AsymptoticSum[((-1)^(k - 1))*1/k, {k, 1, n}, {n, Infinity, 1}]
(*-(1/2) + (-1)^n/(2 (1 + n)) + Log[2]*)
Since $|F(n)|$ goes to 0 with large n, the constant term approaches 0 so just the absolute value of the (-1)^n/(2 (1 + n)) term matters, which asymptotically looks like 1/(2 n):
F[n_] := Log[2] - Sum[((-1)^(k-1)) * 1/k,{k,1,n}]
DiscretePlot[{Abs@F[n], 1/(2 n)}, {n, 1, 100}, Filling -> None,
PlotLegends -> "Expressions", Frame -> True, FrameLabel -> {"n"},
LabelStyle -> Directive[Bold, Medium]]

If you want more terms beyond the leading $\frac{1}{2n}$, you can increase the order of AsymptoticSum:
Log[2] -
AsymptoticSum[((-1)^(k - 1))*1/k, {k, 1, n}, {n, Infinity, 2}]
(*-(5/8) + (-1)^n/(2 (1 + n)) - (-1)^(1 + n)/(4 (1 + n) (2 + n)) +
Log[2]*)
Which leaves us with $\frac{(-1)^n}{2 (n+1)}-\frac{(-1)^{n+1}}{4 (n+1) (n+2)} = (-1)^n \left(\frac{1}{4 (n+2) (n+1)}+\frac{1}{2 (n+1)}\right) $ since the constants go to 0, and which asymptotically looks like $(-1)^n \left(\frac{1}{2 n}-\frac{1}{4 n^2}\right)$:
DiscreteAsymptotic[(-1)^n (1/(2 (n + 1)) + 1/(4 (n + 1) (n + 2))), {n,
Infinity, 2}]
(*(-1)^n (-(1/(4 n^2)) + 1/(2 n))*)
So $|F(n)| \approx \frac{1}{2 n}-\frac{1}{4 n^2}$ .
I guess to get higher terms you could do something like:
getExpansion[order_] :=
Module[{asym},
asym = AsymptoticSum[((-1)^(k - 1))*1/k, {k, 1, n}, {n, Infinity,
order}];
(*remove constant term*)
asym = Select[asym, ! FreeQ[#, n] &];
(*for Abs[F],leading term is positive and then signs alternate*)
asym = asym/(-1)^(n+1) // Expand;
(*asymptotic value of Abs[F]*)
DiscreteAsymptotic[asym, {n, Infinity, order}]]
(*example*)
getExpansion[4]
(*1/(8 n^4) - 1/(4 n^2) + 1/(2 n)*)
(*plot |F(n)| with different order expansions. Series coefficient appears to be 0 for odd terms > 1*)
expansionOrders = {1, 2, 4, 6, 8};
fExpansions = getExpansion /@ expansionOrders;
fPlot = DiscretePlot[Abs@F[n], {n, 1, 20},
PlotMarkers -> {Automatic, 12}, PlotStyle -> Red, Filling -> None,
PlotLegends ->
PointLegend[{Automatic}, {"F(n)"},
LegendMarkers -> {Automatic, 12}, LegendFunction -> "Frame"]];
expansionPlot =
Plot[fExpansions, {n, 0, 20}, PlotRange -> {All, {0, 0.5}},
PlotLegends ->
LineLegend[Automatic, expansionOrders, LegendLabel -> "order",
LegendFunction -> "Frame"]];
Show[fPlot, expansionPlot, Frame -> True,
FrameLabel -> {n, Abs[F[n]] // HoldForm}]
