// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/execution/frames.h" #include #include #include #include "src/api/api-arguments.h" #include "src/api/api-natives.h" #include "src/base/bits.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/linkage-location.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/maglev-safepoint-table.h" #include "src/codegen/register-configuration.h" #include "src/codegen/safepoint-table.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/arguments.h" #include "src/execution/frame-constants.h" #include "src/execution/frames-inl.h" #include "src/execution/vm-state-inl.h" #include "src/ic/ic-stats.h" #include "src/logging/counters.h" #include "src/objects/code.h" #include "src/objects/slots.h" #include "src/objects/smi.h" #include "src/objects/visitors.h" #include "src/snapshot/embedded/embedded-data-inl.h" #include "src/strings/string-stream.h" #include "src/zone/zone-containers.h" #if V8_ENABLE_WEBASSEMBLY #include "src/debug/debug-wasm-objects.h" #include "src/wasm/serialized-signature-inl.h" #include "src/wasm/stacks.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects-inl.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = nullptr; namespace { Address AddressOf(const StackHandler* handler) { Address raw = handler->address(); #ifdef V8_USE_ADDRESS_SANITIZER // ASan puts C++-allocated StackHandler markers onto its fake stack. // We work around that by storing the real stack address in the "padding" // field. StackHandlers allocated from generated code have 0 as padding. Address padding = base::Memory
(raw + StackHandlerConstants::kPaddingOffset); if (padding != 0) return padding; #endif return raw; } } // namespace // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { #if V8_ENABLE_WEBASSEMBLY // Make sure the handler has already been unwound to this frame. With stack // switching this is not equivalent to the inequality below, because the // frame and the handler could be in different stacks. DCHECK_IMPLIES(!v8_flags.experimental_wasm_stack_switching, frame->sp() <= AddressOf(handler)); // For CWasmEntry frames, the handler was registered by the last C++ // frame (Execution::CallWasm), so even though its address is already // beyond the limit, we know we always want to unwind one handler. if (frame->is_c_wasm_entry()) handler_ = handler_->next(); #else // Make sure the handler has already been unwound to this frame. DCHECK_LE(frame->sp(), AddressOf(handler)); #endif // V8_ENABLE_WEBASSEMBLY } StackHandler* handler() const { return handler_; } bool done() { return handler_ == nullptr || AddressOf(handler_) > limit_; } void Advance() { DCHECK(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr), handler_(nullptr) {} #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIterator(isolate, isolate->thread_local_top()) {} StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate) { Reset(t); } #if V8_ENABLE_WEBASSEMBLY StackFrameIterator::StackFrameIterator(Isolate* isolate, wasm::StackMemory* stack) : StackFrameIteratorBase(isolate) { Reset(isolate->thread_local_top(), stack); } #endif void StackFrameIterator::Advance() { DCHECK(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. Except for wasm stack-switching: // we stop at the end of the current segment. #if V8_ENABLE_WEBASSEMBLY DCHECK_IMPLIES(done() && !v8_flags.experimental_wasm_stack_switching, handler_ == nullptr); #else DCHECK_IMPLIES(done(), handler_ == nullptr); #endif } StackFrame* StackFrameIterator::Reframe() { StackFrame::Type type = ComputeStackFrameType(&frame_->state_); frame_ = SingletonFor(type, &frame_->state_); return frame(); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(type, &state); } #if V8_ENABLE_WEBASSEMBLY void StackFrameIterator::Reset(ThreadLocalTop* top, wasm::StackMemory* stack) { if (stack->jmpbuf()->state == wasm::JumpBuffer::Retired) { return; } StackFrame::State state; StackSwitchFrame::GetStateForJumpBuffer(stack->jmpbuf(), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(StackFrame::STACK_SWITCH, &state); } #endif StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { StackFrame* result = SingletonFor(type); DCHECK((!result) == (type == StackFrame::NO_FRAME_TYPE)); if (result) result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: \ return &field##_; switch (type) { case StackFrame::NO_FRAME_TYPE: return nullptr; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return nullptr; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- void TypedFrameWithJSLinkage::Iterate(RootVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } // ------------------------------------------------------------------------- void JavaScriptStackFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } // ------------------------------------------------------------------------- DebuggableStackFrameIterator::DebuggableStackFrameIterator(Isolate* isolate) : iterator_(isolate) { if (!done() && !IsValidFrame(iterator_.frame())) Advance(); } DebuggableStackFrameIterator::DebuggableStackFrameIterator(Isolate* isolate, StackFrameId id) : DebuggableStackFrameIterator(isolate) { while (!done() && frame()->id() != id) Advance(); } void DebuggableStackFrameIterator::Advance() { do { iterator_.Advance(); } while (!done() && !IsValidFrame(iterator_.frame())); } int DebuggableStackFrameIterator::FrameFunctionCount() const { DCHECK(!done()); if (!iterator_.frame()->is_optimized()) return 1; std::vector infos; TurbofanFrame::cast(iterator_.frame())->GetFunctions(&infos); return static_cast(infos.size()); } FrameSummary DebuggableStackFrameIterator::GetTopValidFrame() const { DCHECK(!done()); // Like FrameSummary::GetTop, but additionally observes // DebuggableStackFrameIterator filtering semantics. std::vector frames; frame()->Summarize(&frames); if (is_javascript()) { for (int i = static_cast(frames.size()) - 1; i >= 0; i--) { const FrameSummary& summary = frames[i]; if (summary.is_subject_to_debugging()) { return summary; } } UNREACHABLE(); } #if V8_ENABLE_WEBASSEMBLY if (is_wasm()) return frames.back(); #endif // V8_ENABLE_WEBASSEMBLY UNREACHABLE(); } // static bool DebuggableStackFrameIterator::IsValidFrame(StackFrame* frame) { if (frame->is_java_script()) { Tagged function = static_cast(frame)->function(); return function->shared()->IsSubjectToDebugging(); } #if V8_ENABLE_WEBASSEMBLY if (frame->is_wasm()) return true; #endif // V8_ENABLE_WEBASSEMBLY return false; } // ------------------------------------------------------------------------- namespace { base::Optional IsInterpreterFramePc(Isolate* isolate, Address pc, StackFrame::State* state) { Builtin builtin = OffHeapInstructionStream::TryLookupCode(isolate, pc); if (builtin != Builtin::kNoBuiltinId && (builtin == Builtin::kInterpreterEntryTrampoline || builtin == Builtin::kInterpreterEnterAtBytecode || builtin == Builtin::kInterpreterEnterAtNextBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtNextBytecode)) { return true; } else if (v8_flags.interpreted_frames_native_stack) { intptr_t marker = Memory( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Tagged maybe_function = Object( Memory
