, geometry, material, z, group ) { var array, index; // allocate the next position in the appropriate array if ( material.transparent ) { array = transparentObjects; index = ++ transparentObjectsLastIndex; } else { array = opaqueObjects; index = ++ opaqueObjectsLastIndex; } // recycle existing render item or grow the array var renderItem = array[ index ]; if ( renderItem !== undefined ) { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.z = _vector3.z; renderItem.group = group; } else { renderItem = { id: object.id, object: object, geometry: geometry, material: material, z: _vector3.z, group: group }; // assert( index === array.length ); array.push( renderItem ); } } function projectObject( object, camera ) { if ( object.visible === false ) return; if ( object.layers.test( camera.layers ) ) { if ( object instanceof THREE.Light ) { lights.push( object ); } else if ( object instanceof THREE.Sprite ) { if ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) { sprites.push( object ); } } else if ( object instanceof THREE.LensFlare ) { lensFlares.push( object ); } else if ( object instanceof THREE.ImmediateRenderObject ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } pushRenderItem( object, null, object.material, _vector3.z, null ); } else if ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) { if ( object instanceof THREE.SkinnedMesh ) { object.skeleton.update(); } if ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) { var material = object.material; if ( material.visible === true ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } var geometry = objects.update( object ); if ( material instanceof THREE.MultiMaterial ) { var groups = geometry.groups; var materials = material.materials; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { pushRenderItem( object, geometry, groupMaterial, _vector3.z, group ); } } } else { pushRenderItem( object, geometry, material, _vector3.z, null ); } } } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera ); } } function renderObjects( renderList, camera, fog, overrideMaterial ) { for ( var i = 0, l = renderList.length; i < l; i ++ ) { var renderItem = renderList[ i ]; var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial; var group = renderItem.group; object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); if ( object instanceof THREE.ImmediateRenderObject ) { setMaterial( material ); var program = setProgram( camera, fog, material, object ); _currentGeometryProgram = ''; object.render( function ( object ) { _this.renderBufferImmediate( object, program, material ); } ); } else { _this.renderBufferDirect( camera, fog, geometry, material, object, group ); } } } function initMaterial( material, fog, object ) { var materialProperties = properties.get( material ); var parameters = programCache.getParameters( material, _lights, fog, object ); var code = programCache.getProgramCode( material, parameters ); var program = materialProperties.program; var programChange = true; if ( program === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); } else if ( program.code !== code ) { // changed glsl or parameters releaseMaterialProgramReference( material ); } else if ( parameters.shaderID !== undefined ) { // same glsl and uniform list return; } else { // only rebuild uniform list programChange = false; } if ( programChange ) { if ( parameters.shaderID ) { var shader = THREE.ShaderLib[ parameters.shaderID ]; materialProperties.__webglShader = { name: material.type, uniforms: THREE.UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader }; } else { materialProperties.__webglShader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader }; } material.__webglShader = materialProperties.__webglShader; program = programCache.acquireProgram( material, parameters, code ); materialProperties.program = program; material.program = program; } var attributes = program.getAttributes(); if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; for ( var i = 0; i < _this.maxMorphTargets; i ++ ) { if ( attributes[ 'morphTarget' + i ] >= 0 ) { material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; for ( var i = 0; i < _this.maxMorphNormals; i ++ ) { if ( attributes[ 'morphNormal' + i ] >= 0 ) { material.numSupportedMorphNormals ++; } } } materialProperties.uniformsList = []; var uniforms = materialProperties.__webglShader.uniforms, uniformLocations = materialProperties.program.getUniforms(); for ( var u in uniforms ) { var location = uniformLocations[ u ]; if ( location ) { materialProperties.uniformsList.push( [ materialProperties.__webglShader.uniforms[ u ], location ] ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshStandardMaterial || material.lights ) { // store the light setup it was created for materialProperties.lightsHash = _lights.hash; // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = _lights.ambient; uniforms.directionalLights.value = _lights.directional; uniforms.spotLights.value = _lights.spot; uniforms.pointLights.value = _lights.point; uniforms.hemisphereLights.value = _lights.hemi; uniforms.directionalShadowMap.value = _lights.directionalShadowMap; uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix; uniforms.spotShadowMap.value = _lights.spotShadowMap; uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix; uniforms.pointShadowMap.value = _lights.pointShadowMap; uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix; } // detect dynamic uniforms materialProperties.hasDynamicUniforms = false; for ( var j = 0, jl = materialProperties.uniformsList.length; j < jl; j ++ ) { var uniform = materialProperties.uniformsList[ j ][ 0 ]; if ( uniform.dynamic === true ) { materialProperties.hasDynamicUniforms = true; break; } } } function setMaterial( material ) { setMaterialFaces( material ); if ( material.transparent === true ) { state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha ); } else { state.setBlending( THREE.NoBlending ); } state.setDepthFunc( material.depthFunc ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); state.setColorWrite( material.colorWrite ); state.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } function setMaterialFaces( material ) { if (material.side !== THREE.DoubleSide) state.enable( _gl.CULL_FACE ) else state.disable( _gl.CULL_FACE ); state.setFlipSided( material.side === THREE.BackSide ); } function setProgram( camera, fog, material, object ) { _usedTextureUnits = 0; var materialProperties = properties.get( material ); if ( materialProperties.program === undefined ) { material.needsUpdate = true; } if ( materialProperties.lightsHash !== undefined && materialProperties.lightsHash !== _lights.hash ) { material.needsUpdate = true; } if ( material.needsUpdate ) { initMaterial( material, fog, object ); material.needsUpdate = false; } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.__webglShader.uniforms; if ( program.id !== _currentProgram ) { _gl.useProgram( program.program ); _currentProgram = program.id; refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || camera !== _currentCamera ) { _gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); if ( capabilities.logarithmicDepthBuffer ) { _gl.uniform1f( p_uniforms.logDepthBufFC, 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( camera !== _currentCamera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material instanceof THREE.ShaderMaterial || material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshStandardMaterial || material.envMap ) { if ( p_uniforms.cameraPosition !== undefined ) { _vector3.setFromMatrixPosition( camera.matrixWorld ); _gl.uniform3f( p_uniforms.cameraPosition, _vector3.x, _vector3.y, _vector3.z ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshStandardMaterial || material instanceof THREE.ShaderMaterial || material.skinning ) { if ( p_uniforms.viewMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera.matrixWorldInverse.elements ); } } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if ( material.skinning ) { if ( object.bindMatrix && p_uniforms.bindMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrix, false, object.bindMatrix.elements ); } if ( object.bindMatrixInverse && p_uniforms.bindMatrixInverse !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrixInverse, false, object.bindMatrixInverse.elements ); } if ( capabilities.floatVertexTextures && object.skeleton && object.skeleton.useVertexTexture ) { if ( p_uniforms.boneTexture !== undefined ) { var textureUnit = getTextureUnit(); _gl.uniform1i( p_uniforms.boneTexture, textureUnit ); _this.setTexture( object.skeleton.boneTexture, textureUnit ); } if ( p_uniforms.boneTextureWidth !== undefined ) { _gl.uniform1i( p_uniforms.boneTextureWidth, object.skeleton.boneTextureWidth ); } if ( p_uniforms.boneTextureHeight !== undefined ) { _gl.uniform1i( p_uniforms.boneTextureHeight, object.skeleton.boneTextureHeight ); } } else if ( object.skeleton && object.skeleton.boneMatrices ) { if ( p_uniforms.boneGlobalMatrices !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.skeleton.boneMatrices ); } } } if ( refreshMaterial ) { if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshStandardMaterial || material.lights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshStandardMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material instanceof THREE.LineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material instanceof THREE.LineDashedMaterial ) { refreshUniformsLine( m_uniforms, material ); refreshUniformsDash( m_uniforms, material ); } else if ( material instanceof THREE.PointsMaterial ) { refreshUniformsPoints( m_uniforms, material ); } else if ( material instanceof THREE.MeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material instanceof THREE.MeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material instanceof THREE.MeshStandardMaterial ) { refreshUniformsStandard( m_uniforms, material ); } else if ( material instanceof THREE.MeshDepthMaterial ) { m_uniforms.mNear.value = camera.near; m_uniforms.mFar.value = camera.far; m_uniforms.opacity.value = material.opacity; } else if ( material instanceof THREE.MeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } // load common uniforms loadUniformsGeneric( materialProperties.uniformsList ); } loadUniformsMatrices( p_uniforms, object ); if ( p_uniforms.modelMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.modelMatrix, false, object.matrixWorld.elements ); } if ( materialProperties.hasDynamicUniforms === true ) { updateDynamicUniforms( materialProperties.uniformsList, object, camera ); } return program; } function updateDynamicUniforms ( uniforms, object, camera ) { var dynamicUniforms = []; for ( var j = 0, jl = uniforms.length; j < jl; j ++ ) { var uniform = uniforms[ j ][ 0 ]; var onUpdateCallback = uniform.onUpdateCallback; if ( onUpdateCallback !== undefined ) { onUpdateCallback.bind( uniform )( object, camera ); dynamicUniforms.push( uniforms[ j ] ); } } loadUniformsGeneric( dynamicUniforms ); } // Uniforms (refresh uniforms objects) function refreshUniformsCommon ( uniforms, material ) { uniforms.opacity.value = material.opacity; uniforms.diffuse.value = material.color; if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap instanceof THREE.WebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset = uvScaleMap.offset; var repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } uniforms.envMap.value = material.envMap; uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : - 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; } function refreshUniformsLine ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; } function refreshUniformsDash ( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * _pixelRatio; uniforms.scale.value = _height / 2.0; // TODO: Cache this. uniforms.map.value = material.map; if ( material.map !== null ) { var offset = material.map.offset; var repeat = material.map.