// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/V2H(P) Clock Pulse Generator * * Copyright (C) 2024 Renesas Electronics Corp. * * Based on rzg2l-cpg.c * * Copyright (C) 2015 Glider bvba * Copyright (C) 2013 Ideas On Board SPRL * Copyright (C) 2015 Renesas Electronics Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rzv2h-cpg.h" #ifdef DEBUG #define WARN_DEBUG(x) WARN_ON(x) #else #define WARN_DEBUG(x) do { } while (0) #endif #define GET_CLK_ON_OFFSET(x) (0x600 + ((x) * 4)) #define GET_CLK_MON_OFFSET(x) (0x800 + ((x) * 4)) #define GET_RST_OFFSET(x) (0x900 + ((x) * 4)) #define GET_RST_MON_OFFSET(x) (0xA00 + ((x) * 4)) #define CPG_BUS_1_MSTOP (0xd00) #define CPG_BUS_MSTOP(m) (CPG_BUS_1_MSTOP + ((m) - 1) * 4) #define CPG_PLL_STBY(x) ((x)) #define CPG_PLL_STBY_RESETB BIT(0) #define CPG_PLL_STBY_SSC_EN BIT(2) #define CPG_PLL_STBY_RESETB_WEN BIT(16) #define CPG_PLL_STBY_SSC_EN_WEN BIT(18) #define CPG_PLL_CLK1(x) ((x) + 0x004) #define CPG_PLL_CLK1_KDIV GENMASK(31, 16) #define CPG_PLL_CLK1_MDIV GENMASK(15, 6) #define CPG_PLL_CLK1_PDIV GENMASK(5, 0) #define CPG_PLL_CLK2(x) ((x) + 0x008) #define CPG_PLL_CLK2_SDIV GENMASK(2, 0) #define CPG_PLL_MON(x) ((x) + 0x010) #define CPG_PLL_MON_RESETB BIT(0) #define CPG_PLL_MON_LOCK BIT(4) #define DDIV_DIVCTL_WEN(shift) BIT((shift) + 16) #define GET_MOD_CLK_ID(base, index, bit) \ ((base) + ((((index) * (16))) + (bit))) #define CPG_CLKSTATUS0 (0x700) /* On RZ/G3E SoC we have two DSI PLLs */ #define MAX_CPG_DSI_PLL 2 /** * struct rzv2h_pll_dsi_info - PLL DSI information, holds the limits and parameters * * @pll_dsi_limits: PLL DSI parameters limits * @pll_dsi_parameters: Calculated PLL DSI parameters * @req_pll_dsi_rate: Requested PLL DSI rate */ struct rzv2h_pll_dsi_info { const struct rzv2h_pll_limits *pll_dsi_limits; struct rzv2h_pll_div_pars pll_dsi_parameters; unsigned long req_pll_dsi_rate; }; /** * struct rzv2h_cpg_priv - Clock Pulse Generator Private Data * * @dev: CPG device * @base: CPG register block base address * @rmw_lock: protects register accesses * @clks: Array containing all Core and Module Clocks * @num_core_clks: Number of Core Clocks in clks[] * @num_mod_clks: Number of Module Clocks in clks[] * @resets: Array of resets * @num_resets: Number of Module Resets in info->resets[] * @last_dt_core_clk: ID of the last Core Clock exported to DT * @ff_mod_status_ops: Fixed Factor Module Status Clock operations * @mstop_count: Array of mstop values * @rcdev: Reset controller entity * @pll_dsi_info: Array of PLL DSI information, holds the limits and parameters */ struct rzv2h_cpg_priv { struct device *dev; void __iomem *base; spinlock_t rmw_lock; struct clk **clks; unsigned int num_core_clks; unsigned int num_mod_clks; struct rzv2h_reset *resets; unsigned int num_resets; unsigned int last_dt_core_clk; struct clk_ops *ff_mod_status_ops; atomic_t *mstop_count; struct reset_controller_dev rcdev; struct rzv2h_pll_dsi_info pll_dsi_info[MAX_CPG_DSI_PLL]; }; #define rcdev_to_priv(x) container_of(x, struct rzv2h_cpg_priv, rcdev) struct pll_clk { struct rzv2h_cpg_priv *priv; struct clk_hw hw; struct pll pll; }; #define to_pll(_hw) container_of(_hw, struct pll_clk, hw) /** * struct mod_clock - Module clock * * @priv: CPG private data * @mstop_data: mstop data relating to module clock * @hw: handle between common and hardware-specific interfaces * @no_pm: flag to indicate PM is not supported * @on_index: register offset * @on_bit: ON/MON bit * @mon_index: monitor register offset * @mon_bit: monitor bit * @ext_clk_mux_index: mux index for external clock source, or -1 if internal */ struct mod_clock { struct rzv2h_cpg_priv *priv; unsigned int mstop_data; struct clk_hw hw; bool no_pm; u8 on_index; u8 on_bit; s8 mon_index; u8 mon_bit; s8 ext_clk_mux_index; }; #define to_mod_clock(_hw) container_of(_hw, struct mod_clock, hw) /** * struct ddiv_clk - DDIV clock * * @priv: CPG private data * @div: divider clk * @mon: monitor bit in CPG_CLKSTATUS0 register */ struct ddiv_clk { struct rzv2h_cpg_priv *priv; struct clk_divider div; u8 mon; }; #define to_ddiv_clock(_div) container_of(_div, struct ddiv_clk, div) /** * struct rzv2h_ff_mod_status_clk - Fixed Factor Module Status Clock * * @priv: CPG private data * @conf: fixed mod configuration * @fix: fixed factor clock */ struct rzv2h_ff_mod_status_clk { struct rzv2h_cpg_priv *priv; struct fixed_mod_conf conf; struct clk_fixed_factor fix; }; #define to_rzv2h_ff_mod_status_clk(_hw) \ container_of(_hw, struct rzv2h_ff_mod_status_clk, fix.hw) /** * struct rzv2h_plldsi_div_clk - PLL DSI DDIV clock * * @dtable: divider table * @priv: CPG private data * @hw: divider clk * @ddiv: divider configuration */ struct rzv2h_plldsi_div_clk { const struct clk_div_table *dtable; struct rzv2h_cpg_priv *priv; struct clk_hw hw; struct ddiv ddiv; }; #define to_plldsi_div_clk(_hw) \ container_of(_hw, struct rzv2h_plldsi_div_clk, hw) #define RZ_V2H_OSC_CLK_IN_MEGA (24 * MEGA) #define RZV2H_MAX_DIV_TABLES (16) /** * rzv2h_get_pll_pars - Finds the best combination of PLL parameters * for a given frequency. * * @limits: Pointer to the structure