(state->fp + StandardFrameConstants::kFunctionOffset)); // There's no need to run a full ContainsSlow if we know the frame can't be // an InterpretedFrame, so we do these fast checks first if (StackFrame::IsTypeMarker(marker) || IsSmi(maybe_function)) { return false; } else if (!isolate->heap()->InSpaceSlow(pc, CODE_SPACE)) { return false; } if (!ThreadIsolation::CanLookupStartOfJitAllocationAt(pc)) { return {}; } Tagged interpreter_entry_trampoline = isolate->heap()->FindCodeForInnerPointer(pc); return interpreter_entry_trampoline->is_interpreter_trampoline_builtin(); } else { return false; } } } // namespace bool StackFrameIteratorForProfiler::IsNoFrameBytecodeHandlerPc( Isolate* isolate, Address pc, Address fp) const { EmbeddedData d = EmbeddedData::FromBlob(isolate); if (pc < d.InstructionStartOfBytecodeHandlers() || pc >= d.InstructionEndOfBytecodeHandlers()) { return false; } Address frame_type_address = fp + CommonFrameConstants::kContextOrFrameTypeOffset; if (!IsValidStackAddress(frame_type_address)) { return false; } // Check if top stack frame is a bytecode handler stub frame. MSAN_MEMORY_IS_INITIALIZED(frame_type_address, kSystemPointerSize); intptr_t marker = Memory(frame_type_address); if (StackFrame::IsTypeMarker(marker) && StackFrame::MarkerToType(marker) == StackFrame::STUB) { // Bytecode handler built a frame. return false; } return true; } StackFrameIteratorForProfiler::StackFrameIteratorForProfiler( Isolate* isolate, Address pc, Address fp, Address sp, Address lr, Address js_entry_sp) : StackFrameIteratorBase(isolate), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NO_FRAME_TYPE), external_callback_scope_(isolate->external_callback_scope()), top_link_register_(lr) { if (!isolate->isolate_data()->stack_is_iterable()) { // The stack is not iterable in a short time interval during deoptimization. // See also: ExternalReference::stack_is_iterable_address. DCHECK(done()); return; } // For Advance below, we need frame_ to be set; and that only happens if the // type is not NO_FRAME_TYPE. // TODO(jgruber): Clean this up. static constexpr StackFrame::Type kTypeForAdvance = StackFrame::TURBOFAN; StackFrame::State state; StackFrame::Type type; ThreadLocalTop* const top = isolate->thread_local_top(); bool advance_frame = true; const Address fast_c_fp = isolate->isolate_data()->fast_c_call_caller_fp(); if (fast_c_fp != kNullAddress) { // 'Fast C calls' are a special type of C call where we call directly from // JS to C without an exit frame inbetween. The CEntryStub is responsible // for setting Isolate::c_entry_fp, meaning that it won't be set for fast C // calls. To keep the stack iterable, we store the FP and PC of the caller // of the fast C call on the isolate. This is guaranteed to be the topmost // JS frame, because fast C calls cannot call back into JS. We start // iterating the stack from this topmost JS frame. DCHECK_NE(kNullAddress, isolate->isolate_data()->fast_c_call_caller_pc()); state.fp = fast_c_fp; state.sp = sp; state.pc_address = reinterpret_cast( isolate->isolate_data()->fast_c_call_caller_pc_address()); // ComputeStackFrameType will read both kContextOffset and // kFunctionOffset, we check only that kFunctionOffset is within the stack // bounds and do a compile time check that kContextOffset slot is pushed on // the stack before kFunctionOffset. static_assert(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); if (IsValidStackAddress(state.fp + StandardFrameConstants::kFunctionOffset)) { type = ComputeStackFrameType(&state); if (IsValidFrameType(type)) { top_frame_type_ = type; advance_frame = false; } } else { // Cannot determine the actual type; the frame will be skipped below. type = kTypeForAdvance; } } else if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { DCHECK_NE(fp, kNullAddress); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation(reinterpret_cast( fp + StandardFrameConstants::kCallerPCOffset)); // If the current PC is in a bytecode handler, the top stack frame isn't // the bytecode handler's frame and the top of stack or link register is a // return address into the interpreter entry trampoline, then we are likely // in a bytecode handler with elided frame. In that case, set the PC // properly and make sure we do not drop the frame. bool is_no_frame_bytecode_handler = false; bool cant_lookup_frame_type = false; if (IsNoFrameBytecodeHandlerPc(isolate, pc, fp)) { Address* top_location = nullptr; if (top_link_register_) { top_location = &top_link_register_; } else if (IsValidStackAddress(sp)) { MSAN_MEMORY_IS_INITIALIZED(sp, kSystemPointerSize); top_location = reinterpret_cast(sp); } base::Optional is_interpreter_frame_pc = IsInterpreterFramePc(isolate, *top_location, &state); // Since we're in a signal handler, the pc lookup might not be possible // since the required locks are taken by the same thread. if (!is_interpreter_frame_pc.has_value()) { cant_lookup_frame_type = true; } else if (is_interpreter_frame_pc.value()) { state.pc_address = top_location; is_no_frame_bytecode_handler = true; advance_frame = false; } } // ComputeStackFrameType will read both kContextOffset and // kFunctionOffset, we check only that kFunctionOffset is within the stack // bounds and do a compile time check that kContextOffset slot is pushed on // the stack before kFunctionOffset. static_assert(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); Address function_slot = fp + StandardFrameConstants::kFunctionOffset; if (cant_lookup_frame_type) { type = StackFrame::NO_FRAME_TYPE; } else if (IsValidStackAddress(function_slot)) { if (is_no_frame_bytecode_handler) { type = StackFrame::INTERPRETED; } else { type = ComputeStackFrameType(&state); } top_frame_type_ = type; } else { // Cannot determine the actual type; the frame will be skipped below. type = kTypeForAdvance; } } else { // Not iterable. DCHECK(done()); return; } frame_ = SingletonFor(type, &state); if (advance_frame && !done()) { Advance(); } } bool StackFrameIteratorForProfiler::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == kNullAddress) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void StackFrameIteratorForProfiler::AdvanceOneFrame() { DCHECK(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = nullptr; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); if (!frame_) return; // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) { frame_ = nullptr; } } bool StackFrameIteratorForProfiler::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool StackFrameIteratorForProfiler::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_construct_entry()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address next_exit_frame_fp_address = frame->fp() + EntryFrameConstants::kNextExitFrameFPOffset; // Profiling tick might be triggered in the middle of JSEntry builtin // before the next_exit_frame_fp value is initialized. IsValidExitFrame() // is able to deal with such a case, so just suppress the MSan warning. MSAN_MEMORY_IS_INITIALIZED(next_exit_frame_fp_address, kSystemPointerSize); Address next_exit_frame_fp = Memory