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } function refreshUniformsFog ( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog instanceof THREE.Fog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog instanceof THREE.FogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshUniformsLambert ( uniforms, material ) { if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong ( uniforms, material ) { uniforms.specular.value = material.specular; uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard ( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate ( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } // Uniforms (load to GPU) function loadUniformsMatrices ( uniforms, object ) { _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object.modelViewMatrix.elements ); if ( uniforms.normalMatrix ) { _gl.uniformMatrix3fv( uniforms.normalMatrix, false, object.normalMatrix.elements ); } } function getTextureUnit() { var textureUnit = _usedTextureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'THREE.Canvas3DRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } _usedTextureUnits += 1; return textureUnit; } function loadUniformsGeneric ( uniforms ) { var texture, textureUnit; for ( var j = 0, jl = uniforms.length; j < jl; j ++ ) { var uniform = uniforms[ j ][ 0 ]; // needsUpdate property is not added to all uniforms. if ( uniform.needsUpdate === false ) continue; var type = uniform.type; var value = uniform.value; var location = uniforms[ j ][ 1 ]; switch ( type ) { case '1i': _gl.uniform1i( location, value ); break; case '1f': _gl.uniform1f( location, value ); break; case '2f': _gl.uniform2f( location, value[ 0 ], value[ 1 ] ); break; case '3f': _gl.uniform3f( location, value[ 0 ], value[ 1 ], value[ 2 ] ); break; case '4f': _gl.uniform4f( location, value[ 0 ], value[ 1 ], value[ 2 ], value[ 3 ] ); break; case '1iv': _gl.uniform1iv( location, value ); break; case '3iv': _gl.uniform3iv( location, value ); break; case '1fv': _gl.uniform1fv( location, value ); break; case '2fv': _gl.uniform2fv( location, value ); break; case '3fv': _gl.uniform3fv( location, value ); break; case '4fv': _gl.uniform4fv( location, value ); break; case 'Matrix2fv': _gl.uniformMatrix2fv( location, false, value ); break; case 'Matrix3fv': _gl.uniformMatrix3fv( location, false, value ); break; case 'Matrix4fv': _gl.uniformMatrix4fv( location, false, value ); break; // case 'i': // single integer _gl.uniform1i( location, value ); break; case 'f': // single float _gl.uniform1f( location, value ); break; case 'v2': // single THREE.Vector2 _gl.uniform2f( location, value.x, value.y ); break; case 'v3': // single THREE.Vector3 _gl.uniform3f( location, value.x, value.y, value.z ); break; case 'v4': // single THREE.Vector4 _gl.uniform4f( location, value.x, value.y, value.z, value.w ); break; case 'c': // single THREE.Color _gl.uniform3f( location, value.r, value.g, value.b ); break; /* case 's': // TODO: Optimize this. for( var propertyName in uniform.properties ) { var property = uniform.properties[ propertyName ]; var locationProperty = location[ propertyName ]; var valueProperty = value[ propertyName ]; switch( property.type ) { case 'i': _gl.uniform1i( locationProperty, valueProperty ); break; case 'f': _gl.uniform1f( locationProperty, valueProperty ); break; case 'v2': _gl.uniform2f( locationProperty, valueProperty.x, valueProperty.y ); break; case 'v3': _gl.uniform3f( locationProperty, valueProperty.x, valueProperty.y, valueProperty.z ); break; case 'v4': _gl.uniform4f( locationProperty, valueProperty.x, valueProperty.y, valueProperty.z, valueProperty.w ); break; case 'c': _gl.uniform3f( locationProperty, valueProperty.r, valueProperty.g, valueProperty.b ); break; }; } break; */ case 'sa': // TODO: Optimize this. for ( var i = 0; i < value.length; i ++ ) { for ( var propertyName in uniform.properties ) { var property = uniform.properties[ propertyName ]; var locationProperty = location[ i ][ propertyName ]; var valueProperty = value[ i ][ propertyName ]; switch ( property.type ) { case 'i': _gl.uniform1i( locationProperty, valueProperty ); break; case 'f': _gl.uniform1f( locationProperty, valueProperty ); break; case 'v2': _gl.uniform2f( locationProperty, valueProperty.x, valueProperty.y ); break; case 'v3': _gl.uniform3f( locationProperty, valueProperty.x, valueProperty.y, valueProperty.z ); break; case 'v4': _gl.uniform4f( locationProperty, valueProperty.x, valueProperty.y, valueProperty.z, valueProperty.w ); break; case 'c': _gl.uniform3f( locationProperty, valueProperty.r, valueProperty.g, valueProperty.b ); break; case 'm4': _gl.uniformMatrix4fv( locationProperty, false, valueProperty.elements ); break; } } } break; case 'iv1': // flat array of integers (JS or typed array) _gl.uniform1iv( location, value ); break; case 'iv': // flat array of integers with 3 x N size (JS or typed array) _gl.uniform3iv( location, value ); break; case 'fv1': // flat array of floats (JS or typed array) _gl.uniform1fv( location, value ); break; case 'fv': // flat array of floats with 3 x N size (JS or typed array) _gl.uniform3fv( location, value ); break; case 'v2v': // array of THREE.Vector2 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 2 * value.length ); } for ( var i = 0, i2 = 0, il = value.length; i < il; i ++, i2 += 2 ) { uniform._array[ i2 + 0 ] = value[ i ].x; uniform._array[ i2 + 1 ] = value[ i ].y; } _gl.uniform2fv( location, uniform._array ); break; case 'v3v': // array of THREE.Vector3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 3 * value.length ); } for ( var i = 0, i3 = 0, il = value.length; i < il; i ++, i3 += 3 ) { uniform._array[ i3 + 0 ] = value[ i ].x; uniform._array[ i3 + 1 ] = value[ i ].y; uniform._array[ i3 + 2 ] = value[ i ].z; } _gl.uniform3fv( location, uniform._array ); break; case 'v4v': // array of THREE.Vector4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 4 * value.length ); } for ( var i = 0, i4 = 0, il = value.length; i < il; i ++, i4 += 4 ) { uniform._array[ i4 + 0 ] = value[ i ].x; uniform._array[ i4 + 1 ] = value[ i ].y; uniform._array[ i4 + 2 ] = value[ i ].z; uniform._array[ i4 + 3 ] = value[ i ].w; } _gl.uniform4fv( location, uniform._array ); break; case 'm2': // single THREE.Matrix2 _gl.uniformMatrix2fv( location, false, value.elements ); break; case 'm3': // single THREE.Matrix3 _gl.uniformMatrix3fv( location, false, value.elements ); break; case 'm3v': // array of THREE.Matrix3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 9 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 9 ); } _gl.uniformMatrix3fv( location, false, uniform._array ); break; case 'm4': // single THREE.Matrix4 _gl.uniformMatrix4fv( location, false, value.elements ); break; case 'm4v': // array of THREE.Matrix4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 16 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 16 ); } _gl.uniformMatrix4fv( location, false, uniform._array ); break; case 't': // single THREE.Texture (2d or cube) texture = value; textureUnit = getTextureUnit(); _gl.uniform1i( location, textureUnit ); if ( ! texture ) continue; if ( texture instanceof THREE.CubeTexture || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ setCubeTexture( texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture.texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTarget ) { _this.setTexture( texture.texture, textureUnit ); } else { _this.setTexture( texture, textureUnit ); } break; case 'tv': // array of THREE.Texture (2d or cube) if ( uniform._array === undefined ) { uniform._array = []; } for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { uniform._array[ i ] = getTextureUnit(); } _gl.uniform1iv( location, uniform._array ); for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { texture = uniform.value[ i ]; textureUnit = uniform._array[ i ]; if ( ! texture ) continue; if ( texture instanceof THREE.CubeTexture || ( texture.image instanceof Array && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ setCubeTexture( texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTarget ) { _this.setTexture( texture.texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture.texture, textureUnit ); } else { _this.setTexture( texture, textureUnit ); } } break; default: console.warn( 'THREE.Canvas3DRenderer: Unknown uniform type: ' + type ); } } } function setupLights ( lights, camera ) { var l, ll, light, r = 0, g = 0, b = 0, color, intensity, distance, viewMatrix = camera.matrixWorldInverse, directionalLength = 0, pointLength = 0, spotLength = 0, hemiLength = 0, shadowsLength = 0; _lights.shadowsPointLight = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; color = light.color; intensity = light.intensity; distance = light.distance; if ( light instanceof THREE.AmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light instanceof THREE.DirectionalLight ) { var uniforms = lightCache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.directionalShadowMap[ directionalLength ] = light.shadow.map; _lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; _lights.directional[ directionalLength ++ ] = uniforms; } else if ( light instanceof THREE.SpotLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.angleCos = Math.cos( light.angle ); uniforms.exponent = light.exponent; uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.spotShadowMap[ spotLength ] = light.shadow.map; _lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix; _lights.spot[ spotLength ++ ] = uniforms; } else if ( light instanceof THREE.PointLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.pointShadowMap[ pointLength ] = light.shadow.map; if ( _lights.pointShadowMatrix[ pointLength ] === undefined ) { _lights.pointShadowMatrix[ pointLength ] = new THREE.Matrix4(); } // for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position _vector3.setFromMatrixPosition( light.matrixWorld ).negate(); _lights.pointShadowMatrix[ pointLength ].identity().setPosition( _vector3 ); _lights.point[ pointLength ++ ] = uniforms; } else if ( light instanceof THREE.HemisphereLight ) { var uniforms = lightCache.get( light ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize(); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); _lights.hemi[ hemiLength ++ ] = uniforms; } } _lights.ambient[ 0 ] = r; _lights.ambient[ 1 ] = g; _lights.ambient[ 2 ] = b; _lights.directional.length = directionalLength; _lights.spot.length = spotLength; _lights.point.length = pointLength; _lights.hemi.length = hemiLength; _lights.shadows.length = shadowsLength; _lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + hemiLength + ',' + shadowsLength; } // GL state setting this.setFaceCulling = function ( cullFace, frontFaceDirection ) { if ( cullFace === THREE.CullFaceNone ) { state.disable( _gl.CULL_FACE ); } else { if ( frontFaceDirection === THREE.FrontFaceDirectionCW ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } if ( cullFace === THREE.CullFaceBack ) { _gl.cullFace( _gl.BACK ); } else if ( cullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.FRONT_AND_BACK ); } state.enable( _gl.CULL_FACE ); } }; // Textures function setTextureParameters ( textureType, texture, isPowerOfTwoImage ) { var extension; if ( isPowerOfTwoImage ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) { console.warn( 'THREE.Canvas3DRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) { console.warn( 'THREE.Canvas3DRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture ); } } extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension ) { if ( texture.type === THREE.FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return; if ( texture.type === THREE.HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return; if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, _this.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function uploadTexture( textureProperties, texture, slot ) { if ( texture instanceof THREE.QtQuickItemTexture ) { var canvasTextureProvider = _gl.getExtension("QTCANVAS3D_texture_provider"); textureProperties.__webglInit = true; if ( canvasTextureProvider !== null ) textureProperties.__webglTexture = canvasTextureProvider.createTextureFromSource(texture.quickItem); else textureProperties.__webglTexture = 0; _gl.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); var isImagePowerOfTwo = THREE.Math.isPowerOfTwo( texture.quickItem.width ) && THREE.Math.isPowerOfTwo( texture.quickItem.height ); if (isImagePowerOfTwo) { _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); } else if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) { THREE.warn( 'THREE.Canvas3DRenderer: Quick item width and/or height are not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); } } else { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); var image = clampToMaxSize( texture.image, capabilities.maxTextureSize ); if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) { // No way to make the image power of two, so just warn about it console.warn( 'THREE.Canvas3DRenderer: image is not power of two (' + image.width + 'x' + image.height + ').', image ); } var isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage ); var mipmap, mipmaps = texture.mipmaps; if ( texture instanceof THREE.DataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } else if ( texture instanceof THREE.CompressedTexture ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.Canvas3DRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image.texImage() ); } } if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } this.setTexture = function ( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { var image = texture.image; if ( image === undefined ) { console.warn( 'THREE.Canvas3DRenderer: Texture marked for update but image is undefined', texture ); return; } if ( !(texture instanceof THREE.QtQuickItemTexture) && image.complete === false ) { console.warn( 'THREE.Canvas3DRenderer: Texture marked for update but image is incomplete', texture ); return; } uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); }; function clampToMaxSize ( image, maxSize ) { if ( image.width > maxSize || image.height > maxSize ) { // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var scale = maxSize / Math.max( image.width, image.height ); var canvasWidth = Math.floor( image.width * scale ); var canvasHeight = Math.floor( image.height * scale ); var canvas = image.resize( canvasWidth, canvasHeight ); console.warn( 'THREE.Canvas3DRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function isPowerOfTwo( image ) { return THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height ); } function textureNeedsPowerOfTwo( texture ) { if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) return true; if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) return true; return false; } function setCubeTexture ( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.image.length === 6 ) { if ( texture.version > 0 && textureProperties.