/* * linux/fs/inode.c * * (C) 1997 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This is needed for the following functions: * - inode_has_buffers * - invalidate_inode_buffers * - fsync_bdev * - invalidate_bdev * * FIXME: remove all knowledge of the buffer layer from this file */ #include /* * New inode.c implementation. * * This implementation has the basic premise of trying * to be extremely low-overhead and SMP-safe, yet be * simple enough to be "obviously correct". * * Famous last words. */ /* inode dynamic allocation 1999, Andrea Arcangeli */ /* #define INODE_PARANOIA 1 */ /* #define INODE_DEBUG 1 */ /* * Inode lookup is no longer as critical as it used to be: * most of the lookups are going to be through the dcache. */ #define I_HASHBITS i_hash_shift #define I_HASHMASK i_hash_mask static unsigned int i_hash_mask; static unsigned int i_hash_shift; /* * Each inode can be on two separate lists. One is * the hash list of the inode, used for lookups. The * other linked list is the "type" list: * "in_use" - valid inode, i_count > 0, i_nlink > 0 * "dirty" - as "in_use" but also dirty * "unused" - valid inode, i_count = 0 * * A "dirty" list is maintained for each super block, * allowing for low-overhead inode sync() operations. */ LIST_HEAD(inode_in_use); LIST_HEAD(inode_unused); static struct list_head *inode_hashtable; static LIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */ /* * A simple spinlock to protect the list manipulations. * * NOTE! You also have to own the lock if you change * the i_state of an inode while it is in use.. */ spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; /* * Statistics gathering.. */ struct inodes_stat_t inodes_stat; static kmem_cache_t * inode_cachep; static struct inode *alloc_inode(struct super_block *sb) { static struct address_space_operations empty_aops; static struct inode_operations empty_iops; static struct file_operations empty_fops; struct inode *inode; if (sb->s_op->alloc_inode) inode = sb->s_op->alloc_inode(sb); else inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); if (inode) { struct address_space * const mapping = &inode->i_data; inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_blkbits = sb->s_blocksize_bits; inode->i_flags = 0; atomic_set(&inode->i_count, 1); inode->i_sock = 0; inode->i_op = &empty_iops; inode->i_fop = &empty_fops; inode->i_nlink = 1; atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_blocks = 0; inode->i_bytes = 0; inode->i_generation = 0; memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); inode->i_pipe = NULL; inode->i_bdev = NULL; inode->i_cdev = NULL; inode->i_security = NULL; if (security_ops->inode_alloc_security(inode)) { if (inode->i_sb->s_op->destroy_inode) inode->i_sb->s_op->destroy_inode(inode); else kmem_cache_free(inode_cachep, (inode)); return NULL; } mapping->a_ops = &empty_aops; mapping->host = inode; mapping->gfp_mask = GFP_HIGHUSER; mapping->dirtied_when = 0; mapping->assoc_mapping = NULL; mapping->backing_dev_info = &default_backing_dev_info; if (sb->s_bdev) inode->i_data.backing_dev_info = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; memset(&inode->u, 0, sizeof(inode->u)); inode->i_mapping = mapping; } return inode; } static void destroy_inode(struct inode *inode) { if (inode_has_buffers(inode)) BUG(); security_ops->inode_free_security(inode); if (inode->i_sb->s_op->destroy_inode) { inode->i_sb->s_op->destroy_inode(inode); } else { BUG_ON(inode->i_data.page_tree.rnode != NULL); kmem_cache_free(inode_cachep, (inode)); } } /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ void inode_init_once(struct inode *inode) { memset(inode, 0, sizeof(*inode)); INIT_LIST_HEAD(&inode->i_hash); INIT_LIST_HEAD(&inode->i_data.clean_pages); INIT_LIST_HEAD(&inode->i_data.dirty_pages); INIT_LIST_HEAD(&inode->i_data.locked_pages); INIT_LIST_HEAD(&inode->i_data.io_pages); INIT_LIST_HEAD(&inode->i_dentry); INIT_LIST_HEAD(&inode->i_devices); sema_init(&inode->i_sem, 1); INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); rwlock_init(&inode->i_data.page_lock); spin_lock_init(&inode->i_data.i_shared_lock); INIT_LIST_HEAD(&inode->i_data.private_list); spin_lock_init(&inode->i_data.private_lock); INIT_LIST_HEAD(&inode->i_data.i_mmap); INIT_LIST_HEAD(&inode->i_data.i_mmap_shared); } static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) { struct inode * inode = (struct inode *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) inode_init_once(inode); } /* * inode_lock must be held */ void __iget(struct inode * inode) { if (atomic_read(&inode->i_count)) { atomic_inc(&inode->i_count); return; } atomic_inc(&inode->i_count); if (!