(next_exit_frame_fp_address); if (!IsValidExitFrame(next_exit_frame_fp)) return false; } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != nullptr; } bool StackFrameIteratorForProfiler::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address)); return *state.pc_address != kNullAddress; } void StackFrameIteratorForProfiler::Advance() { while (true) { AdvanceOneFrame(); if (done()) break; ExternalCallbackScope* last_callback_scope = nullptr; while (external_callback_scope_ != nullptr && external_callback_scope_->scope_address() < frame_->fp()) { // As long as the setup of a frame is not atomic, we may happen to be // in an interval where an ExternalCallbackScope is already created, // but the frame is not yet entered. So we are actually observing // the previous frame. // Skip all the ExternalCallbackScope's that are below the current fp. last_callback_scope = external_callback_scope_; external_callback_scope_ = external_callback_scope_->previous(); } if (frame_->is_java_script()) break; #if V8_ENABLE_WEBASSEMBLY if (frame_->is_wasm() || frame_->is_wasm_to_js() || frame_->is_js_to_wasm()) { break; } #endif // V8_ENABLE_WEBASSEMBLY if (frame_->is_exit() || frame_->is_builtin_exit() || frame_->is_api_callback_exit()) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (last_callback_scope) { frame_->state_.pc_address = last_callback_scope->callback_entrypoint_address(); } break; } } } StackFrameIteratorForProfilerForTesting:: StackFrameIteratorForProfilerForTesting(Isolate* isolate, Address pc, Address fp, Address sp, Address lr, Address js_entry_sp) : StackFrameIteratorForProfiler(isolate, pc, fp, sp, lr, js_entry_sp) {} void StackFrameIteratorForProfilerForTesting::Advance() { StackFrameIteratorForProfiler::Advance(); } // ------------------------------------------------------------------------- namespace { base::Optional GetContainingCode(Isolate* isolate, Address pc) { return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code; } } // namespace Tagged StackFrame::GcSafeLookupCode() const { base::Optional result = GetContainingCode(isolate(), pc()); DCHECK_GE(pc(), result->InstructionStart(isolate(), pc())); DCHECK_LT(pc(), result->InstructionEnd(isolate(), pc())); return result.value(); } Tagged StackFrame::LookupCode() const { DCHECK_NE(isolate()->heap()->gc_state(), Heap::MARK_COMPACT); return GcSafeLookupCode()->UnsafeCastToCode(); } void StackFrame::IteratePc(RootVisitor* v, Address* pc_address, Address* constant_pool_address, Tagged holder) const { const Address old_pc = ReadPC(pc_address); DCHECK_GE(old_pc, holder->InstructionStart(isolate(), old_pc)); DCHECK_LT(old_pc, holder->InstructionEnd(isolate(), old_pc)); // Keep the old pc offset before visiting the code since we need it to // calculate the new pc after a potential InstructionStream move. const uintptr_t pc_offset_from_start = old_pc - holder->instruction_start(); // Visit. Tagged visited_holder = holder; PtrComprCageBase code_cage_base{isolate()->code_cage_base()}; const Tagged old_istream = holder->raw_instruction_stream(code_cage_base); Tagged visited_istream = old_istream; v->VisitRunningCode(FullObjectSlot{&visited_holder}, FullObjectSlot{&visited_istream}); if (visited_istream == old_istream) { // Note this covers two important cases: // 1. the associated InstructionStream object did not move, and // 2. `holder` is an embedded builtin and has no InstructionStream. return; } DCHECK(visited_holder->has_instruction_stream()); Tagged istream = InstructionStream::unchecked_cast(visited_istream); const Address new_pc = istream->instruction_start() + pc_offset_from_start; // TODO(v8:10026): avoid replacing a signed pointer. PointerAuthentication::ReplacePC(pc_address, new_pc, kSystemPointerSize); if (V8_EMBEDDED_CONSTANT_POOL_BOOL && constant_pool_address != nullptr) { *constant_pool_address = visited_holder->constant_pool(istream); } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { DCHECK_NULL(return_address_location_resolver_); return_address_location_resolver_ = resolver; } namespace { StackFrame::Type ComputeBuiltinFrameType(Tagged code) { if (code->is_interpreter_trampoline_builtin() || code->is_baseline_trampoline_builtin()) { // Frames for baseline entry trampolines on the stack are still interpreted // frames. return StackFrame::INTERPRETED; } else if (code->is_baseline_leave_frame_builtin()) { return StackFrame::BASELINE; } else if (code->is_turbofanned()) { // TODO(bmeurer): We treat frames for BUILTIN Code objects as // OptimizedFrame for now (all the builtins with JavaScript linkage are // actually generated with TurboFan currently, so this is sound). return StackFrame::TURBOFAN; } return StackFrame::BUILTIN; } StackFrame::Type SafeStackFrameType(StackFrame::Type candidate) { DCHECK_LE(static_cast(candidate), StackFrame::NUMBER_OF_TYPES); switch (candidate) { case StackFrame::API_CALLBACK_EXIT: case StackFrame::BUILTIN_CONTINUATION: case StackFrame::BUILTIN_EXIT: case StackFrame::CONSTRUCT: case StackFrame::FAST_CONSTRUCT: case StackFrame::CONSTRUCT_ENTRY: case StackFrame::ENTRY: case StackFrame::EXIT: case StackFrame::INTERNAL: case StackFrame::IRREGEXP: case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION: case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case StackFrame::STUB: return candidate; #if V8_ENABLE_WEBASSEMBLY case StackFrame::JS_TO_WASM: case StackFrame::STACK_SWITCH: case StackFrame::WASM: case StackFrame::WASM_DEBUG_BREAK: case StackFrame::WASM_EXIT: case StackFrame::WASM_LIFTOFF_SETUP: case StackFrame::WASM_TO_JS: return candidate; #endif // V8_ENABLE_WEBASSEMBLY // Any other marker value is likely to be a bogus stack frame when being // called from the profiler (in particular, JavaScript frames, including // interpreted frames, should never have a StackFrame::Type marker). // Consider these frames "native". // TODO(jgruber): For the StackFrameIterator, I'm not sure this fallback // makes sense. Shouldn't we know how to handle all frames we encounter // there? case StackFrame::BASELINE: case StackFrame::BUILTIN: case StackFrame::INTERPRETED: case StackFrame::MAGLEV: case StackFrame::MANUAL: case StackFrame::NATIVE: case StackFrame::NO_FRAME_TYPE: case StackFrame::NUMBER_OF_TYPES: case StackFrame::TURBOFAN: case StackFrame::TURBOFAN_STUB_WITH_CONTEXT: #if V8_ENABLE_WEBASSEMBLY case StackFrame::C_WASM_ENTRY: case StackFrame::WASM_TO_JS_FUNCTION: #endif // V8_ENABLE_WEBASSEMBLY return StackFrame::NATIVE; } UNREACHABLE(); } } // namespace StackFrame::Type StackFrameIterator::ComputeStackFrameType( StackFrame::State* state) const { #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { DCHECK(v8_flags.experimental_wasm_stack_switching); return StackFrame::NO_FRAME_TYPE; } #endif const Address pc = StackFrame::ReadPC(state->pc_address); #if V8_ENABLE_WEBASSEMBLY // If the {pc} does not point into WebAssembly code we can rely on the // returned {wasm_code} to be null and fall back to {GetContainingCode}. wasm::WasmCodeRefScope code_ref_scope; if (wasm::WasmCode* wasm_code = wasm::GetWasmCodeManager()->LookupCode(pc)) { switch (wasm_code->kind()) { case wasm::WasmCode::kWasmFunction: return StackFrame::WASM; case wasm::WasmCode::kWasmToCapiWrapper: return StackFrame::WASM_EXIT; case wasm::WasmCode::kWasmToJsWrapper: return StackFrame::WASM_TO_JS; default: UNREACHABLE(); } } #endif // V8_ENABLE_WEBASSEMBLY // Look up the code object to figure out the type of the stack frame. base::Optional lookup_result = GetContainingCode(isolate(), pc); if (!lookup_result.has_value()) return StackFrame::NATIVE; MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); const intptr_t marker = Memory( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); switch (lookup_result->kind()) { case CodeKind::BUILTIN: { if (StackFrame::IsTypeMarker(marker)) break; return ComputeBuiltinFrameType(lookup_result.value()); } case CodeKind::BASELINE: return StackFrame::BASELINE; case CodeKind::MAGLEV: if (StackFrame::IsTypeMarker(marker)) { // An INTERNAL frame can be set up with an associated Maglev code // object when calling into runtime to handle tiering. In this case, // all stack slots are tagged pointers and should be visited through // the usual logic. DCHECK_EQ(StackFrame::MarkerToType(marker), StackFrame::INTERNAL); return StackFrame::INTERNAL; } return StackFrame::MAGLEV; case CodeKind::TURBOFAN: return StackFrame::TURBOFAN; #if V8_ENABLE_WEBASSEMBLY case CodeKind::JS_TO_WASM_FUNCTION: if (lookup_result->builtin_id() == Builtin::kJSToWasmWrapperAsm) { return