containing the limits for the PLL parameters * @pars: Pointer to the structure where the best calculated PLL parameters values * will be stored * @freq_millihz: Target output frequency in millihertz * * This function calculates the best set of PLL parameters (M, K, P, S) to achieve * the desired frequency. * There is no direct formula to calculate the PLL parameters, as it's an open * system of equations, therefore this function uses an iterative approach to * determine the best solution. The best solution is one that minimizes the error * (desired frequency - actual frequency). * * Return: true if a valid set of parameters values is found, false otherwise. */ bool rzv2h_get_pll_pars(const struct rzv2h_pll_limits *limits, struct rzv2h_pll_pars *pars, u64 freq_millihz) { u64 fout_min_millihz = mul_u32_u32(limits->fout.min, MILLI); u64 fout_max_millihz = mul_u32_u32(limits->fout.max, MILLI); struct rzv2h_pll_pars p, best; if (freq_millihz > fout_max_millihz || freq_millihz < fout_min_millihz) return false; /* Initialize best error to maximum possible value */ best.error_millihz = S64_MAX; for (p.p = limits->p.min; p.p <= limits->p.max; p.p++) { u32 fref = RZ_V2H_OSC_CLK_IN_MEGA / p.p; u16 divider; for (divider = 1 << limits->s.min, p.s = limits->s.min; p.s <= limits->s.max; p.s++, divider <<= 1) { for (p.m = limits->m.min; p.m <= limits->m.max; p.m++) { u64 output_m, output_k_range; s64 pll_k, output_k; u64 fvco, output; /* * The frequency generated by the PLL + divider * is calculated as follows: * * With: * Freq = Ffout = Ffvco / 2^(pll_s) * Ffvco = (pll_m + (pll_k / 65536)) * Ffref * Ffref = 24MHz / pll_p * * Freq can also be rewritten as: * Freq = Ffvco / 2^(pll_s) * = ((pll_m + (pll_k / 65536)) * Ffref) / 2^(pll_s) * = (pll_m * Ffref) / 2^(pll_s) + ((pll_k / 65536) * Ffref) / 2^(pll_s) * = output_m + output_k * * Every parameter has been determined at this * point, but pll_k. * * Considering that: * limits->k.min <= pll_k <= limits->k.max * Then: * -0.5 <= (pll_k / 65536) < 0.5 * Therefore: * -Ffref / (2 * 2^(pll_s)) <= output_k < Ffref / (2 * 2^(pll_s)) */ /* Compute output M component (in mHz) */ output_m = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(p.m, fref) * MILLI, divider); /* Compute range for output K (in mHz) */ output_k_range = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(fref, MILLI), 2 * divider); /* * No point in continuing if we can't achieve * the desired frequency */ if (freq_millihz < (output_m - output_k_range) || freq_millihz >= (output_m + output_k_range)) { continue; } /* * Compute the K component * * Since: * Freq = output_m + output_k * Then: * output_k = Freq - output_m * = ((pll_k / 65536) * Ffref) / 2^(pll_s) * Therefore: * pll_k = (output_k * 65536 * 2^(pll_s)) / Ffref */ output_k = freq_millihz - output_m; pll_k = div_s64(output_k * 65536ULL * divider, fref); pll_k = DIV_S64_ROUND_CLOSEST(pll_k, MILLI); /* Validate K value within allowed limits */ if (pll_k < limits->k.min || pll_k > limits->k.max) continue; p.k = pll_k; /* Compute (Ffvco * 65536) */ fvco = mul_u32_u32(p.m * 65536 + p.k, fref); if (fvco < mul_u32_u32(limits->fvco.min, 65536) || fvco > mul_u32_u32(limits->fvco.max, 65536)) continue; /* PLL_M component of (output * 65536 * PLL_P) */ output = mul_u32_u32(p.m * 65536, RZ_V2H_OSC_CLK_IN_MEGA); /* PLL_K component of (output * 65536 * PLL_P) */ output += p.k * RZ_V2H_OSC_CLK_IN_MEGA; /* Make it in mHz */ output *= MILLI; output = DIV_U64_ROUND_CLOSEST(output, 65536 * p.p * divider); /* Check output frequency against limits */ if (output < fout_min_millihz || output > fout_max_millihz) continue; p.error_millihz = freq_millihz - output; p.freq_millihz = output; /* If an exact match is found, return immediately */ if (p.error_millihz == 0) { *pars = p; return true; } /* Update best match if error is smaller */ if (abs(best.error_millihz) > abs(p.error_millihz)) best = p; } } } /* If no valid parameters were found, return false */ if (best.error_millihz == S64_MAX) return false; *pars = best; return true; } EXPORT_SYMBOL_NS_GPL(rzv2h_get_pll_pars, "RZV2H_CPG"); /* * rzv2h_get_pll_divs_pars - Finds the best combination of PLL parameters * and divider value for a given frequency. * * @limits: Pointer to the structure containing the limits for the PLL parameters * @pars: Pointer to the structure where the best calculated PLL parameters and * divider values will be stored * @table: Pointer to the array of valid divider values * @table_size: Size of the divider values array * @freq_millihz: Target output frequency in millihertz * * This function calculates the best set of PLL parameters (M, K, P, S) and divider * value to achieve the desired frequency. See rzv2h_get_pll_pars() for more details * on how the PLL parameters are calculated. * * freq_millihz is the desired frequency generated by the PLL followed by a * a gear. */ bool rzv2h_get_pll_divs_pars(const struct rzv2h_pll_limits *limits, struct rzv2h_pll_div_pars *pars, const u8 *table, u8 table_size, u64 freq_millihz) { struct rzv2h_pll_div_pars p, best; best.div.error_millihz = S64_MAX; p.div.error_millihz = S64_MAX; for (unsigned int i = 0; i < table_size; i++) { if (!rzv2h_get_pll_pars(limits, &p.pll, freq_millihz * table[i])) continue; p.div.divider_value = table[i]; p.div.freq_millihz = DIV_U64_ROUND_CLOSEST(p.pll.freq_millihz, table[i]); p.div.error_millihz = freq_millihz - p.div.freq_millihz; if (p.div.error_millihz == 0) { *pars = p; return true; } if (abs(best.div.error_millihz) > abs(p.div.error_millihz)) best = p; } if (best.div.error_millihz == S64_MAX) return false; *pars = best; return true; } EXPORT_SYMBOL_NS_GPL(rzv2h_get_pll_divs_pars, "RZV2H_CPG"); static unsigned long rzv2h_cpg_plldsi_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); struct rzv2h_cpg_priv *priv = dsi_div->priv; struct ddiv ddiv = dsi_div->ddiv; u32 div; div = readl(priv->base + ddiv.offset); div >>= ddiv.shift; div &= clk_div_mask(ddiv.width); div = dsi_div->dtable[div].div; return DIV_ROUND_CLOSEST_ULL(parent_rate, div); } static int rzv2h_cpg_plldsi_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); struct pll_clk *pll_clk = to_pll(clk_hw_get_parent(hw)); struct rzv2h_cpg_priv *priv = dsi_div->priv; u8 table[RZV2H_MAX_DIV_TABLES] = { 0 }; struct rzv2h_pll_div_pars *dsi_params; struct rzv2h_pll_dsi_info *dsi_info; const struct clk_div_table *div; unsigned int i = 0; u64 rate_millihz; dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance]; dsi_params = &dsi_info->pll_dsi_parameters; rate_millihz = mul_u32_u32(req->rate, MILLI); if (rate_millihz == dsi_params->div.error_millihz + dsi_params->div.freq_millihz) goto exit_determine_rate; for (div = dsi_div->dtable; div->div; div++) { if (i >= RZV2H_MAX_DIV_TABLES) return -EINVAL; table[i++] = div->div; } if (!rzv2h_get_pll_divs_pars(dsi_info->pll_dsi_limits, dsi_params, table, i, rate_millihz)) { dev_err(priv->dev, "failed to determine rate for req->rate: %lu\n", req->rate); return -EINVAL; } exit_determine_rate: req->rate = DIV_ROUND_CLOSEST_ULL(dsi_params->div.freq_millihz, MILLI); req->best_parent_rate = req->rate * dsi_params->div.divider_value; dsi_info->req_pll_dsi_rate = req->best_parent_rate; return 0; } static int rzv2h_cpg_plldsi_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw); struct pll_clk *pll_clk = to_pll(clk_hw_get_parent(hw)); struct rzv2h_cpg_priv *priv = dsi_div->priv; struct rzv2h_pll_div_pars *dsi_params; struct rzv2h_pll_dsi_info *dsi_info; struct ddiv ddiv = dsi_div->ddiv; const struct clk_div_table *clkt; bool divider_found = false; u32 val, shift; dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance]; dsi_params = &dsi_info->pll_dsi_parameters; for (clkt = dsi_div->dtable; clkt->div; clkt++) { if (clkt->div == dsi_params->div.divider_value) { divider_found = true; break; } } if (!divider_found) return -EINVAL; shift = ddiv.shift; val = readl(priv->base + ddiv.offset) | DDIV_DIVCTL_WEN(shift); val &= ~(clk_div_mask(ddiv.width) << shift); val |= clkt->val << shift; writel(val, priv->base + ddiv.offset); return 0; } static const struct clk_ops rzv2h_cpg_plldsi_div_ops = { .recalc_rate = rzv2h_cpg_plldsi_div_recalc_rate, .determine_rate = rzv2h_cpg_plldsi_div_determine_rate, .set_rate = rzv2h_cpg_plldsi_div_set_rate, }; static struct clk * __init rzv2h_cpg_plldsi_div_clk_register(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv) { struct rzv2h_plldsi_div_clk *clk_hw_data; struct clk **clks = priv->clks; struct clk_init_data init; const struct clk *parent; const char *parent_name; struct clk_hw *clk_hw; int ret; parent = clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; clk_hw_data->ddiv = core->cfg.ddiv; clk_hw_data->dtable = core->dtable; parent_name = __clk_get_name(parent); init.name = core->name; init.ops = &rzv2h_cpg_plldsi_div_ops; init.flags = core->flag; init.parent_names = &parent_name; init.num_parents = 1; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } static int rzv2h_cpg_plldsi_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct pll_clk *pll_clk = to_pll(hw); struct rzv2h_cpg_priv *priv = pll_clk->priv; struct rzv2h_pll_dsi_info *dsi_info; u64 rate_millihz; dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance]; /* check if the divider has already invoked the algorithm */ if (req->rate == dsi_info->req_pll_dsi_rate) return 0; /* If the req->rate doesn't match we do the calculation assuming there is no divider */ rate_millihz = mul_u32_u32(req->rate, MILLI); if (!rzv2h_get_pll_pars(dsi_info->pll_dsi_limits, &dsi_info->pll_dsi_parameters.pll, rate_millihz)) { dev_err(priv->dev, "failed to determine rate for req->rate: %lu\n", req->rate); return -EINVAL; } req->rate = DIV_ROUND_CLOSEST_ULL(dsi_info->pll_dsi_parameters.pll.freq_millihz, MILLI); dsi_info->req_pll_dsi_rate = req->rate; return 0; } static int rzv2h_cpg_pll_set_rate(struct pll_clk *pll_clk, struct rzv2h_pll_pars *params, bool ssc_disable) { struct rzv2h_cpg_priv *priv = pll_clk->priv; u16 offset = pll_clk->pll.offset; u32 val; int ret; /* Put PLL into standby mode */ writel(CPG_PLL_STBY_RESETB_WEN, priv->base + CPG_PLL_STBY(offset)); ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset), val, !