(inode->i_state & (I_DIRTY|I_LOCK))) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_in_use); } inodes_stat.nr_unused--; } /** * clear_inode - clear an inode * @inode: inode to clear * * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme prejudice. */ void clear_inode(struct inode *inode) { invalidate_inode_buffers(inode); if (inode->i_data.nrpages) BUG(); if (!(inode->i_state & I_FREEING)) BUG(); if (inode->i_state & I_CLEAR) BUG(); wait_on_inode(inode); DQUOT_DROP(inode); if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode) inode->i_sb->s_op->clear_inode(inode); if (inode->i_bdev) bd_forget(inode); else if (inode->i_cdev) { cdput(inode->i_cdev); inode->i_cdev = NULL; } inode->i_state = I_CLEAR; } /* * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head *head) { int nr_disposed = 0; while (!list_empty(head)) { struct inode *inode; inode = list_entry(head->next, struct inode, i_list); list_del(&inode->i_list); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); clear_inode(inode); destroy_inode(inode); nr_disposed++; } spin_lock(&inode_lock); inodes_stat.nr_inodes -= nr_disposed; spin_unlock(&inode_lock); } /* * Invalidate all inodes for a device. */ static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose) { struct list_head *next; int busy = 0, count = 0; next = head->next; for (;;) { struct list_head * tmp = next; struct inode * inode; next = next->next; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_list); if (inode->i_sb != sb) continue; invalidate_inode_buffers(inode); if (!atomic_read(&inode->i_count)) { list_del_init(&inode->i_hash); list_del(&inode->i_list); list_add(&inode->i_list, dispose); inode->i_state |= I_FREEING; count++; continue; } busy = 1; } /* only unused inodes may be cached with i_count zero */ inodes_stat.nr_unused -= count; return busy; } /* * This is a two-stage process. First we collect all * offending inodes onto the throw-away list, and in * the second stage we actually dispose of them. This * is because we don't want to sleep while messing * with the global lists.. */ /** * invalidate_inodes - discard the inodes on a device * @sb: superblock * * Discard all of the inodes for a given superblock. If the discard * fails because there are busy inodes then a non zero value is returned. * If the discard is successful all the inodes have been discarded. */ int invalidate_inodes(struct super_block * sb) { int busy; LIST_HEAD(throw_away); spin_lock(&inode_lock); busy = invalidate_list(&inode_in_use, sb, &throw_away); busy |= invalidate_list(&inode_unused, sb, &throw_away); busy |= invalidate_list(&sb->s_dirty, sb, &throw_away); busy |= invalidate_list(&sb->s_io, sb, &throw_away); spin_unlock(&inode_lock); dispose_list(&throw_away); return busy; } int invalidate_device(kdev_t dev, int do_sync) { struct super_block *sb; struct block_device *bdev = bdget(kdev_t_to_nr(dev)); int res; if (!bdev) return 0; if (do_sync) fsync_bdev(bdev); res = 0; sb = get_super(bdev); if (sb) { /* * no need to lock the super, get_super holds the * read semaphore so the filesystem cannot go away * under us (->put_super runs with the write lock * hold). */ shrink_dcache_sb(sb); res = invalidate_inodes(sb); drop_super(sb); } invalidate_bdev(bdev, 0); bdput(bdev); return res; } /* * This is called with the inode lock held. It searches * the in-use for freeable inodes, which are moved to a * temporary list and then placed on the unused list by * dispose_list. * * We don't expect to have to call this very often. * * N.B. The spinlock is released during the call to * dispose_list. */ #define CAN_UNUSE(inode) \ ((((inode)->i_state | (inode)->i_data.nrpages) == 0) && \ !inode_has_buffers(inode)) #define INODE(entry) (list_entry(entry, struct inode, i_list)) static inline void prune_icache(int goal) { LIST_HEAD(list); struct list_head *entry, *freeable = &list; int count; struct inode * inode; spin_lock(&inode_lock); count = 0; entry = inode_unused.prev; for(; goal; goal--) { struct list_head *tmp = entry; if (entry == &inode_unused) break; entry = entry->prev; inode = INODE(tmp); if (inode->i_state & (I_FREEING|I_CLEAR|I_LOCK)) continue; if (!CAN_UNUSE(inode)) continue; if (atomic_read(&inode->i_count)) continue; list_del(tmp); list_del_init(&inode->i_hash); list_add(tmp, freeable); inode->i_state |= I_FREEING; count++; } inodes_stat.nr_unused -= count; spin_unlock(&inode_lock); dispose_list(freeable); } /* * This is called from kswapd when we think we need some * more memory. */ static int shrink_icache_memory(int nr, unsigned int gfp_mask) { if (nr) { /* * Nasty deadlock avoidance. We may hold various FS locks, * and we don't want to recurse into the FS that called us * in clear_inode() and friends.. */ if (gfp_mask & __GFP_FS) prune_icache(nr); } return inodes_stat.nr_inodes; } /* * Called with the inode lock held. * NOTE: we are not increasing the inode-refcount, you must call __iget() * by hand after calling find_inode now! This simplifies iunique and won't * add any additional branch in the common code. */ static struct inode * find_inode(struct super_block * sb, struct list_head *head, int (*test)(struct inode *, void *), void *data) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_sb != sb) continue; if (!test(inode, data)) continue; break; } return inode; } /* * find_inode_fast is the fast path version of find_inode, see the comment at * iget_locked for details. */ static struct inode * find_inode_fast(struct super_block * sb, struct list_head *head, unsigned long ino) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_ino != ino) continue; if (inode->i_sb != sb) continue; break; } return inode; } /** * new_inode - obtain an inode * @sb: superblock * * Allocates a new inode for given superblock. */ struct inode *new_inode(struct super_block *sb) { static unsigned long last_ino; struct inode * inode; spin_lock_prefetch(&inode_lock); inode = alloc_inode(sb); if (inode) { spin_lock(&inode_lock); inodes_stat.nr_inodes++; list_add(&inode->i_list, &inode_in_use); inode->i_ino = ++last_ino; inode->i_state = 0; spin_unlock(&inode_lock); } return inode; } void unlock_new_inode(struct inode *inode) { /* * This is special! We do not need the spinlock * when clearing I_LOCK, because we're guaranteed * that nobody else tries to do anything about the * state of the inode when it is locked, as we * just created it (so there can be no old holders * that haven't tested I_LOCK). */ inode->i_state &= ~(I_LOCK|I_NEW); wake_up_inode(inode); } EXPORT_SYMBOL(unlock_new_inode); /* * This is called without the inode lock held.. Be careful. * * We no longer cache the sb_flags in i_flags - see fs.h * -- rmk@arm.uk.linux.org */ static struct inode * get_new_inode(struct super_block *sb, struct list_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct inode * inode; inode = alloc_inode(sb); if (inode) { struct inode * old; spin_lock(&inode_lock); /* We released the lock, so.. */ old = find_inode(sb, head, test, data); if (!old) { if (set(inode, data)) goto set_failed; inodes_stat.nr_inodes++; list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_state = I_LOCK|I_NEW; spin_unlock(&inode_lock); /* Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ __iget(old); spin_unlock(&inode_lock); destroy_inode(inode); inode = old; wait_on_inode(inode); } return inode; set_failed: spin_unlock(&inode_lock); destroy_inode(inode); return NULL; } /* * get_new_inode_fast is the fast path version of get_new_inode, see the * comment at iget_locked for details. */ static struct inode * get_new_inode_fast(struct super_block *sb, struct list_head *head, unsigned long ino) { struct inode * inode; inode = alloc_inode(sb); if (inode) { struct inode * old; spin_lock(&inode_lock); /* We released the lock, so.. */ old = find_inode_fast(sb, head, ino); if (!old) { inode->i_ino = ino; inodes_stat.nr_inodes++; list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_state = I_LOCK|I_NEW; spin_unlock(&inode_lock); /* Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ __iget(old); spin_unlock(&inode_lock); destroy_inode(inode); inode = old; wait_on_inode(inode); } return inode; } static inline unsigned long hash(struct super_block *sb, unsigned long hashval) { unsigned long tmp = hashval + ((unsigned long) sb / L1_CACHE_BYTES); tmp = tmp + (tmp >> I_HASHBITS); return tmp & I_HASHMASK; } /* Yeah, I know about quadratic hash. Maybe, later. */ /** * iunique - get a unique inode number * @sb: superblock * @max_reserved: highest reserved inode number * * Obtain an inode number that is unique on the system for a given * superblock. This is used by file systems that have no natural * permanent inode numbering system. An inode number is returned that * is higher than the reserved limit but unique. * * BUGS: * With a large number of inodes live on the file system this function * currently becomes quite slow. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { static ino_t counter = 0; struct inode *inode; struct list_head * head; ino_t res; spin_lock(&inode_lock); retry: if (counter > max_reserved) { head = inode_hashtable + hash(sb,counter); res = counter++; inode = find_inode_fast(sb, head, res); if (!inode) { spin_unlock(&inode_lock); return res; } } else { counter = max_reserved + 1; } goto retry; } struct inode *igrab(struct inode *inode) { spin_lock(&inode_lock); if (!(inode->i_state & I_FREEING)) __iget(inode); else /* * Handle the case where s_op->clear_inode is not been * called yet, and somebody is calling igrab * while the inode is getting freed. */ inode = NULL; spin_unlock(&inode_lock); return inode; } /** * ifind - internal function, you want ilookup5() or iget5(). * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * ifind() searches for the inode specified by @hashval and @data in the inode * cache. This is a generalized version of ifind_fast() for file systems where * the inode number is not sufficient for unique identification of an inode. * * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Otherwise NULL is returned. * * Note, @test is called with the inode_lock held, so can't sleep. */ static inline struct inode *ifind(struct super_block *sb, struct list_head *head, int (*test)(struct inode *, void *), void *data) { struct inode *inode; spin_lock(&inode_lock); inode = find_inode(sb, head, test, data); if (inode) { __iget(inode); spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } spin_unlock(&inode_lock); return NULL; } /** * ifind_fast - internal function, you want ilookup() or iget(). * @sb: super block of file system to search * @ino: inode number to search for * * ifind_fast() searches for the inode @ino in the inode cache. This is for * file systems where the inode number is sufficient for unique identification * of an inode. * * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Otherwise NULL is returned. */ static inline struct inode *ifind_fast(struct super_block *sb, struct list_head *head, unsigned long ino) { struct inode *inode; spin_lock(&inode_lock); inode = find_inode_fast(sb, head, ino); if (inode) { __iget(inode); spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } spin_unlock(&inode_lock); return NULL; } /** * ilookup5 - search for an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * ilookup5() uses ifind() to search for the inode specified by @hashval and * @data in the inode cache. This is a generalized version of ilookup() for * file systems where the inode number is not sufficient for unique * identification of an inode. * * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Otherwise NULL is returned. * * Note, @test is called with the inode_lock held, so can't sleep. */ struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct list_head *head = inode_hashtable + hash(sb, hashval); return ifind(sb, head, test, data); } EXPORT_SYMBOL(ilookup5); /** * ilookup - search for an inode in the inode cache * @sb: super block of file system to search * @ino: inode number to search for * * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. * This is for file systems where the inode number is sufficient for unique * identification of an inode. * * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Otherwise NULL is returned. */ struct inode *ilookup(struct super_block *sb, unsigned long ino) { struct list_head *head = inode_hashtable + hash(sb, ino); return ifind_fast(sb, head, ino); } EXPORT_SYMBOL(ilookup); /** * iget5_locked - obtain an inode from a mounted file system * @sb: super block of file system * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * This is iget() without the read_inode() portion of get_new_inode(). * * iget5_locked() uses ifind() to search for the inode specified by @hashval * and @data in the inode cache and if present it is returned with an increased * reference count. This is a generalized version of iget_locked() for file * systems where the inode number is not sufficient for unique identification * of an inode. * * If the inode is not in cache, get_new_inode() is called to allocate a new * inode and this is returned locked, hashed, and with the I_NEW flag set. The * file system gets to fill it in before unlocking it via unlock_new_inode(). * * Note both @test and @set are called with the inode_lock held, so can't sleep. */ struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct list_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode; inode = ifind(sb, head, test, data); if (inode) return inode; /* * get_new_inode() will do the right thing, re-trying the search * in case it had to block at any point. */ return get_new_inode(sb, head, test, set, data); } EXPORT_SYMBOL(iget5_locked); /** * iget_locked - obtain an inode from a mounted file system * @sb: super block of file system * @ino: inode number to get * * This is iget() without the read_inode() portion of get_new_inode_fast(). * * iget_locked() uses ifind_fast() to search for the inode specified by @ino in * the inode cache and if present it is returned with an increased reference * count. This is for file systems where the inode number is sufficient for * unique identification of an inode. * * If the inode is not in cache, get_new_inode_fast() is called to allocate a * new inode and this is returned locked, hashed, and with the I_NEW flag set. * The file system gets to fill it in before unlocking it via * unlock_new_inode(). */ struct inode *iget_locked(struct super_block *sb, unsigned long ino) { struct list_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; inode = ifind_fast(sb, head, ino); if (inode) return inode; /* * get_new_inode_fast() will do the right thing, re-trying the search * in case it had to block at any point. */ return get_new_inode_fast(sb, head, ino); } EXPORT_SYMBOL(iget_locked); /** * __insert_inode_hash - hash an inode * @inode: unhashed inode * @hashval: unsigned long value used to locate this object in the * inode_hashtable. * * Add an inode to the inode hash for this superblock. If the inode * has no superblock it is added to a separate anonymous chain. */ void __insert_inode_hash(struct inode *inode, unsigned long hashval) { struct list_head *head = &anon_hash_chain; if (inode->i_sb) head = inode_hashtable + hash(inode->i_sb, hashval); spin_lock(&inode_lock); list_add(&inode->i_hash, head); spin_unlock(&inode_lock); } /** * remove_inode_hash - remove an inode from the hash * @inode: inode to unhash * * Remove an inode from the superblock or anonymous hash. */ void remove_inode_hash(struct inode *inode) { spin_lock(&inode_lock); list_del_init(&inode->i_hash); spin_unlock(&inode_lock); } void generic_delete_inode(struct inode *inode) { struct super_operations *op = inode->i_sb->s_op; list_del_init(&inode->i_hash); list_del_init(&inode->i_list); inode->i_state|=I_FREEING; inodes_stat.nr_inodes--; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); security_ops->inode_delete(inode); if (op && op->delete_inode) { void (*delete)(struct inode *) = op->delete_inode; if (!is_bad_inode(inode)) DQUOT_INIT(inode); /* s_op->delete_inode internally recalls clear_inode() */ delete(inode); } else clear_inode(inode); if (inode->i_state != I_CLEAR) BUG(); destroy_inode(inode); } EXPORT_SYMBOL(generic_delete_inode); static void generic_forget_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; if (!list_empty(&inode->i_hash)) { if (!(inode->i_state & (I_DIRTY|I_LOCK))) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } inodes_stat.nr_unused++; spin_unlock(&inode_lock); if (!sb || (sb->s_flags & MS_ACTIVE)) return; write_inode_now(inode, 1); spin_lock(&inode_lock); inodes_stat.nr_unused--; list_del_init(&inode->i_hash); } list_del_init(&inode->i_list); inode->i_state|=I_FREEING; inodes_stat.nr_inodes--; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); clear_inode(inode); destroy_inode(inode); } /* * Normal UNIX filesystem behaviour: delete the * inode when the usage count drops to zero, and * i_nlink is zero. */ static void generic_drop_inode(struct inode *inode) { if (!inode->i_nlink) generic_delete_inode(inode); else generic_forget_inode(inode); } /* * Called when we're dropping the last reference * to an inode. * * Call the FS "drop()" function, defaulting to * the legacy UNIX filesystem behaviour.. * * NOTE! NOTE! NOTE! We're called with the inode lock * held, and the drop function is supposed to release * the lock! */ static inline void iput_final(struct inode *inode) { struct super_operations *op = inode->i_sb->s_op; void (*drop)(struct inode *) = generic_drop_inode; if (op && op->drop_inode) drop = op->drop_inode; drop(inode); } /** * iput - put an inode * @inode: inode to put * * Puts an inode, dropping its usage count. If the inode use count hits * zero the inode is also then freed and may be destroyed. */ void iput(struct inode *inode) { if (inode) { struct