StackFrame::JS_TO_WASM; } return StackFrame::TURBOFAN_STUB_WITH_CONTEXT; case CodeKind::JS_TO_JS_FUNCTION: return StackFrame::TURBOFAN_STUB_WITH_CONTEXT; case CodeKind::C_WASM_ENTRY: return StackFrame::C_WASM_ENTRY; case CodeKind::WASM_TO_JS_FUNCTION: return StackFrame::WASM_TO_JS_FUNCTION; case CodeKind::WASM_FUNCTION: case CodeKind::WASM_TO_CAPI_FUNCTION: // These never appear as on-heap Code objects. UNREACHABLE(); #else case CodeKind::C_WASM_ENTRY: case CodeKind::JS_TO_JS_FUNCTION: case CodeKind::JS_TO_WASM_FUNCTION: case CodeKind::WASM_FUNCTION: case CodeKind::WASM_TO_CAPI_FUNCTION: case CodeKind::WASM_TO_JS_FUNCTION: UNREACHABLE(); #endif // V8_ENABLE_WEBASSEMBLY case CodeKind::BYTECODE_HANDLER: case CodeKind::FOR_TESTING: case CodeKind::REGEXP: case CodeKind::INTERPRETED_FUNCTION: // Fall back to the marker. break; } return SafeStackFrameType(StackFrame::MarkerToType(marker)); } StackFrame::Type StackFrameIteratorForProfiler::ComputeStackFrameType( StackFrame::State* state) const { #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { DCHECK(v8_flags.experimental_wasm_stack_switching); return StackFrame::NO_FRAME_TYPE; } #endif // We use unauthenticated_pc because it may come from // fast_c_call_caller_pc_address, for which authentication does not work. const Address pc = StackFrame::unauthenticated_pc(state->pc_address); #if V8_ENABLE_WEBASSEMBLY Code wrapper = isolate()->builtins()->code(Builtin::kWasmToJsWrapperCSA); if (pc >= wrapper.instruction_start() && pc <= wrapper.instruction_end()) { return StackFrame::WASM_TO_JS; } #endif // V8_ENABLE_WEBASSEMBLY MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); const intptr_t marker = Memory( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); if (StackFrame::IsTypeMarker(marker)) { if (static_cast(marker) > StackFrame::NUMBER_OF_TYPES) { // We've read some bogus value from the stack. return StackFrame::NATIVE; } return SafeStackFrameType(StackFrame::MarkerToType(marker)); } MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Tagged maybe_function = Object( Memory
(state->fp + StandardFrameConstants::kFunctionOffset)); if (IsSmi(maybe_function)) { return StackFrame::NATIVE; } base::Optional is_interpreter_frame = IsInterpreterFramePc(isolate(), pc, state); // We might not be able to lookup the frame type since we're inside a signal // handler and the required locks are taken. if (!is_interpreter_frame.has_value()) { return StackFrame::NO_FRAME_TYPE; } if (is_interpreter_frame.value()) { return StackFrame::INTERPRETED; } return StackFrame::TURBOFAN; } StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return iterator_->ComputeStackFrameType(state); } Address CommonFrame::GetCallerStackPointer() const { return fp() + CommonFrameConstants::kCallerSPOffset; } void NativeFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = Memory
(fp() + CommonFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + CommonFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; state->constant_pool_address = nullptr; } Tagged EntryFrame::unchecked_code() const { return isolate()->builtins()->code(Builtin::kJSEntry); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } StackFrame::Type EntryFrame::GetCallerState(State* state) const { Address next_exit_frame_fp = Memory
(fp() + EntryFrameConstants::kNextExitFrameFPOffset); return ExitFrame::GetStateForFramePointer(next_exit_frame_fp, state); } #if V8_ENABLE_WEBASSEMBLY StackFrame::Type CWasmEntryFrame::GetCallerState(State* state) const { const int offset = CWasmEntryFrameConstants::kCEntryFPOffset; Address fp = Memory
(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } #endif // V8_ENABLE_WEBASSEMBLY Tagged ConstructEntryFrame::unchecked_code() const { return isolate()->builtins()->code(Builtin::kJSConstructEntry); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory
(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { state->constant_pool_address = reinterpret_cast( fp() + ExitFrameConstants::kConstantPoolOffset); } } void ExitFrame::Iterate(RootVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NO_FRAME_TYPE; StackFrame::Type type = ComputeFrameType(fp); #if V8_ENABLE_WEBASSEMBLY Address sp = type == WASM_EXIT ? WasmExitFrame::ComputeStackPointer(fp) : ExitFrame::ComputeStackPointer(fp); #else Address sp = ExitFrame::ComputeStackPointer(fp); #endif // V8_ENABLE_WEBASSEMBLY FillState(fp, sp, state); DCHECK_NE(*state->pc_address, kNullAddress); return type; } StackFrame::Type ExitFrame::ComputeFrameType(Address fp) { // Distinguish between different exit frame types. // Default to EXIT in all hairy cases (e.g., when called from profiler). const int offset = ExitFrameConstants::kFrameTypeOffset; Tagged marker(Memory
(fp + offset)); if (!IsSmi(marker)) { return EXIT; } intptr_t marker_int = base::bit_cast(marker); StackFrame::Type frame_type = static_cast(marker_int >> 1); switch (frame_type) { case BUILTIN_EXIT: case API_CALLBACK_EXIT: #if V8_ENABLE_WEBASSEMBLY case WASM_EXIT: case STACK_SWITCH: #endif // V8_ENABLE_WEBASSEMBLY return frame_type; default: return EXIT; } } Address ExitFrame::ComputeStackPointer(Address fp) { MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kSystemPointerSize); return Memory
(fp + ExitFrameConstants::kSPOffset); } #if V8_ENABLE_WEBASSEMBLY Address WasmExitFrame::ComputeStackPointer(Address fp) { // For WASM_EXIT frames, {sp} is only needed for finding the PC slot, // everything else is handled via safepoint information. Address sp = fp + WasmExitFrameConstants::kWasmInstanceOffset; DCHECK_EQ(sp - 1 * kPCOnStackSize, fp + WasmExitFrameConstants::kCallingPCOffset); return sp; } #endif // V8_ENABLE_WEBASSEMBLY void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(sp - 1 * kPCOnStackSize)); state->callee_pc_address = nullptr; // The constant pool recorded in the exit frame is not associated // with the pc in this state (the return address into a C entry // stub). ComputeCallerState will retrieve the constant pool // together with the associated caller pc. state->constant_pool_address = nullptr; } void BuiltinExitFrame::Summarize(std::vector* frames) const { DCHECK(frames->empty()); Handle parameters = GetParameters(); DisallowGarbageCollection no_gc; Tagged code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), AbstractCode::cast(code), code_offset, IsConstructor(), *parameters); frames->push_back(summary); } Tagged BuiltinExitFrame::function() const { return JSFunction::cast(target_slot_object()); } Tagged BuiltinExitFrame::receiver() const { return receiver_slot_object(); } Tagged BuiltinExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = BuiltinExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; return Object(Memory