(val & CPG_PLL_MON_LOCK), 100, 2000); if (ret) { dev_err(priv->dev, "Failed to put PLLDSI into standby mode"); return ret; } /* Output clock setting 1 */ writel(FIELD_PREP(CPG_PLL_CLK1_KDIV, (u16)params->k) | FIELD_PREP(CPG_PLL_CLK1_MDIV, params->m) | FIELD_PREP(CPG_PLL_CLK1_PDIV, params->p), priv->base + CPG_PLL_CLK1(offset)); /* Output clock setting 2 */ val = readl(priv->base + CPG_PLL_CLK2(offset)); writel((val & ~CPG_PLL_CLK2_SDIV) | FIELD_PREP(CPG_PLL_CLK2_SDIV, params->s), priv->base + CPG_PLL_CLK2(offset)); /* Put PLL to normal mode */ if (ssc_disable) val = CPG_PLL_STBY_SSC_EN_WEN; else val = CPG_PLL_STBY_SSC_EN_WEN | CPG_PLL_STBY_SSC_EN; writel(val | CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB, priv->base + CPG_PLL_STBY(offset)); /* PLL normal mode transition, output clock stability check */ ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset), val, (val & CPG_PLL_MON_LOCK), 100, 2000); if (ret) { dev_err(priv->dev, "Failed to put PLLDSI into normal mode"); return ret; } return 0; } static int rzv2h_cpg_plldsi_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct pll_clk *pll_clk = to_pll(hw); struct rzv2h_pll_dsi_info *dsi_info; struct rzv2h_cpg_priv *priv = pll_clk->priv; dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance]; return rzv2h_cpg_pll_set_rate(pll_clk, &dsi_info->pll_dsi_parameters.pll, true); } static int rzv2h_cpg_pll_clk_is_enabled(struct clk_hw *hw) { struct pll_clk *pll_clk = to_pll(hw); struct rzv2h_cpg_priv *priv = pll_clk->priv; u32 val = readl(priv->base + CPG_PLL_MON(pll_clk->pll.offset)); /* Ensure both RESETB and LOCK bits are set */ return (val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) == (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK); } static int rzv2h_cpg_pll_clk_enable(struct clk_hw *hw) { struct pll_clk *pll_clk = to_pll(hw); struct rzv2h_cpg_priv *priv = pll_clk->priv; struct pll pll = pll_clk->pll; u32 stby_offset; u32 mon_offset; u32 val; int ret; if (rzv2h_cpg_pll_clk_is_enabled(hw)) return 0; stby_offset = CPG_PLL_STBY(pll.offset); mon_offset = CPG_PLL_MON(pll.offset); writel(CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB, priv->base + stby_offset); /* * Ensure PLL enters into normal mode * * Note: There is no HW information about the worst case latency. * * Since this latency might depend on external crystal or PLL rate, * use a "super" safe timeout value. */ ret = readl_poll_timeout_atomic(priv->base + mon_offset, val, (val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) == (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK), 200, 2000); if (ret) dev_err(priv->dev, "Failed to enable PLL 0x%x/%pC\n", stby_offset, hw->clk); return ret; } static unsigned long rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pll_clk *pll_clk = to_pll(hw); struct rzv2h_cpg_priv *priv = pll_clk->priv; struct pll pll = pll_clk->pll; unsigned int clk1, clk2; u64 rate; if (!pll.has_clkn) return 0; clk1 = readl(priv->base + CPG_PLL_CLK1(pll.offset)); clk2 = readl(priv->base + CPG_PLL_CLK2(pll.offset)); rate = mul_u64_u32_shr(parent_rate, (FIELD_GET(CPG_PLL_CLK1_MDIV, clk1) << 16) + (s16)FIELD_GET(CPG_PLL_CLK1_KDIV, clk1), 16 + FIELD_GET(CPG_PLL_CLK2_SDIV, clk2)); return DIV_ROUND_CLOSEST_ULL(rate, FIELD_GET(CPG_PLL_CLK1_PDIV, clk1)); } static const struct clk_ops rzv2h_cpg_plldsi_ops = { .recalc_rate = rzv2h_cpg_pll_clk_recalc_rate, .determine_rate = rzv2h_cpg_plldsi_determine_rate, .set_rate = rzv2h_cpg_plldsi_set_rate, }; static const struct clk_ops rzv2h_cpg_pll_ops = { .is_enabled = rzv2h_cpg_pll_clk_is_enabled, .enable = rzv2h_cpg_pll_clk_enable, .recalc_rate = rzv2h_cpg_pll_clk_recalc_rate, }; static struct clk * __init rzv2h_cpg_pll_clk_register(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv, const struct clk_ops *ops) { struct device *dev = priv->dev; struct clk_init_data init; const struct clk *parent; const char *parent_name; struct pll_clk *pll_clk; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return ERR_PTR(-ENOMEM); if (core->type == CLK_TYPE_PLLDSI) priv->pll_dsi_info[core->cfg.pll.instance].pll_dsi_limits = core->cfg.pll.limits; parent_name = __clk_get_name(parent); init.name = core->name; init.ops = ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pll_clk->hw.init = &init; pll_clk->pll = core->cfg.pll; pll_clk->priv = priv; ret = devm_clk_hw_register(dev, &pll_clk->hw); if (ret) return ERR_PTR(ret); return pll_clk->hw.clk; } static unsigned long rzv2h_ddiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); unsigned int val; val = readl(divider->reg) >> divider->shift; val &= clk_div_mask(divider->width); return divider_recalc_rate(hw, parent_rate, val, divider->table, divider->flags, divider->width); } static int rzv2h_ddiv_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_divider *divider = to_clk_divider(hw); return divider_determine_rate(hw, req, divider->table, divider->width, divider->flags); } static inline int rzv2h_cpg_wait_ddiv_clk_update_done(void __iomem *base, u8 mon) { u32 bitmask = BIT(mon); u32 val; if (mon == CSDIV_NO_MON) return 0; return readl_poll_timeout_atomic(base + CPG_CLKSTATUS0, val, !