__version !== texture.version ) { if ( ! textureProperties.__image__webglTextureCube ) { texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__image__webglTextureCube = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var isCompressed = texture instanceof THREE.CompressedTexture; var isDataTexture = texture.image[ 0 ] instanceof THREE.DataTexture; var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( _this.autoScaleCubemaps && ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } var image = cubeImage[ 0 ], isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage ); for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed ) { if ( isDataTexture ) { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ].texImage() ); } } else { var mipmap, mipmaps = cubeImage[ i ].mipmaps; for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) { mipmap = mipmaps[ j ]; if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.Canvas3DRenderer: Attempt to load unsupported compressed texture format in .setCubeTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } if ( texture.generateMipmaps && isPowerOfTwoImage ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } else { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); } } } function setCubeTextureDynamic ( texture, slot ) { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture ); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture ( framebuffer, renderTarget, attachment, textureTarget ) { var glFormat = paramThreeToGL( renderTarget.texture.format ); var glType = paramThreeToGL( renderTarget.texture.type ); state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage ( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { // FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( var i = 0; i < 6; i ++ ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget ); } } else { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget ); } _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); var isTargetPowerOfTwo = THREE.Math.isPowerOfTwo( renderTarget.width ) && THREE.Math.isPowerOfTwo( renderTarget.height ); // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( var i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); } if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D ); if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.bindTexture( _gl.TEXTURE_2D, null ); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } this.setRenderTarget = function ( renderTarget ) { _currentRenderTarget = renderTarget; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { setupRenderTarget( renderTarget ); } var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); var framebuffer; if ( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); if ( isCube ) { framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTargetProperties.__webglFramebuffer; } _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; _currentViewport.copy( renderTarget.viewport ); } else { framebuffer = null; _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ); _currentScissorTest = _scissorTest; _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ); } if ( _currentFramebuffer !== framebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _currentFramebuffer = framebuffer; } state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); state.viewport( _currentViewport ); if ( isCube ) { var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, 0 ); } }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) { if ( renderTarget instanceof THREE.WebGLRenderTarget === false ) { console.error( 'THREE.Canvas3DRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } var framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( framebuffer ) { var restore = false; if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); restore = true; } try { var texture = renderTarget.texture; if ( texture.format !== THREE.RGBAFormat && paramThreeToGL( texture.format ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { console.error( 'THREE.Canvas3DRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( texture.type !== THREE.UnsignedByteType && paramThreeToGL( texture.type ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && ! ( texture.type === THREE.FloatType && extensions.get( 'WEBGL_color_buffer_float' ) ) && ! ( texture.type === THREE.HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) { console.error( 'THREE.Canvas3DRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) { _gl.readPixels( x, y, width, height, paramThreeToGL( texture.format ), paramThreeToGL( texture.type ), buffer ); } else { console.error( 'THREE.Canvas3DRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { if ( restore ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer ); } } } }; function updateRenderTargetMipmap( renderTarget ) { var target = renderTarget instanceof THREE.WebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; var texture = properties.get( renderTarget.texture ).__webglTexture; state.bindTexture( target, texture ); _gl.generateMipmap( target ); state.bindTexture( target, null ); } // Fallback filters for non-power-of-2 textures function filterFallback ( f ) { if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; } // Map three.js constants to WebGL constants function paramThreeToGL ( p ) { var extension; if ( p === THREE.RepeatWrapping ) return _gl.REPEAT; if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === THREE.NearestFilter ) return _gl.NEAREST; if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === THREE.LinearFilter ) return _gl.LINEAR; if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === THREE.ByteType ) return _gl.BYTE; if ( p === THREE.ShortType ) return _gl.SHORT; if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === THREE.IntType ) return _gl.INT; if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === THREE.FloatType ) return _gl.FLOAT; extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { if ( p === THREE.HalfFloatType ) return extension.HALF_FLOAT_OES; } if ( p === THREE.AlphaFormat ) return _gl.ALPHA; if ( p === THREE.RGBFormat ) return _gl.RGB; if ( p === THREE.RGBAFormat ) return _gl.RGBA; if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE; if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === THREE.AddEquation ) return _gl.FUNC_ADD; if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === THREE.ZeroFactor ) return _gl.ZERO; if ( p === THREE.OneFactor ) return _gl.ONE; if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR; if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR; if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === THREE.RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === THREE.RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === THREE.RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === THREE.RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === THREE.RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === THREE.RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { if ( p === THREE.RGB_ETC1_Format ) return extension.COMPRESSED_RGB_ETC1_WEBGL; } extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { if ( p === THREE.MinEquation ) return extension.MIN_EXT; if ( p === THREE.MaxEquation ) return extension.MAX_EXT; } return 0; } }; // File:src/qml/QtQuickItemTexture.js /** * @author miheikki / miikka.heikkinen@theqtcompany.com */ THREE.QtQuickItemTexture = function ( quickItem, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.generateMipmaps = false; this.version++; this.quickItem = quickItem; }; THREE.QtQuickItemTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.QtQuickItemTexture.prototype.constructor = THREE.QtQuickItemTexture; // File:src/gltf/glTF-parser.js // Copyright (c) 2013 Fabrice Robinet // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /* The Abstract Loader has two modes: #1: [static] load all the JSON at once [as of now] #2: [stream] stream and parse JSON progressively [not yet supported] Whatever is the mechanism used to parse the JSON (#1 or #2), The loader starts by resolving the paths to binaries and referenced json files (by replace the value of the path property with an absolute path if it was relative). In case #1: it is guaranteed to call the concrete loader implementation methods in a order that solves the dependencies between the entries. only the nodes requires an extra pass to set up the hirerarchy. In case #2: the concrete implementation will have to solve the dependencies. no order is guaranteed. When case #1 is used the followed dependency order is: scenes -> nodes -> meshes -> materials -> techniques -> shaders -> buffers -> cameras -> lights The readers starts with the leafs, i.e: shaders, techniques, materials, meshes, buffers, cameras, lights, nodes, scenes For each called handle method called the client should return true if the next handle can be call right after returning, or false if a callback on client side will notify the loader that the next handle method can be called. */ /* Commented out for Qt var global = window; (function (root, factory) { if (typeof exports === 'object') { // Node. Does not work with strict CommonJS, but // only CommonJS-like enviroments that support module.exports, // like Node. factory(module.exports); } else if (typeof define === 'function' && define.amd) { // AMD. Register as an anonymous module. define([], function () { return factory(root); }); } else { // Browser globals factory(root); } }(this, function (root) { "use strict"; */ //Commented out for Qt // Variable renamed for Qt var GLTFParserCategoriesDepsOrder = ["buffers", "bufferViews", "images", "videos", "samplers", "textures", "shaders", "programs", "techniques", "materials", "accessors", "meshes", "cameras", "lights", "skins", "nodes", "scenes", "animations"]; // Moved below for Qt THREE.glTFParser = Object.create(Object.prototype, { // Added to THREE namespace for Qt _rootDescription: { value: null, writable: true }, rootDescription: { set: function(value) { this._rootDescription = value; }, get: function() { return this._rootDescription; } }, baseURL: { value: null, writable: true }, //detect absolute path following the same protocol than window.location _isAbsolutePath: { value: function(path) { return true; // Changed for Qt //var isAbsolutePathRegExp = new RegExp("^"+window.location.protocol, "i"); //return path.match(isAbsolutePathRegExp) ? true : false; } }, resolvePathIfNeeded: { value: function(path) { if (this._isAbsolutePath(path)) { return path; } /* Commented out for Qt var isDataUriRegex = /^data:/; if (isDataUriRegex.test(path)) { return path; } */ //Commented out for Qt return this.baseURL + path; } }, _resolvePathsForCategories: { value: function(categories) { categories.forEach( function(category) { var descriptions = this.json[category]; if (descriptions) { var descriptionKeys = Object.keys(descriptions); descriptionKeys.forEach( function(descriptionKey) { var description = descriptions[descriptionKey]; description.uri = this.resolvePathIfNeeded(description.uri); }, this); } }, this); } }, _json: { value: null, writable: true }, json: { enumerable: true, get: function() { return this._json; }, set: function(value) { if (this._json !== value) { this._json = value; this._resolvePathsForCategories(["buffers", "shaders", "images", "videos"]); } } }, _path: { value: null, writable: true }, getEntryDescription: { value: function (entryID, entryType) { var entries = null; var category = entryType; entries = this.rootDescription[category]; if (!entries) { console.log("ERROR:CANNOT find expected category named:"+category); return null; } return entries ? entries[entryID] : null; } }, _stepToNextCategory: { value: function() { this._state.categoryIndex = this.getNextCategoryIndex(this._state.categoryIndex + 1); if (this._state.categoryIndex !== -1) { this._state.categoryState.index = 0; return true; } return false; } }, _stepToNextDescription: { enumerable: false, value: function() { var categoryState = this._state.categoryState; var keys = categoryState.keys; if (!keys) { console.log("INCONSISTENCY ERROR"); return false; } categoryState.index++; categoryState.keys = null; if (categoryState.index >= keys.length) { return this._stepToNextCategory(); } return false; } }, hasCategory: { value: function(category) { return this.rootDescription[category] ? true : false; } }, _handleState: { value: function() { var methodForType = { "buffers" : this.handleBuffer, "bufferViews" : this.handleBufferView, "shaders" : this.handleShader, "programs" : this.handleProgram, "techniques" : this.handleTechnique, "materials" : this.handleMaterial, "meshes" : this.handleMesh, "cameras" : this.handleCamera, "lights" : this.handleLight, "nodes" : this.handleNode, "scenes" : this.handleScene, "images" : this.handleImage, "animations" : this.handleAnimation, "accessors" : this.handleAccessor, "skins" : this.handleSkin, "samplers" : this.handleSampler, "textures" : this.handleTexture, "videos" : this.handleVideo }; var success = true; while (this._state.categoryIndex !