(fp() + offset)); } int BuiltinExitFrame::ComputeParametersCount() const { Tagged argc_slot = argc_slot_object(); DCHECK(IsSmi(argc_slot)); // Argc also counts the receiver, target, new target, and argc itself as args, // therefore the real argument count is argc - 4. int argc = Smi::ToInt(argc_slot) - 4; DCHECK_GE(argc, 0); return argc; } Handle BuiltinExitFrame::GetParameters() const { if (V8_LIKELY(!v8_flags.detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); auto parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } bool BuiltinExitFrame::IsConstructor() const { return !IsUndefined(new_target_slot_object(), isolate()); } // Ensure layout of v8::FunctionCallbackInfo is in sync with // ApiCallbackExitFrameConstants. static_assert( ApiCallbackExitFrameConstants::kFunctionCallbackInfoNewTargetIndex == FunctionCallbackArguments::kNewTargetIndex); static_assert(ApiCallbackExitFrameConstants::kFunctionCallbackInfoArgsLength == FunctionCallbackArguments::kArgsLength); Tagged ApiCallbackExitFrame::target() const { Tagged function = *target_slot(); DCHECK(IsJSFunction(function) || IsFunctionTemplateInfo(function)); return HeapObject::cast(function); } void ApiCallbackExitFrame::set_target(Tagged function) const { DCHECK(IsJSFunction(function) || IsFunctionTemplateInfo(function)); target_slot().store(function); } Handle ApiCallbackExitFrame::GetFunction() const { Tagged maybe_function = target(); if (IsJSFunction(maybe_function)) { return Handle(target_slot().location()); } DCHECK(IsFunctionTemplateInfo(maybe_function)); Handle function_template_info( FunctionTemplateInfo::cast(maybe_function), isolate()); // Instantiate function for the correct context. DCHECK(IsContext(*context_slot())); Handle native_context( Context::cast(*context_slot())->native_context(), isolate()); Handle function = ApiNatives::InstantiateFunction(isolate(), native_context, function_template_info) .ToHandleChecked(); set_target(*function); return function; } Tagged ApiCallbackExitFrame::receiver() const { return *receiver_slot(); } Tagged ApiCallbackExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = ApiCallbackExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; return Object(Memory
(fp() + offset)); } int ApiCallbackExitFrame::ComputeParametersCount() const { Tagged argc_value = *argc_slot(); DCHECK(IsSmi(argc_value)); int argc = Smi::ToInt(argc_value); DCHECK_GE(argc, 0); return argc; } Handle ApiCallbackExitFrame::GetParameters() const { if (V8_LIKELY(!v8_flags.detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); auto parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } bool ApiCallbackExitFrame::IsConstructor() const { return !IsUndefined(*new_target_slot(), isolate()); } void ApiCallbackExitFrame::Summarize(std::vector* frames) const { DCHECK(frames->empty()); Handle parameters = GetParameters(); Handle function = GetFunction(); DisallowGarbageCollection no_gc; Tagged code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), *function, AbstractCode::cast(code), code_offset, IsConstructor(), *parameters); frames->push_back(summary); } namespace { void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode, int index) { accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index); } const char* StringForStackFrameType(StackFrame::Type type) { switch (type) { #define CASE(value, name) \ case StackFrame::value: \ return #name; STACK_FRAME_TYPE_LIST(CASE) #undef CASE default: UNREACHABLE(); } } } // namespace void StackFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; PrintIndex(accumulator, mode, index); accumulator->Add(StringForStackFrameType(type())); accumulator->Add(" [pc: %p]\n", reinterpret_cast(pc())); } void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; Tagged receiver = this->receiver(); Tagged function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); accumulator->Add("builtin exit frame: "); if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } void ApiCallbackExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { Handle function = GetFunction(); DisallowGarbageCollection no_gc; Tagged receiver = this->receiver(); accumulator->PrintSecurityTokenIfChanged(*function); PrintIndex(accumulator, mode, index); accumulator->Add("api callback exit frame: "); if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(*function, receiver); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } Address CommonFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Address UnoptimizedFrame::GetExpressionAddress(int n) const { const int offset = UnoptimizedFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Tagged CommonFrame::context() const { return ReadOnlyRoots(isolate()).undefined_value(); } int CommonFrame::position() const { Tagged code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); return AbstractCode::cast(code)->SourcePosition(isolate(), code_offset); } int CommonFrame::ComputeExpressionsCount() const { Address base = GetExpressionAddress(0); Address limit = sp() - kSystemPointerSize; DCHECK(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kSystemPointerSize); } void CommonFrame::ComputeCallerState(State* state) const { state->fp = caller_fp(); #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { // An empty FP signals the first frame of a stack segment. The caller is // on a different stack, or is unbound (suspended stack). DCHECK(v8_flags.experimental_wasm_stack_switching); return; } #endif state->sp = caller_sp(); state->pc_address = ResolveReturnAddressLocation(reinterpret_cast( fp() + StandardFrameConstants::kCallerPCOffset)); state->callee_fp = fp(); state->callee_pc_address = pc_address(); state->constant_pool_address = reinterpret_cast( fp() + StandardFrameConstants::kConstantPoolOffset); } void CommonFrame::Summarize(std::vector* functions) const { // This should only be called on frames which override this method. UNREACHABLE(); } namespace { void VisitSpillSlot(Isolate* isolate, RootVisitor* v, FullObjectSlot spill_slot) { #ifdef V8_COMPRESS_POINTERS PtrComprCageBase cage_base(isolate); bool was_compressed = false; // Spill slots may contain compressed values in which case the upper // 32-bits will contain zeros. In order to simplify handling of such // slots in GC we ensure that the slot always contains full value. // The spill slot may actually contain weak references so we load/store // values using spill_slot.location() in order to avoid dealing with // FullMaybeObjectSlots here. if (V8_EXTERNAL_CODE_SPACE_BOOL) { // When external code space is enabled the spill slot could contain both // InstructionStream and non-InstructionStream references, which have // different cage bases. So unconditional decompression of the value might // corrupt InstructionStream pointers. However, given that 1) the // InstructionStream pointers are never compressed by design (because // otherwise we wouldn't know which cage base to apply for // decompression, see respective DCHECKs in // RelocInfo::target_object()), // 2) there's no need to update the upper part of the full pointer // because if it was there then it'll stay the same, // we can avoid updating upper part of the spill slot if it already // contains full value. // TODO(v8:11880): Remove this special handling by enforcing builtins // to use CodeTs instead of InstructionStream objects. Address value = *spill_slot.location(); if (!HAS_SMI_TAG(value) && value <= 0xffffffff) { // We don't need to update smi values or full pointers. was_compressed = true; *spill_slot.location() = V8HeapCompressionScheme::DecompressTagged( cage_base, static_cast(value)); if (DEBUG_BOOL) { // Ensure that the spill slot contains correct heap object. Tagged raw = HeapObject::cast(Object(*spill_slot.location())); MapWord map_word = raw->map_word(cage_base, kRelaxedLoad); Tagged forwarded = map_word.IsForwardingAddress() ? map_word.ToForwardingAddress(raw) : raw; bool is_self_forwarded = forwarded->map_word(cage_base, kRelaxedLoad) == MapWord::FromForwardingAddress(forwarded, forwarded); if (is_self_forwarded) { // The object might be in a self-forwarding state if it's located // in new large object space. GC will fix this at a later stage. CHECK(BasicMemoryChunk::FromHeapObject(forwarded) ->InNewLargeObjectSpace()); } else { Tagged forwarded_map = forwarded->map(cage_base); // The map might be forwarded as well. MapWord fwd_map_map_word = forwarded_map->map_word(cage_base, kRelaxedLoad); if (fwd_map_map_word.IsForwardingAddress()) { forwarded_map = fwd_map_map_word.ToForwardingAddress(forwarded_map); } CHECK(IsMap(forwarded_map, cage_base)); } } } } else { Address slot_contents = *spill_slot.location(); Tagged_t compressed_value = static_cast(slot_contents); if (!HAS_SMI_TAG(compressed_value)) { was_compressed = slot_contents <= 0xFFFFFFFF; // We don't need to update smi values. *spill_slot.location() = V8HeapCompressionScheme::DecompressTagged( cage_base, compressed_value); } } #endif v->VisitRootPointer(Root::kStackRoots, nullptr, spill_slot); #if V8_COMPRESS_POINTERS if (was_compressed) { // Restore compression. Generated code should be able to trust that // compressed spill slots remain compressed. *spill_slot.location() = V8HeapCompressionScheme::CompressObject(*spill_slot.location()); } #endif } void VisitSpillSlots(Isolate* isolate, RootVisitor* v, FullObjectSlot first_slot_offset, base::Vector tagged_slots) { FullObjectSlot slot_offset = first_slot_offset; for (uint8_t bits : tagged_slots) { while (bits) { const int bit = base::bits::CountTrailingZeros(bits); bits &= ~(1 << bit); FullObjectSlot spill_slot = slot_offset + bit; VisitSpillSlot(isolate, v, spill_slot); } slot_offset += kBitsPerByte; } } SafepointEntry GetSafepointEntryFromCodeCache( Isolate* isolate, Address inner_pointer, InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry) { if (!entry->safepoint_entry.is_initialized()) { entry->safepoint_entry = SafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer); DCHECK(entry->safepoint_entry.is_initialized()); } else { DCHECK_EQ( entry->safepoint_entry, SafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer)); } return entry->safepoint_entry; } MaglevSafepointEntry GetMaglevSafepointEntryFromCodeCache( Isolate* isolate, Address inner_pointer, InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry) { if (!entry->maglev_safepoint_entry.is_initialized()) { entry->maglev_safepoint_entry = MaglevSafepointTable::FindEntry( isolate, entry->code.value(), inner_pointer); DCHECK(entry->maglev_safepoint_entry.is_initialized()); } else { DCHECK_EQ(entry->maglev_safepoint_entry, MaglevSafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer)); } return entry->maglev_safepoint_entry; } } // namespace #ifdef V8_ENABLE_WEBASSEMBLY void WasmFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === WasmFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | (these can be tagged or untagged) // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_space // | spill_slot 0 | v // +-----------------+----------------------------------------- // | WasmFeedback(*) | <-- frame_header_base ^ // |- - - - - - - - -| | // | WasmInstance | | // |- - - - - - - - -| | // | Type Marker | | // |- - - - - - - - -| frame_header_size // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | <- tagged_parameter_limit v // +-----------------+----------------------------------------- // | in_param n | // | ... | // | in_param 0 | <-- first_tagged_parameter_slot // +-----------------+----------------------------------------- // // (*) Only if compiled by Liftoff and with --experimental-wasm-inlining. auto* wasm_code = wasm::GetWasmCodeManager()->LookupCode(pc()); DCHECK(wasm_code); SafepointTable table(wasm_code); SafepointEntry safepoint_entry = table.FindEntry(pc()); #ifdef DEBUG intptr_t marker = Memory(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(StackFrame::IsTypeMarker(marker)); StackFrame::Type type = StackFrame::MarkerToType(marker); DCHECK(type == WASM_TO_JS || type == WASM || type == WASM_EXIT); #endif // Determine the fixed header and spill slot area size. // The last value in the frame header is the calling PC, which should // not be visited. static_assert(WasmExitFrameConstants::kFixedSlotCountFromFp == WasmFrameConstants::kFixedSlotCountFromFp + 1, "WasmExitFrame has one slot more than WasmFrame"); int frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; if (wasm_code->is_liftoff() && wasm_code->frame_has_feedback_slot()) { // Frame has Wasm feedback slot. frame_header_size += kSystemPointerSize; } int spill_slot_space = wasm_code->stack_slots() * kSystemPointerSize - (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); // Fixed frame slots. FullObjectSlot frame_header_base(&Memory
(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory
(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory
(sp())); FullObjectSlot parameters_limit(frame_header_base.address() - spill_slot_space); // Visit the rest of the parameters if they are tagged. bool has_tagged_outgoing_params = wasm_code->kind() != wasm::WasmCode::kWasmFunction && wasm_code->kind() != wasm::WasmCode::kWasmToCapiWrapper; if (has_tagged_outgoing_params) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. DCHECK_GE((wasm_code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit tagged parameters that have been passed to the function of this // frame. Conceptionally these parameters belong to the parent frame. However, // the exact count is only known by this frame (in the presence of tail calls, // this information cannot be derived from the call site). if (wasm_code->num_tagged_parameter_slots() > 0) { FullObjectSlot tagged_parameter_base(&Memory
(caller_sp())); tagged_parameter_base += wasm_code->first_tagged_parameter_slot(); FullObjectSlot tagged_parameter_limit = tagged_parameter_base + wasm_code->num_tagged_parameter_slots(); v->VisitRootPointers(Root::kStackRoots, nullptr, tagged_parameter_base, tagged_parameter_limit); } // Visit the instance object. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base, frame_header_limit); } void TypedFrame::IterateParamsOfWasmToJSWrapper(RootVisitor* v) const { Tagged maybe_signature = Object( Memory
(fp() + WasmToJSWrapperConstants::kSignatureOffset)); // The signature slot contains a marker and not a signature, so there is // nothing we have to iterate here. if (IsSmi(maybe_signature)) { return; } FullObjectSlot sig_slot(fp() + WasmToJSWrapperConstants::kSignatureOffset); VisitSpillSlot(isolate(), v, sig_slot); // Load the signature, considering forward pointers. PtrComprCageBase cage_base(isolate()); Tagged raw = HeapObject::cast(maybe_signature); MapWord map_word = raw->map_word(cage_base, kRelaxedLoad); Tagged forwarded = map_word.IsForwardingAddress() ? map_word.ToForwardingAddress(raw) : raw; Tagged> sig = PodArray::cast(forwarded); size_t parameter_count = wasm::SerializedSignatureHelper::ParamCount(sig); wasm::LinkageLocationAllocator allocator(wasm::kGpParamRegisters, wasm::kFpParamRegisters, 0); // The first parameter is the instance, which we don't have to scan. We have // to tell the LinkageLocationAllocator about it though. allocator.Next(MachineRepresentation::kTaggedPointer); // Parameters are separated into two groups (first all untagged, then all // tagged parameters). Therefore we first have to iterate over the signature // first to process all untagged parameters, and afterwards we can scan the // tagged parameters. bool has_tagged_param = false; for (size_t i = 0; i < parameter_count; i++) { wasm::ValueType type = wasm::SerializedSignatureHelper::GetParam(sig, i); MachineRepresentation param = type.machine_representation(); // Skip tagged parameters (e.g. any-ref). if (IsAnyTagged(param)) { has_tagged_param = true; continue; } if (kSystemPointerSize == 8 || param != MachineRepresentation::kWord64) { allocator.Next(param); } else { allocator.Next(MachineRepresentation::kWord32); allocator.Next(MachineRepresentation::kWord32); } } // End