Who Am I?¶

Keras - Neural Networks for humans¶

A high-level, intuitive API for Deep Learning.
Easy to define neural networks, then automatically handles execution.
A simple, modular interface which allows focus on learning and enables fast experimentation
Goals¶
- General introduction to Deep Learning
- Overview of keras library
- An end-to-end example in keras
Anti-Goals¶
- Understanding of Deep Learning (there will be no equations)
- Building neural networks from scratch
- Complete survey of keras library
Deep Learning 101¶

Deep Learning (DL) are Neural networks (NN) with >1 hidden layer¶

Neural Networks are Nodes & Edges¶

Nonlinear function allows learning of nonlinear relationships¶

Groups of nodes all the way down¶

Deep Learning isn't magic, it is just very good at finding patterns¶

Deep Learning has fewer steps than traditional Machine Learning¶

If you want to follow along…¶
GitHub repo: bit.ly/pybay-keras
If you want to type along…¶
- Run a local Jupyter Notebook
- Binder: In-Browser Jupyter Notebook
- Colaboratory: "Google Docs for Jupyter Notebooks"
reset -fs
import keras
# What is the backend / execution engine?
keras.backend.backend()
'tensorflow'

"An open-source software library for Machine Intelligence"
Numerical computation using data flow graphs.
TensorFlow: A great backend¶
A very flexible architecture which allows you to do almost any numerical operation.
Then deploy the computation to CPUs or GPUs (one or more) across desktop, cloud, or mobile device.

MNIST handwritten digit database:
The “Hello World!” of Computer Vision



# Import data
from keras.datasets import mnist
# Setup train and test splits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
from random import randint
from matplotlib import pyplot
%matplotlib inline
pyplot.imshow(x_train[randint(0, x_train.shape[0])], cmap='gray_r');
# Munge Data
# Transform from matrix to vector, cast, and normalize
image_size = 784 # 28 x 28
x_train = x_train.reshape(x_train.shape[0], image_size) # Transform from matrix to vector
x_train = x_train.astype('float32') # Cast as 32 bit integers
x_train /= 255 # Normalize inputs from 0-255 to 0.0-1.0
x_test = x_test.reshape(x_test.shape[0], image_size) # Transform from matrix to vector
x_test = x_test.astype('float32') # Cast as 32 bit integers
x_test /= 255 # Normalize inputs from 0-255 to 0.0-1.0
# Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# Import the most common type of neural network
from keras.models import Sequential
RTFM - https://keras.io/layers/
# Define model instance
model = Sequential()
# Import the most common type of network layer, fully interconnected
from keras.layers import Dense

# Define input layer
layer_input = Dense(units=512, # Number of nodes
activation='sigmoid', # The nonlinearity
input_shape=(image_size,))
model.add(layer_input)
# Define another layer
model.add(Dense(units=512, activation='sigmoid'))
# Define output layers
layer_output = Dense(units=10, # Number of digits (0-9)
activation='softmax') # Convert neural activation to probability of category
model.add(layer_output)
# Print summary
model.summary()
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_9 (Dense) (None, 512) 401920 _________________________________________________________________ dense_10 (Dense) (None, 512) 262656 _________________________________________________________________ dense_11 (Dense) (None, 10) 5130 ================================================================= Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0 _________________________________________________________________
# Yes - we compile the model to run it
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
# Train the model
training = model.fit(x_train,
y_train,
epochs=5, # Number of passes over complete dataset
verbose=True,
validation_split=0.1)
Train on 54000 samples, validate on 6000 samples Epoch 1/5 54000/54000 [==============================] - 15s 285us/step - loss: 2.1522 - acc: 0.3213 - val_loss: 1.8987 - val_acc: 0.5315 Epoch 2/5 54000/54000 [==============================] - 14s 262us/step - loss: 1.5000 - acc: 0.6548 - val_loss: 1.0769 - val_acc: 0.7430 Epoch 3/5 54000/54000 [==============================] - 15s 285us/step - loss: 0.9003 - acc: 0.7860 - val_loss: 0.6709 - val_acc: 0.8560 Epoch 4/5 54000/54000 [==============================] - 14s 266us/step - loss: 0.6515 - acc: 0.8317 - val_loss: 0.5121 - val_acc: 0.8778 Epoch 5/5 54000/54000 [==============================] - 18s 340us/step - loss: 0.5385 - acc: 0.8549 - val_loss: 0.4268 - val_acc: 0.8940

# Let's see how well our model performs
loss, accuracy = model.evaluate(x_test,
y_test,
verbose=True)
print(f"Test loss: {loss:.3}")
print(f"Test accuracy: {accuracy:.3%}")
10000/10000 [==============================] - 1s 106us/step Test loss: 0.476 Test accuracy: 87.140%
Keras' Other Features¶
- Common built-in functions (e.g., activation functions and optimitizers)
- Convolutional neural network (CNN or ConvNet)
- Recurrent neural network (RNN) & Long-short term memory (LSTM)
- Pre-trained models
Summary¶
- Keras is designed for human beings, not computers.
- Easier to try out Deep Learning (focus on the what, not the how).
- Simple to define neural networks.

Futher Study - Keras¶
- Keras docs
- Keras blog
- Keras courses
Futher Study - Deep Learning¶
- Prerequisites: Linear Algebra, Probability, Machine Learning
- fast.ai Course
- Deep Learning Book
Bonus Material¶
# reset -fs
# from keras import *
# whos
# from keras.datasets import fashion_mnist
# # Setup train and test splits
# (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# from random import randint
# from matplotlib import pyplot
# %matplotlib inline
# pyplot.imshow(x_train[randint(0, x_train.shape[0])], cmap='gray_r');
# # Define CNN model
# # Redefine input dimensions to make sure conv works
# img_rows, img_cols = 28, 28
# x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
# x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
# input_shape = (img_rows, img_cols, 1)
# import keras
# # Convert class vectors to binary class matrices
# y_train = keras.utils.to_categorical(y_train, 10)
# y_test = keras.utils.to_categorical(y_test, 10)
# from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
# # Define model
# model = Sequential()
# model.add(Conv2D(32,
# kernel_size=(3, 3),
# activation='sigmoid',
# input_shape=input_shape))
# model.add(Conv2D(64, (3, 3), activation='sigmoid'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Flatten())
# model.add(Dense(128, activation='sigmoid'))
# model.add(Dense(10, activation='softmax'))
# model.compile(loss='categorical_crossentropy',
# optimizer='adam',
# metrics=['accuracy'])
# # Define training
# training = model.fit(x_train,
# y_train,
# epochs=5,
# verbose=True,
# validation_split=0.1)
# loss, accuracy = model.evaluate(x_test,
# y_test,
# verbose=True)
# print(f"Test loss: {loss:.3}")
# print(f"Test accuracy: {accuracy:.3%}")
It is a reference to a literary image from ancient Greek and Latin literature.
First found in the Odyssey, where dream spirits (Oneiroi, singular Oneiros) are divided between those who deceive men with false visions, who arrive to Earth through a gate of ivory, and those who announce a future that will come to pass, who arrive through a gate of horn.
It's a play on the words κέρας (horn) / κραίνω (fulfill), and ἐλέφας (ivory) / ἐλεφαίρομαι (deceive).