== -1) { var category = GLTFParserCategoriesDepsOrder[this._state.categoryIndex]; var categoryState = this._state.categoryState; var keys = categoryState.keys; if (!keys) { categoryState.keys = keys = Object.keys(this.rootDescription[category]); if (keys) { if (keys.length == 0) { this._stepToNextDescription(); continue; } } } var type = category; var entryID = keys[categoryState.index]; var description = this.getEntryDescription(entryID, type); if (!description) { if (this.handleError) { this.handleError("INCONSISTENCY ERROR: no description found for entry "+entryID); success = false; break; } } else { if (methodForType[type]) { if (methodForType[type].call(this, entryID, description, this._state.userInfo) === false) { success = false; break; } } this._stepToNextDescription(); } } if (this.handleLoadCompleted) { this.handleLoadCompleted(success); } } }, _loadJSONIfNeeded: { enumerable: true, value: function(callback) { var self = this; //FIXME: handle error if (!this._json) { var jsonPath = this._path; var i = jsonPath.lastIndexOf("/"); this.baseURL = (i !== 0) ? jsonPath.substring(0, i + 1) : ''; var jsonfile = new XMLHttpRequest(); jsonfile.open("GET", jsonPath, true); jsonfile.onreadystatechange = function() { if (jsonfile.readyState == 4) { if (jsonfile.status == 200) { self.json = JSON.parse(jsonfile.responseText); if (callback) { callback(self.json); } } } }; jsonfile.send(null); } else { if (callback) { callback(this.json); } } } }, /* load JSON and assign it as description to the reader */ _buildLoader: { value: function(callback) { var self = this; function JSONReady(json) { self.rootDescription = json; if (callback) callback(this); } this._loadJSONIfNeeded(JSONReady); } }, _state: { value: null, writable: true }, _getEntryType: { value: function(entryID) { var rootKeys = GLTFParserCategoriesDepsOrder; for (var i = 0 ; i < rootKeys.length ; i++) { var rootValues = this.rootDescription[rootKeys[i]]; if (rootValues) { return rootKeys[i]; } } return null; } }, getNextCategoryIndex: { value: function(currentIndex) { for (var i = currentIndex ; i < GLTFParserCategoriesDepsOrder.length ; i++) { if (this.hasCategory(GLTFParserCategoriesDepsOrder[i])) { return i; } } return -1; } }, load: { enumerable: true, value: function(userInfo, options) { var self = this; this._buildLoader(function loaderReady(reader) { var startCategory = self.getNextCategoryIndex.call(self,0); if (startCategory !== -1) { self._state = { "userInfo" : userInfo, "options" : options, "categoryIndex" : startCategory, "categoryState" : { "index" : "0" } }; self._handleState(); } }); } }, initWithPath: { value: function(path) { this._path = path; this._json = null; return this; } }, //this is meant to be global and common for all instances _knownURLs: { writable: true, value: {} }, //to be invoked by subclass, so that ids can be ensured to not overlap loaderContext: { value: function() { if (typeof this._knownURLs[this._path] === "undefined") { this._knownURLs[this._path] = Object.keys(this._knownURLs).length; } return "__" + this._knownURLs[this._path]; } }, initWithJSON: { value: function(json, baseURL) { this.json = json; this.baseURL = baseURL; if (!baseURL) { console.log("WARNING: no base URL passed to Reader:initWithJSON"); } return this; } } }); /* Commented out for Qt if(root) { root.glTFParser = glTFParser; } return glTFParser; })); */ // Commented out for Qt // File:src/gltf/glTFAnimation.js /** * @author Tony Parisi / http://www.tonyparisi.com/ */ THREE.glTFAnimator = ( function () { var animators = []; return { add : function(animator) { animators.push(animator); }, remove: function(animator) { var i = animators.indexOf(animator); if ( i !== -1 ) { animators.splice( i, 1 ); } }, update : function() { for (var i = 0; i < animators.length; i ++) // Changed for Qt { animators[i].update(); } }, }; })(); // Construction/initialization THREE.glTFAnimation = function(interps) { this.running = false; this.loop = false; this.duration = 0; this.startTime = 0; this.interps = []; if (interps) { this.createInterpolators(interps); } } THREE.glTFAnimation.prototype.createInterpolators = function(interps) { var i, len = interps.length; for (i = 0; i < len; i++) { var interp = new THREE.glTFInterpolator(interps[i]); this.interps.push(interp); this.duration = Math.max(this.duration, interp.duration); } } // Start/stop THREE.glTFAnimation.prototype.play = function() { if (this.running) return; this.startTime = Date.now(); this.running = true; THREE.glTFAnimator.add(this); } THREE.glTFAnimation.prototype.stop = function() { this.running = false; THREE.glTFAnimator.remove(this); } // Update - drive key frame evaluation THREE.glTFAnimation.prototype.update = function() { if (!this.running) return; var now = Date.now(); var deltat = (now - this.startTime) / 1000; var t = deltat % this.duration; var nCycles = Math.floor(deltat / this.duration); if (nCycles >= 1 && !this.loop) { this.running = false; var i, len = this.interps.length; for (i = 0; i < len; i++) { this.interps[i].interp(this.duration); } this.stop(); return; } else { var i, len = this.interps.length; for (i = 0; i < len; i++) { this.interps[i].interp(t); } } } //Interpolator class //Construction/initialization THREE.glTFInterpolator = function(param) { this.keys = param.keys; this.values = param.values; this.count = param.count; this.type = param.type; this.path = param.path; this.isRot = false; var node = param.target; node.updateMatrix(); node.matrixAutoUpdate = true; this.targetNode = node; switch (param.path) { case "translation" : this.target = node.position; this.originalValue = node.position.clone(); break; case "rotation" : this.target = node.quaternion; this.originalValue = node.quaternion.clone(); this.isRot = true; break; case "scale" : this.target = node.scale; this.originalValue = node.scale.clone(); break; } this.duration = this.keys[this.count - 1]; this.vec1 = new THREE.Vector3; this.vec2 = new THREE.Vector3; this.vec3 = new THREE.Vector3; this.quat1 = new THREE.Quaternion; this.quat2 = new THREE.Quaternion; this.quat3 = new THREE.Quaternion; } //Interpolation and tweening methods THREE.glTFInterpolator.prototype.interp = function(t) { var i, j; if (t == this.keys[0]) { if (this.isRot) { this.quat3.set(this.values[0], this.values[1], this.values[2], this.values[3]); } else { this.vec3.set(this.values[0], this.values[1], this.values[2]); } } else if (t < this.keys[0]) { if (this.isRot) { this.quat1.set(this.originalValue.x, this.originalValue.y, this.originalValue.z, this.originalValue.w); this.quat2.set(this.values[0], this.values[1], this.values[2], this.values[3]); THREE.Quaternion.slerp(this.quat1, this.quat2, this.quat3, t / this.keys[0]); } else { this.vec3.set(this.originalValue.x, this.originalValue.y, this.originalValue.z); this.vec2.set(this.values[0], this.values[1], this.values[2]); this.vec3.lerp(this.vec2, t / this.keys[0]); } } else if (t >= this.keys[this.count - 1]) { if (this.isRot) { this.quat3.set(this.values[(this.count - 1) * 4], this.values[(this.count - 1) * 4 + 1], this.values[(this.count - 1) * 4 + 2], this.values[(this.count - 1) * 4 + 3]); } else { this.vec3.set(this.values[(this.count - 1) * 3], this.values[(this.count - 1) * 3 + 1], this.values[(this.count - 1) * 3 + 2]); } } else { for (i = 0; i < this.count - 1; i++) { var key1 = this.keys[i]; var key2 = this.keys[i + 1]; if (t >= key1 && t <= key2) { if (this.isRot) { this.quat1.set(this.values[i * 4], this.values[i * 4 + 1], this.values[i * 4 + 2], this.values[i * 4 + 3]); this.quat2.set(this.values[(i + 1) * 4], this.values[(i + 1) * 4 + 1], this.values[(i + 1) * 4 + 2], this.values[(i + 1) * 4 + 3]); THREE.Quaternion.slerp(this.quat1, this.quat2, this.quat3, (t - key1) / (key2 - key1)); } else { this.vec3.set(this.values[i * 3], this.values[i * 3 + 1], this.values[i * 3 + 2]); this.vec2.set(this.values[(i + 1) * 3], this.values[(i + 1) * 3 + 1], this.values[(i + 1) * 3 + 2]); this.vec3.lerp(this.vec2, (t - key1) / (key2 - key1)); } } } } if (this.target) { this.copyValue(this.target); } } THREE.glTFInterpolator.prototype.copyValue = function(target) { if (this.isRot) { target.copy(this.quat3); } else { target.copy(this.vec3); } } // File:src/gltf/glTFLoader.js /** * @author Tony Parisi / http://www.tonyparisi.com/ */ THREE.glTFLoader = function (showStatus) { this.useBufferGeometry = (THREE.glTFLoader.useBufferGeometry !== undefined ) ? THREE.glTFLoader.useBufferGeometry : true; this.useShaders = (THREE.glTFLoader.useShaders !== undefined ) ? THREE.glTFLoader.useShaders : true; this.meshesRequested = 0; this.meshesLoaded = 0; this.pendingMeshes = []; this.animationsRequested = 0; this.animationsLoaded = 0; this.animations = []; this.shadersRequested = 0; this.shadersLoaded = 0; this.shaders = {}; THREE.glTFShaders.removeAll(); THREE.Loader.call( this, showStatus ); // Removed for Qt //this.idx = {}; //for (n in WebGLRenderingContext) { z = WebGLRenderingContext[n]; this.idx[z] = n; } } THREE.glTFLoader.prototype = new THREE.Loader(); THREE.glTFLoader.prototype.constructor = THREE.glTFLoader; THREE.glTFLoader.prototype.load = function( url, callback ) { var theLoader = this; // Utilities function RgbArraytoHex(colorArray) { if(!colorArray) return 0xFFFFFFFF; var r = Math.floor(colorArray[0] * 255), g = Math.floor(colorArray[1] * 255), b = Math.floor(colorArray[2] * 255), a = 255; var color = (a << 24) + (r << 16) + (g << 8) + b; return color; } function convertAxisAngleToQuaternion(rotations, count) { var q = new THREE.Quaternion; var axis = new THREE.Vector3; var euler = new THREE.Vector3; var i; for (i = 0; i < count; i++) { axis.set(rotations[i * 4], rotations[i * 4 + 1], rotations[i * 4 + 2]).normalize(); var angle = rotations[i * 4 + 3]; q.setFromAxisAngle(axis, angle); rotations[i * 4] = q.x; rotations[i * 4 + 1] = q.y; rotations[i * 4 + 2] = q.z; rotations[i * 4 + 3] = q.w; } } function componentsPerElementForGLType(type) { var nElements; // Added for Qt switch(type) { case "SCALAR" : nElements = 1; break; case "VEC2" : nElements = 2; break; case "VEC3" : nElements = 3; break; case "VEC4" : nElements = 4; break; case "MAT2" : nElements = 4; break; case "MAT3" : nElements = 9; break; case "MAT4" : nElements = 16; break; default : console.log("Invalid type in componentsPerElementForGLType:", type); //debugger; // Changed for Qt, debugger keyword is not supported break; } return nElements; } function replaceShaderDefinitions(shader, material) { /* var s = shader; s = s.replace(/a_position/g, 'position'); s = s.replace(/a_normal/g, 'normal'); s = s.replace(/a_texcoord0/g, 'uv'); s = s.replace(/u_normalMatrix/g, 'normalMatrix'); s = s.replace(/u_modelViewMatrix/g, 'modelViewMatrix'); s = s.replace(/u_projectionMatrix/g, 'projectionMatrix'); return s;*/ var program = material.params.program; var shaderParams = material.params.parameters; var params = {}; for (var uniform in program.uniforms) { var pname = program.uniforms[uniform]; var shaderParam = shaderParams[pname]; var semantic = shaderParam.semantic; if (semantic) { params[uniform] = shaderParam; } } for (var attribute in program.attributes) { var pname = program.attributes[attribute]; var shaderParam = shaderParams[pname]; var semantic = shaderParam.semantic; if (semantic) { params[attribute] = shaderParam; } } var s = shader; var r = ""; for (var pname in params) { var param = params[pname]; var semantic = param.semantic; // THIS: for (n in WebGLRenderingContext) { z = WebGLRenderingContext[n]; idx[z] = n; } //console.log("shader uniform param type: ", ptype, "-", theLoader.idx[ptype]) r = eval("/" + pname + "/g"); switch (semantic) { case "POSITION" : s = s.replace(r, 'position'); break; case "NORMAL" : s = s.replace(r, 'normal'); break; case "TEXCOORD_0" : s = s.replace(r, 'uv'); break; case "MODELVIEW" : if (!param.source) { s = s.replace(r, 'modelViewMatrix'); } break; case "MODELVIEWINVERSETRANSPOSE" : if (!param.source) { s = s.replace(r, 'normalMatrix'); } break; case "PROJECTION" : if (!param.source) { s = s.replace(r, 'projectionMatrix'); } break; case "WEIGHT" : s = s.replace(r, 'skinWeight'); break; case "JOINT" : s = s.replace(r, 'skinIndex'); break; default : break; } } return s; } function replaceShaderSemantics(material) { var fragmentShader = theLoader.shaders[material.params.fragmentShader]; if (fragmentShader) { fragmentShader = replaceShaderDefinitions(fragmentShader, material); theLoader.shaders[material.params.fragmentShader] = fragmentShader; } var vertexShader = theLoader.shaders[material.params.vertexShader]; if (vertexShader) { vertexShader = replaceShaderDefinitions(vertexShader, material); theLoader.shaders[material.params.vertexShader] = vertexShader; } } function createShaderMaterial(material, geometry) { // replace named attributes and uniforms with Three.js built-ins replaceShaderSemantics(material); var fragmentShader = theLoader.shaders[material.params.fragmentShader]; if (!fragmentShader) { console.log("ERROR: Missing fragment shader definition:", material.params.fragmentShader); return new THREE.MeshPhongMaterial; } var vertexShader = theLoader.shaders[material.params.vertexShader]; if (!vertexShader) { console.log("ERROR: Missing vertex shader definition:", material.params.vertexShader); return new THREE.MeshPhongMaterial; } var shaderMaterial = new THREE.RawShaderMaterial( { fragmentShader: fragmentShader, vertexShader: vertexShader, uniforms: material.params.uniforms, transparent: material.params.transparent, } ); /* var attributes = material.params.attributes; var idx = 0; for (var aname in attributes) { var attribute = attributes[aname]; var semantic = attribute.semantic; if (semantic == "POSITION") { console.log("Position attribute", attribute); var attr = geometry.attributes.position; var array = new Float32Array(attr.array.buffer, 0, attr.array.length); geometry.addAttribute(aname, new THREE.BufferAttribute(array, attr.itemSize)); // shaderMaterial.index0AttributeName = aname; } else if (semantic == "NORMAL") { console.log("Normal attribute", attribute); var attr = geometry.attributes.normal; var array = new Float32Array(attr.array.buffer, 0, attr.array.length); geometry.addAttribute(aname, new THREE.BufferAttribute(array, attr.itemSize)); } else if (semantic == "TEXCOORD_0") { console.log("Texcoord0 attribute", attribute); var attr = geometry.attributes.uv; var array = new Float32Array(attr.array.buffer, 0, attr.array.length); geometry.addAttribute(aname, new THREE.BufferAttribute(array, attr.itemSize)); } }*/ return shaderMaterial; return new THREE.MeshPhongMaterial(material.params); } function LoadTexture(src) { if(!src) { return null; } var isDataUriRegex = /^data:/; var loadImage = function(url, success, error) { var image = new Image(); image.onload = function() { success(image); }; if (typeof error !