the untagged area, so tagged slots come after. This means, especially, // that tagged parameters should not fill holes in the untagged area. allocator.EndSlotArea(); if (!has_tagged_param) return; #if V8_TARGET_ARCH_ARM64 constexpr size_t size_of_sig = 2; #else constexpr size_t size_of_sig = 1; #endif for (size_t i = 0; i < parameter_count; i++) { wasm::ValueType type = wasm::SerializedSignatureHelper::GetParam(sig, i); MachineRepresentation param = type.machine_representation(); // Skip untagged parameters. if (!IsAnyTagged(param)) continue; LinkageLocation l = allocator.Next(param); if (l.IsRegister()) { // Calculate the slot offset. int slot_offset = 0; // We have to do a reverse lookup in the kGPParamRegisters array. This // can be optimized if necessary. for (size_t i = 1; i < arraysize(wasm::kGpParamRegisters); ++i) { if (wasm::kGpParamRegisters[i].code() == l.AsRegister()) { // The first register (the instance) does not get spilled. slot_offset = static_cast(i) - 1; break; } } // Caller FP + return address + signature. size_t param_start_offset = 2 + size_of_sig; FullObjectSlot param_start(fp() + param_start_offset * kSystemPointerSize); FullObjectSlot tagged_slot = param_start + slot_offset; VisitSpillSlot(isolate(), v, tagged_slot); } else { // Caller frame slots have negative indices and start at -1. Flip it // back to a positive offset (to be added to the frame's FP to find the // slot). int slot_offset = -l.GetLocation() - 1; // Caller FP + return address + signature + spilled registers (without // the instance register). size_t slots_per_float64 = kDoubleSize / kSystemPointerSize; size_t param_start_offset = arraysize(wasm::kGpParamRegisters) - 1 + (arraysize(wasm::kFpParamRegisters) * slots_per_float64) + 2 + size_of_sig; // The wasm-to-js wrapper pushes all but the first gp parameter register // on the stack, so if the number of gp parameter registers is even, this // means that the wrapper pushed an odd number. In that case, and when the // size of a double on the stack is two words, then there is an alignment // word between the pushed gp registers and the pushed fp registers, so // that the whole spill area is double-size aligned. if (arraysize(wasm::kGpParamRegisters) % 2 == (0) && kSystemPointerSize != kDoubleSize) { param_start_offset++; } FullObjectSlot param_start(fp() + param_start_offset * kSystemPointerSize); FullObjectSlot tagged_slot = param_start + slot_offset; VisitSpillSlot(isolate(), v, tagged_slot); } } } #endif // V8_ENABLE_WEBASSEMBLY void TypedFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === TypedFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_count // | spill_slot 0 | v // +-----------------+----------------------------------------- // | Type Marker | <-- frame_header_base ^ // |- - - - - - - - -| | // | [Constant Pool] | | // |- - - - - - - - -| kFixedSlotCount // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged code = entry->code.value(); #if V8_ENABLE_WEBASSEMBLY if (code->is_builtin() && code->builtin_id() == Builtin::kWasmToJsWrapperCSA) { IterateParamsOfWasmToJSWrapper(v); } #endif // V8_ENABLE_WEBASSEMBLY DCHECK(code->is_turbofanned()); SafepointEntry safepoint_entry = GetSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG intptr_t marker = Memory(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Determine the fixed header and spill slot area size. int frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp; int spill_slots_size = code->stack_slots() * kSystemPointerSize - (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); // Fixed frame slots. FullObjectSlot frame_header_base(&Memory
(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory
(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory
(sp())); FullObjectSlot parameters_limit(frame_header_base.address() - spill_slots_size); // Visit the rest of the parameters. if (HasTaggedOutgoingParams(code)) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. DCHECK_GE((code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit fixed header region. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } void MaglevFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === MaglevFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | pushed_double n | <-- parameters_limit ^ // | ... | | // | pushed_double 0 | | // +- - - - - - - - -+ num_extra_spill_slots // | pushed_reg n | | // | ... | | // | pushed_reg 0 | <-- pushed_register_base v // +-----------------+----------------------------------------- // | untagged_slot n | ^ // | ... | | // | untagged_slot 0 | | // +- - - - - - - - -+ spill_slot_count // | tagged_slot n | | // | ... | | // | tagged_slot 0 | v // +-----------------+----------------------------------------- // | argc | <-- frame_header_base ^ // |- - - - - - - - -| | // | JSFunction | | // |- - - - - - - - -| | // | Context | | // |- - - - - - - - -| kFixedSlotCount // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged code = entry->code.value(); DCHECK(code->is_maglevved()); MaglevSafepointEntry maglev_safepoint_entry = GetMaglevSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG // Assert that it is a JS frame and it has a context. intptr_t marker = Memory(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(!StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Fixed frame slots. FullObjectSlot frame_header_base( &Memory
(fp() - StandardFrameConstants::kFixedFrameSizeFromFp)); FullObjectSlot frame_header_limit( &Memory
(fp() - StandardFrameConstants::kCPSlotSize)); // Determine spill slot area count. uint32_t tagged_slot_count = maglev_safepoint_entry.num_tagged_slots(); uint32_t spill_slot_count = tagged_slot_count + maglev_safepoint_entry.num_untagged_slots(); DCHECK_EQ(code->stack_slots(), StandardFrameConstants::kFixedSlotCount + maglev_safepoint_entry.num_tagged_slots() + maglev_safepoint_entry.num_untagged_slots()); // Visit the outgoing parameters if they are tagged. DCHECK(code->has_tagged_outgoing_params()); FullObjectSlot parameters_base(&Memory
(sp())); FullObjectSlot parameters_limit = frame_header_base - spill_slot_count - maglev_safepoint_entry.num_extra_spill_slots(); v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); // Maglev can also spill registers, tagged and untagged, just before making // a call. These are distinct from normal spill slots and live between the // normal spill slots and the pushed parameters. Some of these are tagged, // as indicated by the tagged register indexes, and should be visited too. if (maglev_safepoint_entry.num_extra_spill_slots() > 0) { FullObjectSlot pushed_register_base = frame_header_base - spill_slot_count - 1; uint32_t tagged_register_indexes = maglev_safepoint_entry.tagged_register_indexes(); while (tagged_register_indexes != 0) { int index = base::bits::CountTrailingZeros(tagged_register_indexes); tagged_register_indexes &= ~(1 << index); FullObjectSlot spill_slot = pushed_register_base - index; VisitSpillSlot(isolate(), v, spill_slot); } } // Visit tagged spill slots. for (uint32_t i = 0; i < tagged_slot_count; ++i) { FullObjectSlot spill_slot = frame_header_base - 1 - i; VisitSpillSlot(isolate(), v, spill_slot); } // Visit fixed header region (the context and JSFunction), skipping the // argument count since it is stored untagged. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base + 1, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } Handle MaglevFrame::GetInnermostFunction() const { std::vector frames; Summarize(&frames); return frames.back().AsJavaScript().function(); } BytecodeOffset MaglevFrame::GetBytecodeOffsetForOSR() const { int deopt_index = SafepointEntry::kNoDeoptIndex; const Tagged data = GetDeoptimizationData(&deopt_index); if (deopt_index == SafepointEntry::kNoDeoptIndex) { CHECK(data.is_null()); FATAL("Missing deoptimization information for OptimizedFrame::Summarize."); } DeoptimizationFrameTranslation::Iterator it( data->FrameTranslation(), data->TranslationIndex(deopt_index).value()); // Search the innermost interpreter frame and get its bailout id. The // translation stores frames bottom up. int js_frames = it.EnterBeginOpcode().js_frame_count; DCHECK_GT(js_frames, 0); BytecodeOffset offset = BytecodeOffset::None(); while (js_frames > 0) { TranslationOpcode frame = it.SeekNextJSFrame(); --js_frames; if (IsTranslationInterpreterFrameOpcode(frame)) { offset = BytecodeOffset(it.NextOperand()); it.SkipOperands(TranslationOpcodeOperandCount(frame) - 1); } else { it.SkipOperands(TranslationOpcodeOperandCount(frame)); } } return offset; } bool CommonFrame::HasTaggedOutgoingParams( Tagged code_lookup) const { #if V8_ENABLE_WEBASSEMBLY // With inlined JS-to-Wasm calls, we can be in an OptimizedFrame and // directly call a Wasm function from JavaScript. In this case the Wasm frame // is responsible for visiting incoming potentially tagged parameters. // (This is required for tail-call support: If the direct callee tail-called // another function which then caused a GC, the caller would not be able to // determine where there might be tagged parameters.) wasm::WasmCode* wasm_callee = wasm::GetWasmCodeManager()->LookupCode(callee_pc()); return (wasm_callee == nullptr) && code_lookup->has_tagged_outgoing_params(); #else return code_lookup->has_tagged_outgoing_params(); #endif // V8_ENABLE_WEBASSEMBLY } Tagged TurbofanStubWithContextFrame::unchecked_code() const { base::Optional code_lookup = isolate()->heap()->GcSafeTryFindCodeForInnerPointer(pc()); if (!code_lookup.has_value()) return {}; return code_lookup.value(); } void CommonFrame::IterateTurbofanOptimizedFrame(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === TurbofanFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_count // | spill_slot 0 | v // +-----------------+----------------------------------------- // | argc | <-- frame_header_base ^ // |- - - - - - - - -| | // | JSFunction | | // |- - - - - - - - -| | // | Context | | // |- - - - - - - - -| kFixedSlotCount // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged code = entry->code.value(); DCHECK(code->is_turbofanned()); SafepointEntry safepoint_entry = GetSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG // Assert that it is a JS frame and it has a context. intptr_t marker = Memory(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(!StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Determine the fixed header and spill slot area size. int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp; int spill_slot_count = code->stack_slots() - StandardFrameConstants::kFixedSlotCount; // Fixed frame slots. FullObjectSlot frame_header_base(&Memory
(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory
(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory
(sp())); FullObjectSlot parameters_limit = frame_header_base - spill_slot_count; // Visit the outgoing parameters if they are tagged. if (HasTaggedOutgoingParams(code)) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Spill slots are in the region ]frame_header_base, parameters_limit]; // Visit pointer spill slots and locals. DCHECK_GE((code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit fixed header region (the context and JSFunction), skipping the // argument count since it is stored untagged. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base + 1, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } void TurbofanStubWithContextFrame::Iterate(RootVisitor* v) const { return IterateTurbofanOptimizedFrame(v); } void TurbofanFrame::Iterate(RootVisitor* v) const { return IterateTurbofanOptimizedFrame(v); } Tagged StubFrame::unchecked_code() const { base::Optional code_lookup = isolate()->heap()->GcSafeTryFindCodeForInnerPointer(pc()); if (!code_lookup.has_value()) return {}; return code_lookup.value(); } int StubFrame::LookupExceptionHandlerInTable() { Tagged code = LookupCode(); DCHECK(code->is_turbofanned()); DCHECK(code->has_handler_table()); HandlerTable table(code); int pc_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); return table.LookupReturn(pc_offset); } void StubFrame::Summarize(std::vector* frames) const { #if V8_ENABLE_WEBASSEMBLY Tagged code = LookupCode(); if (code->kind() != CodeKind::BUILTIN) return; // We skip most stub frames from stack traces, but a few builtins // specifically exist to pretend to be another builtin throwing an // exception. switch (code->builtin_id()) { case Builtin::kThrowIndexOfCalledOnNull: case Builtin::kThrowToLowerCaseCalledOnNull: case Builtin::kWasmIntToString: { // When adding builtins here, also implement naming support for them. DCHECK_NE(nullptr, Builtins::NameForStackTrace(code->builtin_id())); FrameSummary::BuiltinFrameSummary summary(isolate(), code->builtin_id()); frames->push_back(summary); break; } default: break; } #endif // V8_ENABLE_WEBASSEMBLY } void JavaScriptFrame::SetParameterValue(int index, Tagged value) const { Memory
(GetParameterSlot(index)) = value.ptr(); } bool JavaScriptFrame::IsConstructor() const { return IsConstructFrame(caller_fp()); } Tagged CommonFrameWithJSLinkage::unchecked_code() const { return function()->code(); } int TurbofanFrame::ComputeParametersCount() const { if (GcSafeLookupCode()->kind() == CodeKind::BUILTIN) { return static_cast( Memory(fp() + StandardFrameConstants::kArgCOffset)) - kJSArgcReceiverSlots; } else { return JavaScriptFrame::ComputeParametersCount(); } } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions( std::vector* functions) const { DCHECK(functions->empty()); functions->push_back(function()->shared()); } void JavaScriptFrame::GetFunctions( std::vector>* functions) const { DCHECK(functions->empty()); std::vector raw_functions; GetFunctions(&raw_functions); for (const auto& raw_function : raw_functions) { functions->push_back( Handle(raw_function, function()->GetIsolate())); } } bool CommonFrameWithJSLinkage::IsConstructor() const { return IsConstructFrame(caller_fp()); } void CommonFrameWithJSLinkage::Summarize( std::vector* functions) const { DCHECK(functions->empty()); Tagged code = GcSafeLookupCode(); int offset = code->GetOffsetFromInstructionStart(isolate(), pc()); Handle abstract_code( AbstractCode::cast(code->UnsafeCastToCode()), isolate()); Handle params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), *abstract_code, offset, IsConstructor(), *params); functions->push_back(summary); } Tagged JavaScriptFrame::function() const { return JSFunction::cast(function_slot_object()); } Tagged JavaScriptFrame::unchecked_function() const { // During deoptimization of an optimized function, we may have yet to // materialize some closures on the stack. The arguments marker object // marks this case. DCHECK(IsJSFunction(function_slot_object()) || ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object()); return function_slot_object(); } Tagged CommonFrameWithJSLinkage::receiver() const { // TODO(cbruni): document this better return GetParameter(-1); } Tagged JavaScriptFrame::context() const { const int offset = StandardFrameConstants::kContextOffset; Tagged maybe_result(Memory
(fp() + offset)); DCHECK(!IsSmi(maybe_result)); return maybe_result; } Tagged