super_operations *op = inode->i_sb->s_op; if (inode->i_state == I_CLEAR) BUG(); if (op && op->put_inode) op->put_inode(inode); if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) iput_final(inode); } } /** * bmap - find a block number in a file * @inode: inode of file * @block: block to find * * Returns the block number on the device holding the inode that * is the disk block number for the block of the file requested. * That is, asked for block 4 of inode 1 the function will return the * disk block relative to the disk start that holds that block of the * file. */ sector_t bmap(struct inode * inode, sector_t block) { sector_t res = 0; if (inode->i_mapping->a_ops->bmap) res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); return res; } /** * update_atime - update the access time * @inode: inode accessed * * Update the accessed time on an inode and mark it for writeback. * This function automatically handles read only file systems and media, * as well as the "noatime" flag and inode specific "noatime" markers. */ void update_atime(struct inode *inode) { if (inode->i_atime == CURRENT_TIME) return; if (IS_NOATIME(inode)) return; if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode)) return; if (IS_RDONLY(inode)) return; inode->i_atime = CURRENT_TIME; mark_inode_dirty_sync(inode); } int inode_needs_sync(struct inode *inode) { if (IS_SYNC(inode)) return 1; if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) return 1; return 0; } EXPORT_SYMBOL(inode_needs_sync); /* * Quota functions that want to walk the inode lists.. */ #ifdef CONFIG_QUOTA /* Functions back in dquot.c */ void put_dquot_list(struct list_head *); int remove_inode_dquot_ref(struct inode *, int, struct list_head *); void remove_dquot_ref(struct super_block *sb, int type) { struct inode *inode; struct list_head *act_head; LIST_HEAD(tofree_head); if (!sb->dq_op) return; /* nothing to do */ /* We have to be protected against other CPUs */ lock_kernel(); /* This lock is for quota code */ spin_lock(&inode_lock); /* This lock is for inodes code */ list_for_each(act_head, &inode_in_use) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb == sb && IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &inode_unused) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb == sb && IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &sb->s_dirty) { inode = list_entry(act_head, struct inode, i_list); if (IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &sb->s_io) { inode = list_entry(act_head, struct inode, i_list); if (IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } spin_unlock(&inode_lock); unlock_kernel(); put_dquot_list(&tofree_head); } #endif /* * Hashed waitqueues for wait_on_inode(). The table is pretty small - the * kernel doesn't lock many inodes at the same time. */ #define I_WAIT_TABLE_ORDER 3 static struct i_wait_queue_head { wait_queue_head_t wqh; } ____cacheline_aligned_in_smp i_wait_queue_heads[1<i_state & I_LOCK) { schedule(); goto repeat; } remove_wait_queue(wq, &wait); current->state = TASK_RUNNING; } void wake_up_inode(struct inode *inode) { wait_queue_head_t *wq = i_waitq_head(inode); /* * Prevent speculative execution through spin_unlock(&inode_lock); */ smp_mb(); if (waitqueue_active(wq)) wake_up_all(wq); } /* * Initialize the waitqueues and inode hash table. */ void __init inode_init(unsigned long mempages) { struct list_head *head; unsigned long order; unsigned int nr_hash; int i; for (i = 0; i < ARRAY_SIZE(i_wait_queue_heads); i++) init_waitqueue_head(&i_wait_queue_heads[i].wqh); mempages >>= (14 - PAGE_SHIFT); mempages *= sizeof(struct list_head); for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++) ; do { unsigned long tmp; nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head); i_hash_mask = (nr_hash - 1); tmp = nr_hash; i_hash_shift = 0; while ((tmp >>= 1UL) != 0UL) i_hash_shift++; inode_hashtable = (struct list_head *) __get_free_pages(GFP_ATOMIC, order); } while (inode_hashtable == NULL && --order >= 0); printk("Inode-cache hash table entries: %d (order: %ld, %ld bytes)\n", nr_hash, order, (PAGE_SIZE << order)); if (!inode_hashtable) panic("Failed to allocate inode hash table\n"); head = inode_hashtable; i = nr_hash; do { INIT_LIST_HEAD(head); head++; i--; } while (i); /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, SLAB_HWCACHE_ALIGN, init_once, NULL); if (!inode_cachep) panic("cannot create inode slab cache"); set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); }