(val & bitmask), 10, 200); } static int rzv2h_ddiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); struct ddiv_clk *ddiv = to_ddiv_clock(divider); struct rzv2h_cpg_priv *priv = ddiv->priv; unsigned long flags = 0; int value; u32 val; int ret; value = divider_get_val(rate, parent_rate, divider->table, divider->width, divider->flags); if (value < 0) return value; spin_lock_irqsave(divider->lock, flags); ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon); if (ret) goto ddiv_timeout; val = readl(divider->reg) | DDIV_DIVCTL_WEN(divider->shift); val &= ~(clk_div_mask(divider->width) << divider->shift); val |= (u32)value << divider->shift; writel(val, divider->reg); ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon); ddiv_timeout: spin_unlock_irqrestore(divider->lock, flags); return ret; } static const struct clk_ops rzv2h_ddiv_clk_divider_ops = { .recalc_rate = rzv2h_ddiv_recalc_rate, .determine_rate = rzv2h_ddiv_determine_rate, .set_rate = rzv2h_ddiv_set_rate, }; static struct clk * __init rzv2h_cpg_ddiv_clk_register(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv) { struct ddiv cfg_ddiv = core->cfg.ddiv; struct clk_init_data init = {}; struct device *dev = priv->dev; u8 shift = cfg_ddiv.shift; u8 width = cfg_ddiv.width; const struct clk *parent; const char *parent_name; struct clk_divider *div; struct ddiv_clk *ddiv; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); if ((shift + width) > 16) return ERR_PTR(-EINVAL); ddiv = devm_kzalloc(priv->dev, sizeof(*ddiv), GFP_KERNEL); if (!ddiv) return ERR_PTR(-ENOMEM); init.name = core->name; if (cfg_ddiv.no_rmw) init.ops = &clk_divider_ops; else init.ops = &rzv2h_ddiv_clk_divider_ops; init.parent_names = &parent_name; init.num_parents = 1; init.flags = CLK_SET_RATE_PARENT; ddiv->priv = priv; ddiv->mon = cfg_ddiv.monbit; div = &ddiv->div; div->reg = priv->base + cfg_ddiv.offset; div->shift = shift; div->width = width; div->flags = core->flag; div->lock = &priv->rmw_lock; div->hw.init = &init; div->table = core->dtable; ret = devm_clk_hw_register(dev, &div->hw); if (ret) return ERR_PTR(ret); return div->hw.clk; } static struct clk * __init rzv2h_cpg_mux_clk_register(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv) { struct smuxed mux = core->cfg.smux; const struct clk_hw *clk_hw; clk_hw = devm_clk_hw_register_mux(priv->dev, core->name, core->parent_names, core->num_parents, core->flag, priv->base + mux.offset, mux.shift, mux.width, core->mux_flags, &priv->rmw_lock); if (IS_ERR(clk_hw)) return ERR_CAST(clk_hw); return clk_hw->clk; } static int rzv2h_clk_ff_mod_status_is_enabled(struct clk_hw *hw) { struct rzv2h_ff_mod_status_clk *fix = to_rzv2h_ff_mod_status_clk(hw); struct rzv2h_cpg_priv *priv = fix->priv; u32 offset = GET_CLK_MON_OFFSET(fix->conf.mon_index); u32 bitmask = BIT(fix->conf.mon_bit); u32 val; val = readl(priv->base + offset); return !!(val & bitmask); } static struct clk * __init rzv2h_cpg_fixed_mod_status_clk_register(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv) { struct rzv2h_ff_mod_status_clk *clk_hw_data; struct clk_init_data init = { }; struct clk_fixed_factor *fix; const struct clk *parent; const char *parent_name; int ret; WARN_DEBUG(core->parent >= priv->num_core_clks); parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; clk_hw_data->conf = core->cfg.fixed_mod; init.name = core->name; init.ops = priv->ff_mod_status_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; fix = &clk_hw_data->fix; fix->hw.init = &init; fix->mult = core->mult; fix->div = core->div; ret = devm_clk_hw_register(priv->dev, &clk_hw_data->fix.hw); if (ret) return ERR_PTR(ret); return clk_hw_data->fix.hw.clk; } static struct clk *rzv2h_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec, void *data) { unsigned int clkidx = clkspec->args[1]; struct rzv2h_cpg_priv *priv = data; struct device *dev = priv->dev; const char *type; struct clk *clk; switch (clkspec->args[0]) { case CPG_CORE: type = "core"; if (clkidx > priv->last_dt_core_clk) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[clkidx]; break; case CPG_MOD: type = "module"; if (clkidx >= priv->num_mod_clks) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[priv->num_core_clks + clkidx]; break; default: dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]); return ERR_PTR(-EINVAL); } if (IS_ERR(clk)) dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx, PTR_ERR(clk)); else dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n", clkspec->args[0], clkspec->args[1], clk, clk_get_rate(clk)); return clk; } static void __init rzv2h_cpg_register_core_clk(const struct cpg_core_clk *core, struct rzv2h_cpg_priv *priv) { struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent; unsigned int id = core->id, div = core->div; struct device *dev = priv->dev; const char *parent_name; struct clk_hw *clk_hw; WARN_DEBUG(id >= priv->num_core_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); switch (core->type) { case CLK_TYPE_IN: clk = of_clk_get_by_name(priv->dev->of_node, core->name); break; case