diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py index 72970431c3fc..b4df64796bb1 100644 --- a/machine_learning/decision_tree.py +++ b/machine_learning/decision_tree.py @@ -146,14 +146,13 @@ def predict(self, x): """ if self.prediction is not None: return self.prediction - elif self.left or self.right is not None: + elif self.left is not None and self.right is not None: if x >= self.decision_boundary: return self.right.predict(x) else: return self.left.predict(x) else: - print("Error: Decision tree not yet trained") - return None + raise ValueError("Decision tree not yet trained") class TestDecisionTree: @@ -201,4 +200,4 @@ def main(): main() import doctest - doctest.testmod(name="mean_squarred_error", verbose=True) + doctest.testmod(name="mean_squared_error", verbose=True) diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py index d174a0b188a2..5eb176238ffb 100644 --- a/maths/monte_carlo.py +++ b/maths/monte_carlo.py @@ -8,7 +8,7 @@ from statistics import mean -def pi_estimator(iterations: int): +def pi_estimator(iterations: int) -> None: """ An implementation of the Monte Carlo method used to find pi. 1. Draw a 2x2 square centred at (0,0).