== 'undefined') { image.onerror = error; } image.src = url; }; function loadImageFromTypedArray(uint8Array, format) { //>>includeStart('debug', pragmas.debug); if (!defined(uint8Array)) { throw new DeveloperError('uint8Array is required.'); } if (!defined(format)) { throw new DeveloperError('format is required.'); } //>>includeEnd('debug'); var blob = new Blob([uint8Array], { type : format }); }; function decodeDataUriText(isBase64, data) { var result = decodeURIComponent(data); if (isBase64) { return atob(result); } return result; } function decodeDataUriArrayBuffer(isBase64, data) { var byteString = decodeDataUriText(isBase64, data); var buffer = new ArrayBuffer(byteString.length); var view = new Uint8Array(buffer); for (var i = 0; i < byteString.length; i++) { view[i] = byteString.charCodeAt(i); } return buffer; } function decodeDataUri(dataUriRegexResult, responseType) { responseType = typeof responseType !== 'undefined' ? responseType : ''; var mimeType = dataUriRegexResult[1]; var isBase64 = !!dataUriRegexResult[2]; var data = dataUriRegexResult[3]; switch (responseType) { case '': case 'text': return decodeDataUriText(isBase64, data); case 'ArrayBuffer': return decodeDataUriArrayBuffer(isBase64, data); case 'blob': var buffer = decodeDataUriArrayBuffer(isBase64, data); return new Blob([buffer], { type : mimeType }); case 'document': var parser = new DOMParser(); return parser.parseFromString(decodeDataUriText(isBase64, data), mimeType); case 'json': return JSON.parse(decodeDataUriText(isBase64, data)); default: throw 'Unhandled responseType: ' + responseType; } } // Commented out for Qt // var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; // var dataUriRegexResult = dataUriRegex.exec(src); // if (dataUriRegexResult !== null) { // var texture = new THREE.Texture; // var blob = decodeDataUri(dataUriRegexResult, 'blob'); // var blobUrl = window.URL.createObjectURL(blob); // loadImage(blobUrl, function(img) { // texture.image = img; // texture.needsUpdate = true; // }); // return texture; // } return new THREE.TextureLoader().load(src); } function CreateTexture(resources, resource) { var texturePath = null; var textureParams = null; if (resource) { var texture = resource; if (texture) { var textureEntry = resources.getEntry(texture); if (textureEntry) { { var imageEntry = resources.getEntry(textureEntry.description.source); if (imageEntry) { texturePath = imageEntry.description.uri; } var samplerEntry = resources.getEntry(textureEntry.description.sampler); if (samplerEntry) { textureParams = samplerEntry.description; } } } } } var texture = LoadTexture(texturePath); if (texture && textureParams) { if (textureParams.wrapS === Context3D.REPEAT) // Changed for Qt texture.wrapS = THREE.RepeatWrapping; if (textureParams.wrapT === Context3D.REPEAT) // Changed for Qt texture.wrapT = THREE.RepeatWrapping; if (textureParams.magFilter === Context3D.LINEAR) // Changed for Qt texture.magFilter = THREE.LinearFilter; // if (textureParams.minFilter == "LINEAR") // texture.minFilter = THREE.LinearFilter; } return texture; } // Geometry processing var ClassicGeometry = function() { if (theLoader.useBufferGeometry) { this.geometry = new THREE.BufferGeometry; } else { this.geometry = new THREE.Geometry; } this.totalAttributes = 0; this.loadedAttributes = 0; this.indicesLoaded = false; this.finished = false; this.onload = null; this.uvs = null; this.indexArray = null; }; ClassicGeometry.prototype.constructor = ClassicGeometry; ClassicGeometry.prototype.buildArrayGeometry = function() { // Build indexed mesh var geometry = this.geometry; var normals = geometry.normals; var indexArray = this.indexArray; var uvs = this.uvs; var a, b, c; var i, l; var faceNormals = null; var faceTexcoords = null; for(i = 0, l = this.indexArray.length; i < l; i += 3) { a = indexArray[i]; b = indexArray[i+1]; c = indexArray[i+2]; if(normals) { faceNormals = [normals[a], normals[b], normals[c]]; } geometry.faces.push( new THREE.Face3( a, b, c, faceNormals, null, null ) ); if(uvs) { geometry.faceVertexUvs[0].push([ uvs[a], uvs[b], uvs[c] ]); } } // Allow Three.js to calculate some values for us geometry.computeBoundingBox(); geometry.computeBoundingSphere(); geometry.computeFaceNormals(); if(!normals) { geometry.computeVertexNormals(); } } ClassicGeometry.prototype.buildBufferGeometry = function() { // Build indexed mesh var geometry = this.geometry; geometry.setIndex( new THREE.BufferAttribute( this.indexArray, 1 ) ); var offset = { start: 0, index: 0, count: this.indexArray.length }; geometry.groups.push( offset ); geometry.computeBoundingSphere(); } ClassicGeometry.prototype.checkFinished = function() { if(this.indexArray && this.loadedAttributes === this.totalAttributes) { if (theLoader.useBufferGeometry) { this.buildBufferGeometry(); } else { this.buildArrayGeometry(); } this.finished = true; if(this.onload) { this.onload(); } } }; // Delegate for processing index buffers var IndicesDelegate = function() {}; IndicesDelegate.prototype.handleError = function(errorCode, info) { // FIXME: report error console.log("ERROR(IndicesDelegate):"+errorCode+":"+info); }; IndicesDelegate.prototype.convert = function(resource, ctx) { return new Uint16Array(resource, 0, ctx.indices.count); }; IndicesDelegate.prototype.resourceAvailable = function(glResource, ctx) { var geometry = ctx.geometry; geometry.indexArray = glResource; geometry.checkFinished(); return true; }; var indicesDelegate = new IndicesDelegate(); var IndicesContext = function(indices, geometry) { this.indices = indices; this.geometry = geometry; }; // Delegate for processing vertex attribute buffers var VertexAttributeDelegate = function() {}; VertexAttributeDelegate.prototype.handleError = function(errorCode, info) { // FIXME: report error console.log("ERROR(VertexAttributeDelegate):"+errorCode+":"+info); }; VertexAttributeDelegate.prototype.convert = function(resource, ctx) { return resource; }; VertexAttributeDelegate.prototype.arrayResourceAvailable = function(glResource, ctx) { var geom = ctx.geometry; var attribute = ctx.attribute; var semantic = ctx.semantic; var floatArray; var i, l; //FIXME: Float32 is assumed here, but should be checked. if(semantic == "POSITION") { // TODO: Should be easy to take strides into account here floatArray = new Float32Array(glResource, 0, attribute.count * componentsPerElementForGLType(attribute.type)); for(i = 0, l = floatArray.length; i < l; i += 3) { geom.geometry.vertices.push( new THREE.Vector3( floatArray[i], floatArray[i+1], floatArray[i+2] ) ); } } else if(semantic == "NORMAL") { geom.geometry.normals = []; floatArray = new Float32Array(glResource, 0, attribute.count * componentsPerElementForGLType(attribute.type)); for(i = 0, l = floatArray.length; i < l; i += 3) { geom.geometry.normals.push( new THREE.Vector3( floatArray[i], floatArray[i+1], floatArray[i+2] ) ); } } else if ((semantic == "TEXCOORD_0") || (semantic == "TEXCOORD" )) { geom.uvs = []; floatArray = new Float32Array(glResource, 0, attribute.count * componentsPerElementForGLType(attribute.type)); for(i = 0, l = floatArray.length; i < l; i += 2) { geom.uvs.push( new THREE.Vector2( floatArray[i], 1.0 - floatArray[i+1] ) ); } } else if (semantic == "WEIGHT") { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); for(i = 0, l = floatArray.length; i < l; i += 4) { geom.geometry.skinWeights.push( new THREE.Vector4( floatArray[i], floatArray[i+1], floatArray[i+2], floatArray[i+3] ) ); } } else if (semantic == "JOINT") { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); for(i = 0, l = floatArray.length; i < l; i += 4) { geom.geometry.skinIndices.push( new THREE.Vector4( floatArray[i], floatArray[i+1], floatArray[i+2], floatArray[i+3] ) ); } } } VertexAttributeDelegate.prototype.bufferResourceAvailable = function(glResource, ctx) { var geom = ctx.geometry; var attribute = ctx.attribute; var semantic = ctx.semantic; var floatArray; var i, l; var nComponents; //FIXME: Float32 is assumed here, but should be checked. if(semantic == "POSITION") { // TODO: Should be easy to take strides into account here floatArray = new Float32Array(glResource, 0, attribute.count * componentsPerElementForGLType(attribute.type)); geom.geometry.addAttribute( 'position', new THREE.BufferAttribute( floatArray, 3 ) ); } else if(semantic == "NORMAL") { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); geom.geometry.addAttribute( 'normal', new THREE.BufferAttribute( floatArray, 3 ) ); } else if ((semantic == "TEXCOORD_0") || (semantic == "TEXCOORD" )) { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); // N.B.: flip Y value... should we just set texture.flipY everywhere? for (i = 0; i < floatArray.length / 2; i++) { floatArray[i*2+1] = 1.0 - floatArray[i*2+1]; } geom.geometry.addAttribute( 'uv', new THREE.BufferAttribute( floatArray, nComponents ) ); } else if (semantic == "WEIGHT") { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); geom.geometry.addAttribute( 'skinWeight', new THREE.BufferAttribute( floatArray, nComponents ) ); } else if (semantic == "JOINT") { nComponents = componentsPerElementForGLType(attribute.type); floatArray = new Float32Array(glResource, 0, attribute.count * nComponents); geom.geometry.addAttribute( 'skinIndex', new THREE.BufferAttribute( floatArray, nComponents ) ); } } VertexAttributeDelegate.prototype.resourceAvailable = function(glResource, ctx) { if (theLoader.useBufferGeometry) { this.bufferResourceAvailable(glResource, ctx); } else { this.arrayResourceAvailable(glResource, ctx); } var geom = ctx.geometry; geom.loadedAttributes++; geom.checkFinished(); return true; }; var vertexAttributeDelegate = new VertexAttributeDelegate(); var VertexAttributeContext = function(attribute, semantic, geometry) { this.attribute = attribute; this.semantic = semantic; this.geometry = geometry; }; var Mesh = function() { this.primitives = []; this.materialsPending = []; this.loadedGeometry = 0; this.onCompleteCallbacks = []; }; Mesh.prototype.addPrimitive = function(geometry, material) { var self = this; geometry.onload = function() { self.loadedGeometry++; self.checkComplete(); }; this.primitives.push({ geometry: geometry, material: material, mesh: null }); }; Mesh.prototype.onComplete = function(callback) { this.onCompleteCallbacks.push(callback); this.checkComplete(); }; Mesh.prototype.checkComplete = function() { var self = this; if(this.onCompleteCallbacks.length && this.primitives.length == this.loadedGeometry) { this.onCompleteCallbacks.forEach(function(callback) { callback(self); }); this.onCompleteCallbacks = []; } }; Mesh.prototype.attachToNode = function(threeNode) { // Assumes that the geometry is complete this.primitives.forEach(function(primitive) { /*if(!primitive.mesh) { primitive.mesh = new THREE.Mesh(primitive.geometry, primitive.material); }*/ var material = primitive.material; var materialParams = material.params; if (!