CLK_TYPE_FF: WARN_DEBUG(core->parent >= priv->num_core_clks); parent = priv->clks[core->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } parent_name = __clk_get_name(parent); clk_hw = devm_clk_hw_register_fixed_factor(dev, core->name, parent_name, CLK_SET_RATE_PARENT, core->mult, div); if (IS_ERR(clk_hw)) clk = ERR_CAST(clk_hw); else clk = clk_hw->clk; break; case CLK_TYPE_FF_MOD_STATUS: if (!priv->ff_mod_status_ops) { priv->ff_mod_status_ops = devm_kzalloc(dev, sizeof(*priv->ff_mod_status_ops), GFP_KERNEL); if (!priv->ff_mod_status_ops) { clk = ERR_PTR(-ENOMEM); goto fail; } memcpy(priv->ff_mod_status_ops, &clk_fixed_factor_ops, sizeof(const struct clk_ops)); priv->ff_mod_status_ops->is_enabled = rzv2h_clk_ff_mod_status_is_enabled; } clk = rzv2h_cpg_fixed_mod_status_clk_register(core, priv); break; case CLK_TYPE_PLL: clk = rzv2h_cpg_pll_clk_register(core, priv, &rzv2h_cpg_pll_ops); break; case CLK_TYPE_DDIV: clk = rzv2h_cpg_ddiv_clk_register(core, priv); break; case CLK_TYPE_SMUX: clk = rzv2h_cpg_mux_clk_register(core, priv); break; case CLK_TYPE_PLLDSI: clk = rzv2h_cpg_pll_clk_register(core, priv, &rzv2h_cpg_plldsi_ops); break; case CLK_TYPE_PLLDSI_DIV: clk = rzv2h_cpg_plldsi_div_clk_register(core, priv); break; default: goto fail; } if (IS_ERR(clk)) goto fail; dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); priv->clks[id] = clk; return; fail: dev_err(dev, "Failed to register core clock %s: %ld\n", core->name, PTR_ERR(clk)); } static void rzv2h_mod_clock_mstop_enable(struct rzv2h_cpg_priv *priv, u32 mstop_data) { unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data); u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data); atomic_t *mstop = &priv->mstop_count[mstop_index * 16]; unsigned long flags; unsigned int i; u32 val = 0; spin_lock_irqsave(&priv->rmw_lock, flags); for_each_set_bit(i, &mstop_mask, 16) { if (!atomic_read(&mstop[i])) val |= BIT(i) << 16; atomic_inc(&mstop[i]); } if (val) writel(val, priv->base + CPG_BUS_MSTOP(mstop_index)); spin_unlock_irqrestore(&priv->rmw_lock, flags); } static void rzv2h_mod_clock_mstop_disable(struct rzv2h_cpg_priv *priv, u32 mstop_data) { unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data); u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data); atomic_t *mstop = &priv->mstop_count[mstop_index * 16]; unsigned long flags; unsigned int i; u32 val = 0; spin_lock_irqsave(&priv->rmw_lock, flags); for_each_set_bit(i, &mstop_mask, 16) { if (!atomic_read(&mstop[i]) || atomic_dec_and_test(&mstop[i])) val |= BIT(i) << 16 | BIT(i); } if (val) writel(val, priv->base + CPG_BUS_MSTOP(mstop_index)); spin_unlock_irqrestore(&priv->rmw_lock, flags); } static int rzv2h_parent_clk_mux_to_index(struct clk_hw *hw) { struct clk_hw *parent_hw; struct clk *parent_clk; struct clk_mux *mux; u32 val; /* This will always succeed, so no need to check for IS_ERR() */ parent_clk = clk_get_parent(hw->clk); parent_hw = __clk_get_hw(parent_clk); mux = to_clk_mux(parent_hw); val = readl(mux->reg) >> mux->shift; val &= mux->mask; return clk_mux_val_to_index(parent_hw, mux->table, 0, val); } static int rzv2h_mod_clock_is_enabled(struct clk_hw *hw) { struct mod_clock *clock = to_mod_clock(hw); struct rzv2h_cpg_priv *priv = clock->priv; int mon_index = clock->mon_index; u32 bitmask; u32 offset; if (clock->ext_clk_mux_index >= 0 && rzv2h_parent_clk_mux_to_index(hw) == clock->ext_clk_mux_index) mon_index = -1; if (mon_index >= 0) { offset = GET_CLK_MON_OFFSET(mon_index); bitmask = BIT(clock->mon_bit); if (!(readl(priv->base + offset) & bitmask)) return 0; } offset = GET_CLK_ON_OFFSET(clock->on_index); bitmask = BIT(clock->on_bit); return readl(priv->base + offset) & bitmask; } static int rzv2h_mod_clock_endisable(struct clk_hw *hw, bool enable) { bool enabled = rzv2h_mod_clock_is_enabled(hw); struct mod_clock *clock = to_mod_clock(hw); unsigned int reg = GET_CLK_ON_OFFSET(clock->on_index); struct rzv2h_cpg_priv *priv = clock->priv; u32 bitmask = BIT(clock->on_bit); struct device *dev = priv->dev; u32 value; int error; dev_dbg(dev, "CLK_ON 0x%x/%pC %s\n", reg, hw->clk, str_on_off(enable)); if (enabled == enable) return 0; value = bitmask << 16; if (enable) { value |= bitmask; writel(value, priv->base + reg); if (clock->mstop_data != BUS_MSTOP_NONE) rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data); } else { if (clock->mstop_data != BUS_MSTOP_NONE) rzv2h_mod_clock_mstop_disable(priv, clock->mstop_data); writel(value, priv->base + reg); } if (!enable || clock->mon_index < 0) return 0; reg = GET_CLK_MON_OFFSET(clock->mon_index); bitmask = BIT(clock->mon_bit); error = readl_poll_timeout_atomic(priv->base + reg, value, value & bitmask, 0, 10); if (error) dev_err(dev, "Failed to enable CLK_ON 0x%x/%pC\n", GET_CLK_ON_OFFSET(clock->on_index), hw->clk); return error; } static int rzv2h_mod_clock_enable(struct clk_hw *hw) { return rzv2h_mod_clock_endisable(hw, true); } static void rzv2h_mod_clock_disable(struct clk_hw *hw) { rzv2h_mod_clock_endisable(hw, false); } static const struct clk_ops rzv2h_mod_clock_ops = { .enable = rzv2h_mod_clock_enable, .disable = rzv2h_mod_clock_disable, .is_enabled = rzv2h_mod_clock_is_enabled, }; static void __init rzv2h_cpg_register_mod_clk(const struct rzv2h_mod_clk *mod, struct rzv2h_cpg_priv *priv) { struct mod_clock *clock = NULL; struct device *dev = priv->dev; struct clk_init_data init; struct clk *parent, *clk; const char *parent_name; unsigned int id; int ret; id = GET_MOD_CLK_ID(priv->num_core_clks, mod->on_index, mod->on_bit); WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); parent = priv->clks[mod->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL); if (!clock) { clk = ERR_PTR(-ENOMEM); goto fail; } init.name = mod->name; init.ops = &rzv2h_mod_clock_ops; init.flags = CLK_SET_RATE_PARENT; if (mod->critical) init.flags |= CLK_IS_CRITICAL; parent_name = __clk_get_name(parent); init.parent_names = &parent_name; init.num_parents = 1; clock->on_index = mod->on_index; clock->on_bit = mod->on_bit; clock->mon_index = mod->mon_index; clock->mon_bit = mod->mon_bit; clock->no_pm = mod->no_pm; clock->ext_clk_mux_index = mod->ext_clk_mux_index; clock->priv = priv; clock->hw.init = &init; clock->mstop_data = mod->mstop_data; ret = devm_clk_hw_register(dev, &clock->hw); if (ret) { clk = ERR_PTR(ret); goto fail; } priv->clks[id] = clock->hw.clk; /* * Ensure the module clocks and MSTOP bits are synchronized when they are * turned ON by the bootloader. Enable MSTOP bits for module clocks that were * turned ON in an earlier boot stage. */ if (clock->mstop_data != BUS_MSTOP_NONE && !mod->critical && rzv2h_mod_clock_is_enabled(&clock->hw)) { rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data); } else if (clock->mstop_data != BUS_MSTOP_NONE && mod->critical) { unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, clock->mstop_data); u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, clock->mstop_data); atomic_t *mstop = &priv->mstop_count[mstop_index * 16]; unsigned long flags; unsigned int i; u32 val = 0; /* * Critical clocks are turned ON immediately upon registration, and the * MSTOP counter is updated through the rzv2h_mod_clock_enable() path. * However, if the critical clocks were already turned ON by the initial * bootloader, synchronize the atomic counter here and clear the MSTOP bit. */ spin_lock_irqsave(&priv->rmw_lock, flags); for_each_set_bit(i, &mstop_mask, 16) { if (atomic_read(&mstop[i])) continue; val |= BIT(i) << 16; atomic_inc(&mstop[i]); } if (val) writel(val, priv->base + CPG_BUS_MSTOP(mstop_index)); spin_unlock_irqrestore(&priv->rmw_lock, flags); } return; fail: dev_err(dev, "Failed to register module clock %s: %ld\n", mod->name, PTR_ERR(clk)); } static int __rzv2h_cpg_assert(struct reset_controller_dev *rcdev, unsigned long id, bool assert) { struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev); unsigned int reg = GET_RST_OFFSET(priv->resets[id].reset_index); u32 mask = BIT(priv->resets[id].reset_bit); u8 monbit = priv->resets[id].mon_bit; u32 value = mask << 16; int ret; dev_dbg(rcdev->dev, "%s id:%ld offset:0x%x\n", assert ? "assert" : "deassert", id, reg); if (!assert) value |= mask; writel(value, priv->base + reg); reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index); mask = BIT(monbit); ret = readl_poll_timeout_atomic(priv->base + reg, value, assert == !!(value & mask), 10, 200); if (ret && !assert) { value = mask << 16; writel(value, priv->base + GET_RST_OFFSET(priv->resets[id].reset_index)); } return ret; } static int rzv2h_cpg_assert(struct reset_controller_dev *rcdev, unsigned long id) { return __rzv2h_cpg_assert(rcdev, id, true); } static int rzv2h_cpg_deassert(struct reset_controller_dev *rcdev, unsigned long id) { return __rzv2h_cpg_assert(rcdev, id, false); } static int rzv2h_cpg_reset(struct reset_controller_dev *rcdev, unsigned long id) { int ret; ret = rzv2h_cpg_assert(rcdev, id); if (ret) return ret; return rzv2h_cpg_deassert(rcdev, id); } static int rzv2h_cpg_status(struct reset_controller_dev *rcdev, unsigned long id) { struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev); unsigned int reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index); u8 monbit = priv->resets[id].mon_bit; return !!(readl(priv->base + reg) & BIT(monbit)); } static const struct reset_control_ops rzv2h_cpg_reset_ops = { .reset = rzv2h_cpg_reset, .assert = rzv2h_cpg_assert, .deassert = rzv2h_cpg_deassert, .status = rzv2h_cpg_status, }; static int rzv2h_cpg_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev); unsigned int id = reset_spec->args[0]; u8 rst_index = id / 16; u8 rst_bit = id % 16; unsigned int i; for (i = 0; i < rcdev->nr_resets; i++) { if (rst_index == priv->resets[i].reset_index && rst_bit == priv->resets[i].reset_bit) return i; } return -EINVAL; } static int rzv2h_cpg_reset_controller_register(struct rzv2h_cpg_priv *priv) { priv->rcdev.ops = &rzv2h_cpg_reset_ops; priv->rcdev.of_node = priv->dev->of_node; priv->rcdev.dev = priv->dev; priv->rcdev.of_reset_n_cells = 1; priv->rcdev.of_xlate = rzv2h_cpg_reset_xlate; priv->rcdev.nr_resets = priv->num_resets; return devm_reset_controller_register(priv->dev, &priv->rcdev); } /** * struct rzv2h_cpg_pd - RZ/V2H power domain data structure * @priv: pointer to CPG private data structure * @genpd: generic PM domain */ struct rzv2h_cpg_pd { struct rzv2h_cpg_priv *priv; struct generic_pm_domain genpd; }; static bool rzv2h_cpg_is_pm_clk(struct rzv2h_cpg_pd *pd, const struct of_phandle_args *clkspec) { if (clkspec->np != pd->genpd.dev.of_node || clkspec->args_count != 2) return false; switch (clkspec->args[0]) { case CPG_MOD: { struct rzv2h_cpg_priv *priv = pd->priv; unsigned int id = clkspec->args[1]; struct mod_clock *clock; if (id >= priv->num_mod_clks) return false; if (priv->clks[priv->num_core_clks + id] == ERR_PTR(-ENOENT)) return false; clock = to_mod_clock(__clk_get_hw(priv->clks[priv->num_core_clks + id])); return !clock->no_pm; } case CPG_CORE: default: return false; } } static int rzv2h_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct rzv2h_cpg_pd *pd = container_of(domain, struct rzv2h_cpg_pd, genpd); struct device_node *np = dev->of_node; struct of_phandle_args clkspec; bool once = true; struct clk *clk; unsigned int i; int error; for (i = 0; !of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, &clkspec); i++) { if (!rzv2h_cpg_is_pm_clk(pd, &clkspec)) { of_node_put(clkspec.np); continue; } if (once) { once = false; error = pm_clk_create(dev); if (error) { of_node_put(clkspec.np); goto err; } } clk = of_clk_get_from_provider(&clkspec); of_node_put(clkspec.np); if (IS_ERR(clk)) { error = PTR_ERR(clk); goto fail_destroy; } error = pm_clk_add_clk(dev, clk); if (error) { dev_err(dev, "pm_clk_add_clk failed %d\n", error); goto fail_put; } } return 0; fail_put: clk_put(clk); fail_destroy: pm_clk_destroy(dev); err: return error; } static void rzv2h_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev) { if (!pm_clk_no_clocks(dev)) pm_clk_destroy(dev); } static void rzv2h_cpg_genpd_remove_simple(void *data) { pm_genpd_remove(data); } static int __init rzv2h_cpg_add_pm_domains(struct rzv2h_cpg_priv *priv) { struct device *dev = priv->dev; struct device_node *np = dev->of_node; struct rzv2h_cpg_pd *pd; int ret; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->genpd.name = np->name; pd->priv = priv; pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; pd->genpd.attach_dev = rzv2h_cpg_attach_dev; pd->genpd.detach_dev = rzv2h_cpg_detach_dev; ret = pm_genpd_init(&pd->genpd, &pm_domain_always_on_gov, false); if (ret) return ret; ret = devm_add_action_or_reset(dev, rzv2h_cpg_genpd_remove_simple, &pd->genpd); if (ret) return ret; return of_genpd_add_provider_simple(np, &pd->genpd); } static void rzv2h_cpg_del_clk_provider(void *data) { of_clk_del_provider(data); } static int __init rzv2h_cpg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct rzv2h_cpg_info *info; struct rzv2h_cpg_priv *priv; unsigned int nclks, i; struct clk **clks; int error; info = of_device_get_match_data(dev); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; spin_lock_init(&priv->rmw_lock); priv->dev = dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); nclks = info->num_total_core_clks + info->num_hw_mod_clks; clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL); if (!clks) return -ENOMEM; priv->mstop_count = devm_kcalloc(dev, info->num_mstop_bits, sizeof(*priv->mstop_count), GFP_KERNEL); if (!priv->mstop_count) return -ENOMEM; /* Adjust for CPG_BUS_m_MSTOP starting from m = 1 */ priv->mstop_count -= 16; priv->resets = devm_kmemdup_array(dev, info->resets, info->num_resets, sizeof(*info->resets), GFP_KERNEL); if (!priv->resets) return -ENOMEM; dev_set_drvdata(dev, priv); priv->clks = clks; priv->num_core_clks = info->num_total_core_clks; priv->num_mod_clks = info->num_hw_mod_clks; priv->last_dt_core_clk = info->last_dt_core_clk; priv->num_resets = info->num_resets; for (i = 0; i < nclks; i++) clks[i] = ERR_PTR(-ENOENT); for (i = 0; i < info->num_core_clks; i++) rzv2h_cpg_register_core_clk(&info->core_clks[i], priv); for (i = 0; i < info->num_mod_clks; i++) rzv2h_cpg_register_mod_clk(&info->mod_clks[i], priv); error = of_clk_add_provider(np, rzv2h_cpg_clk_src_twocell_get, priv); if (error) return error; error = devm_add_action_or_reset(dev, rzv2h_cpg_del_clk_provider, np); if (error) return error; error = rzv2h_cpg_add_pm_domains(priv); if (error) return error; error = rzv2h_cpg_reset_controller_register(priv); if (error) return error; return 0; } static const struct of_device_id rzv2h_cpg_match[] = { #ifdef CONFIG_CLK_R9A09G047 { .compatible = "renesas,r9a09g047-cpg", .data = &r9a09g047_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A09G056 { .compatible = "renesas,r9a09g056-cpg", .data = &r9a09g056_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A09G057 { .compatible = "renesas,r9a09g057-cpg", .data = &r9a09g057_cpg_info, }, #endif { /* sentinel */ } }; static struct platform_driver rzv2h_cpg_driver = { .driver = { .name = "rzv2h-cpg", .of_match_table = rzv2h_cpg_match, }, }; static int __init rzv2h_cpg_init(void) { return platform_driver_probe(&rzv2h_cpg_driver, rzv2h_cpg_probe); } subsys_initcall(rzv2h_cpg_init); MODULE_DESCRIPTION("Renesas RZ/V2H CPG Driver");