(material instanceof THREE.Material)) { material = createShaderMaterial(material, primitive.geometry.geometry); } var threeMesh = new THREE.Mesh(primitive.geometry.geometry, material); threeMesh.castShadow = true; threeNode.add(threeMesh); if (material instanceof THREE.ShaderMaterial) { var glTFShader = new THREE.glTFShader(material, materialParams, threeMesh, theLoader.rootObj); THREE.glTFShaders.add(glTFShader); } }); }; // Delayed-loaded material var Material = function(params) { this.params = params; }; // Delegate for processing animation parameter buffers var AnimationParameterDelegate = function() {}; AnimationParameterDelegate.prototype.handleError = function(errorCode, info) { // FIXME: report error console.log("ERROR(AnimationParameterDelegate):"+errorCode+":"+info); }; AnimationParameterDelegate.prototype.convert = function(resource, ctx) { var parameter = ctx.parameter; var glResource = null; switch (parameter.type) { case "SCALAR" : case "VEC2" : case "VEC3" : case "VEC4" : glResource = new Float32Array(resource, 0, parameter.count * componentsPerElementForGLType(parameter.type)); break; default: break; } return glResource; }; AnimationParameterDelegate.prototype.resourceAvailable = function(glResource, ctx) { var animation = ctx.animation; var parameter = ctx.parameter; parameter.data = glResource; animation.handleParameterLoaded(parameter); return true; }; var animationParameterDelegate = new AnimationParameterDelegate(); var AnimationParameterContext = function(parameter, animation) { this.parameter = parameter; this.animation = animation; }; // Animations var Animation = function() { // create Three.js keyframe here this.totalParameters = 0; this.loadedParameters = 0; this.parameters = {}; this.finishedLoading = false; this.onload = null; }; Animation.prototype.constructor = Animation; Animation.prototype.handleParameterLoaded = function(parameter) { this.parameters[parameter.name] = parameter; this.loadedParameters++; this.checkFinished(); }; Animation.prototype.checkFinished = function() { if(this.loadedParameters === this.totalParameters) { // Build animation this.finishedLoading = true; if (this.onload) { this.onload(); } } }; // Delegate for processing inverse bind matrices buffer var InverseBindMatricesDelegate = function() {}; InverseBindMatricesDelegate.prototype.handleError = function(errorCode, info) { // FIXME: report error console.log("ERROR(InverseBindMatricesDelegate):"+errorCode+":"+info); }; InverseBindMatricesDelegate.prototype.convert = function(resource, ctx) { var parameter = ctx.parameter; var glResource = null; switch (parameter.type) { case "MAT4" : glResource = new Float32Array(resource, 0, parameter.count * componentsPerElementForGLType(parameter.type)); break; default: break; } return glResource; }; InverseBindMatricesDelegate.prototype.resourceAvailable = function(glResource, ctx) { var skin = ctx.skin; skin.inverseBindMatrices = glResource; return true; }; var inverseBindMatricesDelegate = new InverseBindMatricesDelegate(); var InverseBindMatricesContext = function(param, skin) { this.parameter = param; this.skin = skin; }; // Delegate for processing shaders from external files var ShaderDelegate = function() {}; ShaderDelegate.prototype.handleError = function(errorCode, info) { // FIXME: report error console.log("ERROR(ShaderDelegate):"+errorCode+":"+info); }; ShaderDelegate.prototype.convert = function(resource, ctx) { return resource; } ShaderDelegate.prototype.resourceAvailable = function(data, ctx) { theLoader.shadersLoaded++; theLoader.shaders[ctx.id] = data; theLoader.checkComplete(); // Added for Qt return true; }; var shaderDelegate = new ShaderDelegate(); var ShaderContext = function(id, path) { this.id = id; this.uri = path; }; // Resource management var ResourceEntry = function(entryID, object, description) { this.entryID = entryID; this.object = object; this.description = description; }; var Resources = function() { this._entries = {}; }; Resources.prototype.setEntry = function(entryID, object, description) { if (!entryID) { console.error("No EntryID provided, cannot store", description); return; } if (this._entries[entryID]) { console.warn("entry["+entryID+"] is being overwritten"); } this._entries[entryID] = new ResourceEntry(entryID, object, description ); }; Resources.prototype.getEntry = function(entryID) { return this._entries[entryID]; }; Resources.prototype.clearEntries = function() { this._entries = {}; }; var LoadDelegate = function() { // Changed for Qt } LoadDelegate.prototype.loadCompleted = function(callback, obj) { callback.call(this, obj); // Changed for Qt } // Loader var ThreeGLTFLoader = Object.create(THREE.glTFParser, { load: { enumerable: true, value: function(userInfo, options) { this.resources = new Resources(); this.cameras = []; this.lights = []; this.animations = []; this.joints = {}; this.skeletons = {}; // Changed for Qt THREE.GLTFLoaderUtils.init(); THREE.glTFParser.load.call(this, userInfo, options); } }, cameras: { enumerable: true, writable: true, value : [] }, lights: { enumerable: true, writable: true, value : [] }, animations: { enumerable: true, writable: true, value : [] }, // Implement WebGLTFLoader handlers handleBuffer: { value: function(entryID, description, userInfo) { this.resources.setEntry(entryID, null, description); description.type = "ArrayBuffer"; return true; } }, handleBufferView: { value: function(entryID, description, userInfo) { this.resources.setEntry(entryID, null, description); var buffer = this.resources.getEntry(description.buffer); description.type = "ArrayBufferView"; var bufferViewEntry = this.resources.getEntry(entryID); bufferViewEntry.buffer = buffer; return true; } }, handleShader: { value: function(entryID, description, userInfo) { description.uri = "qrc:" + description.uri // Added for Qt this.resources.setEntry(entryID, null, description); var shaderRequest = { id : entryID, uri : description.uri, }; var shaderContext = new ShaderContext(entryID, description.uri); theLoader.shadersRequested++; THREE.GLTFLoaderUtils.getFile(shaderRequest, shaderDelegate, shaderContext); return true; } }, handleProgram: { value: function(entryID, description, userInfo) { this.resources.setEntry(entryID, null, description); return true; } }, handleTechnique: { value: function(entryID, description, userInfo) { this.resources.setEntry(entryID, null, description); return true; } }, createShaderParams : { value: function(materialId, values, params, instanceProgram, shaderParams) { var program = this.resources.getEntry(instanceProgram.program); params.uniforms = {}; params.attributes = {}; params.program = instanceProgram; params.parameters = shaderParams; if (program) { params.fragmentShader = program.description.fragmentShader; params.vertexShader = program.description.vertexShader; for (var uniform in instanceProgram.uniforms) { var pname = instanceProgram.uniforms[uniform]; var shaderParam = shaderParams[pname]; var ptype = shaderParam.type; var pcount = shaderParam.count; var value = values[pname]; var utype = ""; var uvalue; var ulength; // THIS: for (n in WebGLRenderingContext) { z = WebGLRenderingContext[n]; idx[z] = n; } //console.log("shader uniform param type: ", ptype, "-", theLoader.idx[ptype]) switch (ptype) { case Context3D.FLOAT : // Changed for Qt utype = "f"; uvalue = value; if (pname == "transparency") { var USE_A_ONE = true; // for now, hack because file format isn't telling us var opacity = USE_A_ONE ? value : (1.0 - value); uvalue = opacity; params.transparent = true; } break; case Context3D.FLOAT_VEC3 : // Changed for Qt utype = "v3"; uvalue = new THREE.Vector3; if (shaderParam && shaderParam.value) { var v3 = shaderParam.value; uvalue.fromArray(v3); } if (value) { uvalue.fromArray(value); } break; case Context3D.FLOAT_VEC4 : // Changed for Qt utype = "v4"; uvalue = new THREE.Vector4; if (shaderParam && shaderParam.value) { var v4 = shaderParam.value; uvalue.fromArray(v4); } if (value) { uvalue.fromArray(value); } break; case Context3D.FLOAT_MAT3 : // Changed for Qt utype = "m3"; uvalue = new THREE.Matrix3; if (shaderParam && shaderParam.value) { var m3 = shaderParam.value; uvalue.fromArray(m3); } if (value) { uvalue.fromArray(value); } break; case Context3D.FLOAT_MAT4 : // Changed for Qt if (pcount !== undefined) { utype = "m4v"; uvalue = new Array(pcount); for (var mi = 0; mi < pcount; mi++) { uvalue[mi] = new THREE.Matrix4; } ulength = pcount; if (shaderParam && shaderParam.value) { var m4v = shaderParam.value; uvalue.fromArray(m4v); } if (value) { uvalue.fromArray(value); } } else { utype = "m4"; uvalue = new THREE.Matrix4; if (shaderParam && shaderParam.value) { var m4 = shaderParam.value; uvalue.fromArray(m4); } if (value) { uvalue.fromArray(value); } } /* if (pname == "light0Transform") { uvalue.set( -0.954692, 0.218143, -0.202428, 0, 0.0146721, 0.713885, 0.700109, 0, 0.297235, 0.665418, -0.684741, 0, 1.48654, 1.83672, -2.92179, 1); }*/ break; case Context3D.SAMPLER_2D : // Changed for Qt utype = "t"; uvalue = value ? CreateTexture(this.resources, value) : null; break; default : console.log("Unknown shader uniform param type: ", ptype, "-", theLoader.idx[ptype]) break; } var udecl = { type : utype, value : uvalue, length : ulength }; params.uniforms[uniform] = udecl; } for (var attribute in instanceProgram.attributes) { var aname = instanceProgram.attributes[attribute]; var atype = shaderParams[aname].type; var semantic = shaderParams[aname].semantic; var adecl = { type : atype, semantic : semantic }; params.attributes[attribute] = adecl; } } } }, threeJSMaterialType : { value: function(materialId, technique, values, params) { var materialType = THREE.MeshPhongMaterial; var defaultPass = null; var description = technique ? technique.description : null; if (description && description.passes) defaultPass = description.passes.defaultPass; if (defaultPass) { if (!theLoader.useShaders && defaultPass.details && defaultPass.details.commonProfile) { var profile = description.passes.defaultPass.details.commonProfile; if (profile) { switch (profile.lightingModel) { case 'Blinn' : case 'Phong' : materialType = THREE.MeshPhongMaterial; break; case 'Lambert' : materialType = THREE.MeshLambertMaterial; break; default : materialType = THREE.MeshBasicMaterial; break; } if (profile.extras && profile.extras.doubleSided) { params.side = THREE.DoubleSide; } } } else if (defaultPass.instanceProgram) { var instanceProgram = defaultPass.instanceProgram; this.createShaderParams(materialId, values, params, instanceProgram, technique.description.parameters); var loadshaders = true; if (loadshaders) { materialType = Material; } } } params.map = CreateTexture(this.resources, values.diffuse); params.envMap = CreateTexture(this.resources, values.reflective);; var shininess = values.shininesss || values.shininess; // N.B.: typo in converter! if (shininess) { shininess = shininess; } var diffuseColor = null; if (!params.map) { diffuseColor = values.diffuse; } var opacity = 1.0; if (values.hasOwnProperty("transparency")) { var USE_A_ONE = true; // for now, hack because file format isn't telling us opacity = USE_A_ONE ? values.transparency : (1.0 - values.transparency); } // if (diffuseColor) diffuseColor = [0, 1, 0]; params.color = RgbArraytoHex(diffuseColor); params.opacity = opacity; params.transparent = opacity < 1.0; // hack hack hack if (params.map && params.map.sourceFile.toLowerCase().indexOf(".png") != -1) params.transparent = true; if (!(shininess === undefined)) { params.shininess = shininess; } // Qt: Commented out, r74 no longer supports this for materials // if (!(values.ambient === undefined) && !(typeof(values.ambient) == 'string')) // { // params.ambient = RgbArraytoHex(values.ambient); // } if (!(values.emission === undefined)) { params.emissive = RgbArraytoHex(values.emission); } if (!(values.specular === undefined)) { params.specular = RgbArraytoHex(values.specular); } return materialType; } }, handleMaterial: { value: function(entryID, description, userInfo) { //this should be rewritten using the meta datas that actually create the shader. //here we will infer what needs to be pass to Three.js by looking inside the technique parameters. // Changed for Qt --> var technique; var values; var materialParams = {}; if (description.instanceTechnique === undefined) { technique = this.resources.getEntry(description.technique); values = description.values; } else { technique = this.resources.getEntry(description.instanceTechnique.technique); values = description.instanceTechnique.values; } //var technique = this.resources.getEntry(description.instanceTechnique.technique); //var materialParams = {}; //var values = description.instanceTechnique.values; // <-- Changed for Qt var materialType = this.threeJSMaterialType(entryID, technique, values, materialParams); var material = new materialType(materialParams); this.resources.setEntry(entryID, material, description); return true; } }, handleMesh: { value: function(entryID, description, userInfo) { var mesh = new Mesh(); this.resources.setEntry(entryID, mesh, description); var primitivesDescription = description.primitives; if (!primitivesDescription) { //FIXME: not implemented in delegate console.log("MISSING_PRIMITIVES for mesh:"+ entryID); return false; } for (var i = 0 ; i < primitivesDescription.length ; i++) { var primitiveDescription = primitivesDescription[i]; if (primitiveDescription.primitive === Context3D.TRIANGLES || primitiveDescription.mode === Context3D.TRIANGLES) { // Changed for Qt var geometry = new ClassicGeometry(); var materialEntry = this.resources.getEntry(primitiveDescription.material); mesh.addPrimitive(geometry, materialEntry.object); var allAttributes = Object.keys(primitiveDescription.attributes); // count them first, async issues otherwise allAttributes.forEach( function(semantic) { geometry.totalAttributes++; }, this); var indices = this.resources.getEntry(primitiveDescription.indices); var bufferEntry = this.resources.getEntry(indices.description.bufferView); var indicesObject = { bufferView : bufferEntry, byteOffset : indices.description.byteOffset, count : indices.description.count, id : indices.entryID, componentType : indices.description.componentType, type : indices.description.type }; var indicesContext = new IndicesContext(indicesObject, geometry); var alreadyProcessedIndices = THREE.GLTFLoaderUtils.getBuffer(indicesObject, indicesDelegate, indicesContext); /*if(alreadyProcessedIndices) { indicesDelegate.resourceAvailable(alreadyProcessedIndices, indicesContext); }*/ // Load Vertex Attributes allAttributes.forEach( function(semantic) { var attribute; var attributeID = primitiveDescription.attributes[semantic]; var attributeEntry = this.resources.getEntry(attributeID); if (!attributeEntry) { //let's just use an anonymous object for the attribute attribute = description.attributes[attributeID]; attribute.id = attributeID; this.resources.setEntry(attributeID, attribute, attribute); var bufferEntry = this.resources.getEntry(attribute.bufferView); attributeEntry = this.resources.getEntry(attributeID); } else { attribute = attributeEntry.object; attribute.id = attributeID; var bufferEntry = this.resources.getEntry(attribute.bufferView); } var attributeObject = { bufferView : bufferEntry, byteOffset : attribute.byteOffset, byteStride : attribute.byteStride, count : attribute.count, max : attribute.max, min : attribute.min, componentType : attribute.componentType, type : attribute.type, id : attributeID }; var attribContext = new VertexAttributeContext(attributeObject, semantic, geometry); var alreadyProcessedAttribute = THREE.GLTFLoaderUtils.getBuffer(attributeObject, vertexAttributeDelegate, attribContext); /*if(alreadyProcessedAttribute) { vertexAttributeDelegate.resourceAvailable(alreadyProcessedAttribute, attribContext); }*/ }, this); } } return true; } }, handleCamera: { value: function(entryID, description, userInfo) { var camera; if (description.type == "perspective") { var znear = description.perspective.znear; var zfar = description.perspective.zfar; var yfov = description.perspective.yfov; var xfov = description.perspective.xfov; var aspect_ratio = description.perspective.aspect_ratio; if (!aspect_ratio) aspect_ratio = 1; if (xfov === undefined) { if (yfov) { // According to COLLADA spec... // aspect_ratio = xfov / yfov xfov = yfov * aspect_ratio; } } if (yfov === undefined) { if (xfov) { // According to COLLADA spec... // aspect_ratio = xfov / yfov yfov = xfov / aspect_ratio; } } if (xfov) { camera = new THREE.PerspectiveCamera(xfov, aspect_ratio, znear, zfar); } } else { // Changed for Qt, window is not supported, so just create default size //camera = new THREE.OrthographicCamera( window.innerWidth / - 2, window.innerWidth / 2, window.innerHeight / 2, window.innerHeight / - 2, znear, zfar ); camera = new THREE.OrthographicCamera( -1, 1, 1, -1, znear, zfar ); } if (camera) { this.resources.setEntry(entryID, camera, description); } return true; } }, handleLight: { value: function(entryID, description, userInfo) { var light = null; var type = description.type; if (type && description[type]) { var lparams = description[type]; var color = RgbArraytoHex(lparams.color); switch (type) { case "directional" : light = new THREE.DirectionalLight(color); light.position.set(0, 0, 1); break; case "point" : light = new THREE.PointLight(color); break; case "spot " : light = new THREE.SpotLight(color); light.position.set(0, 0, 1); break; case "ambient" : light = new THREE.AmbientLight(color); break; } } if (light) { this.resources.setEntry(entryID, light, description); } return true; } }, addPendingMesh: { value: function(mesh, threeNode) { theLoader.pendingMeshes.push({ mesh: mesh, node: threeNode }); } }, handleNode: { value: function(entryID, description, userInfo) { var threeNode = null; if (description.jointName) { threeNode = new THREE.Bone(); threeNode.jointName = description.jointName; this.joints[description.jointName] = entryID; } else { threeNode = new THREE.Object3D(); } threeNode.name = description.name; threeNode.glTFID = entryID; this.resources.setEntry(entryID, threeNode, description); var m = description.matrix; if(m) { threeNode.matrixAutoUpdate = false; threeNode.applyMatrix(new THREE.Matrix4().set( m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15] )); } else { var t = description.translation; var r = description.rotation; var s = description.scale; var position = t ? new THREE.Vector3(t[0], t[1], t[2]) : new THREE.Vector3; if (r) { convertAxisAngleToQuaternion(r, 1); } var rotation = r ? new THREE.Quaternion(r[0], r[1], r[2], r[3]) : new THREE.Quaternion; var scale = s ? new THREE.Vector3(s[0], s[1], s[2]) : new THREE.Vector3(1, 1, 1); var matrix = new THREE.Matrix4; matrix.compose(position, rotation, scale); threeNode.matrixAutoUpdate = false; threeNode.applyMatrix(matrix); } var self = this; // Iterate through all node meshes and attach the appropriate objects //FIXME: decision needs to be made between these 2 ways, probably meshes will be discarded. var meshEntry; if (description.mesh) { meshEntry = this.resources.getEntry(description.mesh); theLoader.meshesRequested++; meshEntry.object.onComplete(function(mesh) { self.addPendingMesh(mesh, threeNode); theLoader.meshesLoaded++; theLoader.checkComplete(); }); } if (description.meshes) { description.meshes.forEach( function(meshID) { meshEntry = this.resources.getEntry(meshID); theLoader.meshesRequested++; meshEntry.object.onComplete(function(mesh) { self.addPendingMesh(mesh, threeNode); theLoader.meshesLoaded++; theLoader.checkComplete(); }); }, this); } if (description.instanceSkin) { var skinEntry = this.resources.getEntry(description.instanceSkin.skin); if (skinEntry) { var skin = skinEntry.object; description.instanceSkin.skin = skin; threeNode.instanceSkin = description.instanceSkin; var meshes = description.instanceSkin.meshes; skin.meshes = []; meshes.forEach( function(meshID) { meshEntry = this.resources.getEntry(meshID); theLoader.meshesRequested++; meshEntry.object.onComplete(function(mesh) { skin.meshes.push(mesh); theLoader.meshesLoaded++; theLoader.checkComplete(); }); }, this); } } if (description.camera) { var cameraEntry = this.resources.getEntry(description.camera); if (cameraEntry) { threeNode.add(cameraEntry.object); this.cameras.push(cameraEntry.object); } } if (description.light) { var lightEntry = this.resources.getEntry(description.light); if (lightEntry) { threeNode.add(lightEntry.object); this.lights.push(lightEntry.object); } } return true; } }, buildNodeHirerachy: { value: function(nodeEntryId, parentThreeNode) { var nodeEntry = this.resources.getEntry(nodeEntryId); var threeNode = nodeEntry.object; parentThreeNode.add(threeNode); var children = nodeEntry.description.children; if (children) { children.forEach( function(childID) { this.buildNodeHirerachy(childID, threeNode); }, this); } return threeNode; } }, buildSkin: { value: function(node) { var skin = node.instanceSkin.skin; if (skin) { node.instanceSkin.skeletons.forEach(function(skeleton) { var nodeEntry = this.resources.getEntry(skeleton); if (nodeEntry) { var rootSkeleton = nodeEntry.object; var dobones = true; var i, len = skin.meshes.length; for (i = 0; i < len; i++) { var mesh = skin.meshes[i]; var threeMesh = null; mesh.primitives.forEach(function(primitive) { var material = primitive.material; var materialParams = material.params; if (!(material instanceof THREE.Material)) { material = createShaderMaterial(material, primitive.geometry.geometry); } threeMesh = new THREE.SkinnedMesh(primitive.geometry.geometry, material, false); threeMesh.add(rootSkeleton); var geometry = primitive.geometry.geometry; var j; if (geometry.vertices) { for ( j = 0; j < geometry.vertices.length; j ++ ) { geometry.vertices[j].applyMatrix4( skin.bindShapeMatrix ); } } else if (geometry.attributes.position) { var a = geometry.attributes.position.array; var v = new THREE.Vector3; for ( j = 0; j < a.length / 3; j++ ) { v.set(a[j * 3], a[j * 3 + 1], a[j * 3 + 2]); v.applyMatrix4( skin.bindShapeMatrix ); a[j * 3] = v.x; a[j * 3 + 1] = v.y; a[j * 3 + 2] = v.z; } } if (threeMesh && dobones) { material.skinning = true; var jointNames = skin.jointNames; var joints = []; threeMesh.skeleton.bones = []; threeMesh.skeleton.boneInverses = []; threeMesh.skeleton.boneMatrices = new Float32Array( 16 * jointNames.length ); var i, len = jointNames.length; for (i = 0; i < len; i++) { var jointName = jointNames[i]; var nodeForJoint = this.joints[jointName]; var joint = this.resources.getEntry(nodeForJoint).object; if (joint) { joint.skin = threeMesh; joints.push(joint); threeMesh.skeleton.bones.push(joint); var m = skin.inverseBindMatrices; var mat = new THREE.Matrix4().set( m[i * 16 + 0], m[i * 16 + 4], m[i * 16 + 8], m[i * 16 + 12], m[i * 16 + 1], m[i * 16 + 5], m[i * 16 + 9], m[i * 16 + 13], m[i * 16 + 2], m[i * 16 + 6], m[i * 16 + 10], m[i * 16 + 14], m[i * 16 + 3], m[i * 16 + 7], m[i * 16 + 11], m[i * 16 + 15] ); threeMesh.skeleton.boneInverses.push(mat); threeMesh.skeleton.pose(); } else { console.log("WARNING: jointName:"+jointName+" cannot be found in skeleton:"+skeleton); } } } if (threeMesh) { threeMesh.castShadow = true; node.add(threeMesh); if (material instanceof THREE.ShaderMaterial) { materialParams.joints = joints; var glTFShader = new THREE.glTFShader(material, materialParams, threeMesh, theLoader.rootObj); THREE.glTFShaders.add(glTFShader); } } }, this); } } }, this); } } }, buildSkins: { value: function(node) { if (node.instanceSkin) this.buildSkin(node); var children = node.children; if (children) { children.forEach( function(child) { this.buildSkins(child); }, this); } } }, createMeshAnimations : { value : function(root) { this.buildSkins(root); } }, handleScene: { value: function(entryID, description, userInfo) { if (!description.nodes) { console.log("ERROR: invalid file required nodes property is missing from scene"); return false; } description.nodes.forEach( function(nodeUID) { this.buildNodeHirerachy(nodeUID, userInfo.rootObj); }, this); if (this.delegate) { this.delegate.loadCompleted(userInfo.callback, userInfo.rootObj); } return true; } }, handleImage: { value: function(entryID, description, userInfo) { this.resources.setEntry(entryID, null, description); return true; } }, addNodeAnimationChannel : { value : function(name, channel, interp) { if (!this.nodeAnimationChannels) this.nodeAnimationChannels = {}; if (!this.nodeAnimationChannels[name]) { this.nodeAnimationChannels[name] = []; } this.nodeAnimationChannels[name].push(interp); }, }, createAnimations : { value : function() { for (var name in this.nodeAnimationChannels) { var nodeAnimationChannels = this.nodeAnimationChannels[name]; var i, len = nodeAnimationChannels.length; //console.log(" animation channels for node " + name); //for (i = 0; i < len; i++) { // console.log(nodeAnimationChannels[i]); //} var anim = new THREE.glTFAnimation(nodeAnimationChannels); anim.name = "animation_" + name; this.animations.push(anim); } } }, buildAnimation: { value : function(animation) { var interps = []; var i, len = animation.channels.length; for (i = 0; i < len; i++) { var channel = animation.channels[i]; var sampler = animation.samplers[channel.sampler]; if (sampler) { var input = animation.parameters[sampler.input]; if (input && input.data) { var output = animation.parameters[sampler.output]; if (output && output.data) { var target = channel.target; var node = this.resources.getEntry(target.id); if (node) { var path = target.path; if (path == "rotation") { convertAxisAngleToQuaternion(output.data, output.count); } var interp = { keys : input.data, values : output.data, count : input.count, target : node.object, path : path, type : sampler.interpolation }; this.addNodeAnimationChannel(target.id, channel, interp); interps.push(interp); } } } } } } }, handleAnimation: { value: function(entryID, description, userInfo) { var self = this; theLoader.animationsRequested++; var animation = new Animation(); animation.name = entryID; animation.onload = function() { // self.buildAnimation(animation); theLoader.animationsLoaded++; theLoader.animations.push(animation); theLoader.checkComplete(); }; animation.channels = description.channels; animation.samplers = description.samplers; this.resources.setEntry(entryID, animation, description); var parameters = description.parameters; if (!parameters) { //FIXME: not implemented in delegate console.log("MISSING_PARAMETERS for animation:"+ entryID); return false; } // Load parameter buffers var params = Object.keys(parameters); params.forEach( function(param) { animation.totalParameters++; var parameter = parameters[param]; var accessor = this.resources.getEntry(parameter); if (!accessor) console.log("Invalid accessor in handleAnimation"); //debugger; // Changed for Qt, debugger keyword is not supported accessor = accessor.object; var bufferView = this.resources.getEntry(accessor.bufferView); var paramObject = { bufferView : bufferView, byteOffset : accessor.byteOffset, count : accessor.count, componentType : accessor.componentType, type : accessor.type, id : accessor.bufferView, name : param }; var paramContext = new AnimationParameterContext(paramObject, animation); var alreadyProcessedAttribute = THREE.GLTFLoaderUtils.getBuffer(paramObject, animationParameterDelegate, paramContext); /*if(alreadyProcessedAttribute) { vertexAttributeDelegate.resourceAvailable(alreadyProcessedAttribute, attribContext); }*/ }, this); return true; } }, handleAccessor: { value: function(entryID, description, userInfo) { // Save attribute entry this.resources.setEntry(entryID, description, description); return true; } }, handleSkin: { value: function(entryID, description, userInfo) { // Save skin entry var skin = { }; var m = description.bindShapeMatrix; skin.bindShapeMatrix = new THREE.Matrix4().set( m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15] ); skin.jointNames = description.jointNames; var inverseBindMatricesDescription = this.resources.getEntry(description.inverseBindMatrices); inverseBindMatricesDescription = inverseBindMatricesDescription.description; skin.inverseBindMatricesDescription = inverseBindMatricesDescription; skin.inverseBindMatricesDescription.id = description.inverseBindMatrices; var bufferEntry = this.resources.getEntry(inverseBindMatricesDescription.bufferView); var paramObject = { bufferView : bufferEntry, byteOffset : inverseBindMatricesDescription.byteOffset, count : inverseBindMatricesDescription.count, componentType : inverseBindMatricesDescription.componentType, type : inverseBindMatricesDescription.type, id : inverseBindMatricesDescription.bufferView, name : skin.inverseBindMatricesDescription.id }; var context = new InverseBindMatricesContext(paramObject, skin); var alreadyProcessedAttribute = THREE.GLTFLoaderUtils.getBuffer(paramObject, inverseBindMatricesDelegate, context); var bufferView = this.resources.getEntry(skin.inverseBindMatricesDescription.bufferView); skin.inverseBindMatricesDescription.bufferView = bufferView.object; this.resources.setEntry(entryID, skin, description); return true; } }, handleSampler: { value: function(entryID, description, userInfo) { // Save attribute entry this.resources.setEntry(entryID, description, description); return true; } }, handleTexture: { value: function(entryID, description, userInfo) { // Save attribute entry this.resources.setEntry(entryID, null, description); return true; } }, handleError: { value: function(msg) { throw new Error(msg); return true; } }, _delegate: { value: new LoadDelegate, writable: true }, delegate: { enumerable: true, get: function() { return this._delegate; }, set: function(value) { this._delegate = value; } } }); // Loader var Context = function(rootObj, callback) { this.rootObj = rootObj; this.callback = callback; }; var rootObj = new THREE.Object3D(); var self = this; var loader = Object.create(ThreeGLTFLoader); loader.initWithPath(url); loader.load(new Context(rootObj, function(obj) {theLoader.checkComplete()}), null); // Changed for Qt this.loader = loader; this.callback = callback; this.rootObj = rootObj; return rootObj; } THREE.glTFLoader.prototype.callLoadedCallback = function() { var result = { scene : this.rootObj, cameras : this.loader.cameras, lights: this.loader.lights, // Added for Qt animations : this.loader.animations, shaders : this.loader.shaders, }; this.callback(result); } THREE.glTFLoader.prototype.checkComplete = function() { if (this.meshesLoaded == this.meshesRequested && this.shadersLoaded == this.shadersRequested && this.animationsLoaded == this.animationsRequested) { for (var i = 0; i < this.pendingMeshes.length; i++) { var pending = this.pendingMeshes[i]; pending.mesh.attachToNode(pending.node); } for (var i = 0; i < this.animationsLoaded; i++) { var animation = this.animations[i]; this.loader.buildAnimation(animation); } this.loader.createAnimations(); this.loader.createMeshAnimations(this.rootObj); THREE.glTFShaders.bindShaderParameters(this.rootObj); this.callLoadedCallback(); } } // File:src/gltf/glTFLoaderUtils.js /** * @author Tony Parisi / http://www.tonyparisi.com/ */ THREE.GLTFLoaderUtils = Object.create(Object, { // errors MISSING_DESCRIPTION: { value: "MISSING_DESCRIPTION" }, INVALID_PATH: { value: "INVALID_PATH" }, INVALID_TYPE: { value: "INVALID_TYPE" }, XMLHTTPREQUEST_STATUS_ERROR: { value: "XMLHTTPREQUEST_STATUS_ERROR" }, NOT_FOUND: { value: "NOT_FOUND" }, // misc constants ARRAY_BUFFER: { value: "ArrayBuffer" }, _streams : { value:{}, writable: true }, _streamsStatus: { value: {}, writable: true }, _resources: { value: {}, writable: true }, _resourcesStatus: { value: {}, writable: true }, // initialization init: { value: function() { this._streams = {}; this._streamsStatus = {}; this._resources = {}; this._resourcesStatus = {}; } }, //manage entries _containsResource: { enumerable: false, value: function(resourceID) { return this._resources[resourceID] ? true : false; } }, _storeResource: { enumerable: false, value: function(resourceID, resource) { if (!resourceID) { console.log("ERROR: entry does not contain id, cannot store"); return; } if (this._containsResource[resourceID]) { console.log("WARNING: resource:"+resourceID+" is already stored, overriding"); } this._resources[resourceID] = resource; } }, _getResource: { enumerable: false, value: function(resourceID) { return this._resources[resourceID]; } }, _loadStream: { value: function(path, type, delegate) { var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; function decodeDataUriText(isBase64, data) { var result = decodeURIComponent(data); if (isBase64) { return atob(result); } return result; } function decodeDataUriArrayBuffer(isBase64, data) { var byteString = decodeDataUriText(isBase64, data); var buffer = new ArrayBuffer(byteString.length); var view = new Uint8Array(buffer); for (var i = 0; i < byteString.length; i++) { view[i] = byteString.charCodeAt(i); } return buffer; } function decodeDataUri(dataUriRegexResult, responseType) { responseType = typeof responseType !== 'undefined' ? responseType : ''; var mimeType = dataUriRegexResult[1]; var isBase64 = !!dataUriRegexResult[2]; var data = dataUriRegexResult[3]; switch (responseType) { case '': case 'text': return decodeDataUriText(isBase64, data); case 'ArrayBuffer': return decodeDataUriArrayBuffer(isBase64, data); case 'blob': var buffer = decodeDataUriArrayBuffer(isBase64, data); return new Blob([buffer], { type : mimeType }); case 'document': var parser = new DOMParser(); return parser.parseFromString(decodeDataUriText(isBase64, data), mimeType); case 'json': return JSON.parse(decodeDataUriText(isBase64, data)); default: throw 'Unhandled responseType: ' + responseType; } } var dataUriRegexResult = dataUriRegex.exec(path); if (dataUriRegexResult !== null) { delegate.streamAvailable(path, decodeDataUri(dataUriRegexResult, type)); return; } var self = this; if (!type) { delegate.handleError(THREE.GLTFLoaderUtils.INVALID_TYPE, null); return; } if (!path) { delegate.handleError(THREE.GLTFLoaderUtils.INVALID_PATH); return; } var xhr = new XMLHttpRequest(); xhr.open('GET', path, true); xhr.responseType = (type === this.ARRAY_BUFFER) ? "arraybuffer" : "text"; //if this is not specified, 1 "big blob" scenes fails to load. // Changed for Qt --> //xhr.setRequestHeader("If-Modified-Since", "Sat, 01 Jan 1970 00:00:00 GMT"); xhr.onreadystatechange = function() { if (xhr.readyState == 4) { if (xhr.status == 200 || xhr.status == 206) { delegate.streamAvailable(path, xhr.response); } else { console.error("XMLHttpRequest load failed") delegate.handleError(THREE.GLTFLoaderUtils.XMLHTTPREQUEST_STATUS_ERROR, xhr.status); } } }; // <-- Changed for Qt xhr.send(null); } }, send: { value: 0, writable: true }, requested: { value: 0, writable: true }, _handleRequest: { value: function(request) { var resourceStatus = this._resourcesStatus[request.id]; if (resourceStatus) { this._resourcesStatus[request.id]++; } else { this._resourcesStatus[request.id] = 1; } var streamStatus = this._streamsStatus[request.uri]; if (streamStatus && streamStatus.status === "loading" ) { streamStatus.requests.push(request); return; } this._streamsStatus[request.uri] = { status : "loading", requests : [request] }; var self = this; var processResourceDelegate = {}; processResourceDelegate.streamAvailable = function(path, res_) { var streamStatus = self._streamsStatus[path]; var requests = streamStatus.requests; requests.forEach( function(req_) { var subArray = res_.slice(req_.range[0], req_.range[1]); var convertedResource = req_.delegate.convert(subArray, req_.ctx); self._storeResource(req_.id, convertedResource); req_.delegate.resourceAvailable(convertedResource, req_.ctx); --self._resourcesStatus[req_.id]; }, this); delete self._streamsStatus[path]; }; processResourceDelegate.handleError = function(errorCode, info) { request.delegate.handleError(errorCode, info); } this._loadStream(request.uri, request.type, processResourceDelegate); } }, _elementSizeForGLType: { value: function(componentType, type) { var nElements = 0; switch(type) { case "SCALAR" : nElements = 1; break; case "VEC2" : nElements = 2; break; case "VEC3" : nElements = 3; break; case "VEC4" : nElements = 4; break; case "MAT2" : nElements = 4; break; case "MAT3" : nElements = 9; break; case "MAT4" : nElements = 16; break; default : console.log("Invalid type in _elementSizeForGLType:", type); //debugger; // Changed for Qt, debugger keyword is not supported break; } switch (componentType) { case Context3D.FLOAT : // Changed for Qt return Float32Array.BYTES_PER_ELEMENT * nElements; case Context3D.UNSIGNED_BYTE : // Changed for Qt return Uint8Array.BYTES_PER_ELEMENT * nElements; case Context3D.UNSIGNED_SHORT : // Changed for Qt return Uint16Array.BYTES_PER_ELEMENT * nElements; default : console.log("Invalid componentType in _elementSizeForGLType:", componentType); //debugger; // Changed for Qt, debugger keyword is not supported return null; } } }, _handleWrappedBufferViewResourceLoading: { value: function(wrappedBufferView, delegate, ctx) { var bufferView = wrappedBufferView.bufferView; var buffer = bufferView.buffer; var byteOffset = wrappedBufferView.byteOffset + bufferView.description.byteOffset; var range = [byteOffset , (this._elementSizeForGLType(wrappedBufferView.componentType, wrappedBufferView.type) * wrappedBufferView.count) + byteOffset]; this._handleRequest({ "id" : wrappedBufferView.id, "range" : range, "type" : buffer.description.type, "uri" : buffer.description.uri, "delegate" : delegate, "ctx" : ctx }, null); } }, getBuffer: { value: function(wrappedBufferView, delegate, ctx) { var savedBuffer = this._getResource(wrappedBufferView.id); if (savedBuffer) { return savedBuffer; } else { this._handleWrappedBufferViewResourceLoading(wrappedBufferView, delegate, ctx); } return null; } }, getFile: { value: function(request, delegate, ctx) { request.delegate = delegate; request.ctx = ctx; this._handleRequest({ "id" : request.id, "uri" : request.uri, "range" : [0], "type" : "text", "delegate" : delegate, "ctx" : ctx }, null); return null; } }, }); // File:src/gltf/glTFShaders.js /** * @author Tony Parisi / http://www.tonyparisi.com/ */ THREE.glTFShaders = ( function () { var shaders = []; return { add : function(shader) { shaders.push(shader); }, remove: function(shader) { var i = shaders.indexOf(shader); if ( i !== -1 ) { shaders.splice( i, 1 ); } }, removeAll: function(shader) { // probably want to clean up the shaders, too, but not for now shaders = []; }, bindShaderParameters: function(scene) { for (var i = 0; i < shaders.length; i++) // Changed for Qt { shaders[i].bindParameters(scene); } }, update : function(scene, camera) { for (var i = 0; i < shaders.length; i++) // Changed for Qt { shaders[i].update(scene, camera); } }, }; })(); // Construction/initialization THREE.glTFShader = function(material, params, object, scene) { this.material = material; this.parameters = params.parameters; this.program = params.program; this.joints = params.joints; this.object = object; this.semantics = {}; this.m4 = new THREE.Matrix4; } // bindParameters - connect the uniform values to their source parameters THREE.glTFShader.prototype.bindParameters = function(scene) { function findObject(o, param) { if (o.glTFID == param.source) { param.sourceObject = o; } } for (var uniform in this.program.uniforms) { var pname = this.program.uniforms[uniform]; var param = this.parameters[pname]; if (param.semantic) { if (param.source) { scene.traverse(function(o) { findObject(o, param)}); } else { param.sourceObject = this.object; } param.uniform = this.material.uniforms[uniform]; this.semantics[pname] = param; if (param.semantic == "JOINTMATRIX") { var m4v = param.uniform.value; for (var vi = 0; vi < m4v.length; vi++) { m4v[vi] = this.joints[vi].matrix; } } //console.log("parameter:", pname, param ); } } } // Update - update all the uniform values THREE.glTFShader.prototype.update = function(scene, camera) { for (var sname in this.semantics) { var semantic = this.semantics[sname]; if (semantic && semantic.sourceObject) { switch (semantic.semantic) { case "MODELVIEW" : var m4 = semantic.uniform.value; m4.multiplyMatrices( camera.matrixWorldInverse, semantic.sourceObject.matrixWorld ); break; case "MODELVIEWINVERSETRANSPOSE" : var m3 = semantic.uniform.value; this.m4.multiplyMatrices( camera.matrixWorldInverse, semantic.sourceObject.matrixWorld ); m3.getNormalMatrix( this.m4 ); break; case "PROJECTION" : var m4 = semantic.uniform.value; m4.copy(camera.projectionMatrix); break; case "JOINTMATRIX" : /* var m4v = semantic.uniform.value; for (var mi = 0; mi < m4v.length; mi++) { m4v[mi].copy(this.joints[mi].matrixWorld); } */ //console.log("Joint:", semantic) break; default : //console.log("Unhandled shader semantic", semantic) break; } } } }