|
| 1 | +/** |
| 2 | + * [15] 3Sum |
| 3 | + * |
| 4 | + * Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. |
| 5 | + * |
| 6 | + * Note: |
| 7 | + * |
| 8 | + * The solution set must not contain duplicate triplets. |
| 9 | + * |
| 10 | + * Example: |
| 11 | + * |
| 12 | + * |
| 13 | + * Given array nums = [-1, 0, 1, 2, -1, -4], |
| 14 | + * |
| 15 | + * A solution set is: |
| 16 | + * [ |
| 17 | + * [-1, 0, 1], |
| 18 | + * [-1, -1, 2] |
| 19 | + * ] |
| 20 | + * |
| 21 | + * |
| 22 | + */ |
| 23 | +pub struct Solution {} |
| 24 | + |
| 25 | +// submission codes start here |
| 26 | + |
| 27 | +impl Solution { |
| 28 | + pub fn three_sum(nums: Vec<i32>) -> Vec<Vec<i32>> { |
| 29 | + let len = nums.len(); |
| 30 | + if len < 3 { return vec![] } |
| 31 | + let mut nums = nums; |
| 32 | + nums.sort(); |
| 33 | + let mut i = 0; |
| 34 | + let mut result: Vec<Vec<i32>> = Vec::new(); |
| 35 | + let mut previous = nums[0] - 1; |
| 36 | + while i < len - 2 { |
| 37 | + // skip same number |
| 38 | + if nums[i] == previous { i += 1; continue } |
| 39 | + previous = nums[i]; |
| 40 | + let mut vec = Solution::two_sum(&nums[(i+1)..len], 0 - nums[i]); |
| 41 | + for t in vec.iter() { |
| 42 | + result.push(vec![nums[i], t.0, t.1]); |
| 43 | + } |
| 44 | + i += 1; |
| 45 | + } |
| 46 | + result |
| 47 | + } |
| 48 | + |
| 49 | + // 2 sum using 2 pointers: nums[0] -> <- nums[len-1] |
| 50 | + #[inline(always)] |
| 51 | + fn two_sum(nums: &[i32], sum: i32) -> Vec<(i32, i32)> { |
| 52 | + let (mut i, mut j) = (0_usize, nums.len() - 1); |
| 53 | + let mut result = Vec::new(); |
| 54 | + while i < j { |
| 55 | + if nums[i] + nums[j] < sum { i += 1 } |
| 56 | + else if nums[i] + nums[j] > sum { j -= 1 } |
| 57 | + else { |
| 58 | + result.push((nums[i], nums[j])); |
| 59 | + i = Solution::next_unique(nums, i, true); |
| 60 | + j = Solution::next_unique(nums, j, false); |
| 61 | + } |
| 62 | + } |
| 63 | + result |
| 64 | + } |
| 65 | + |
| 66 | + // seek next un-repeat number |
| 67 | + #[inline(always)] |
| 68 | + fn next_unique(nums: &[i32], idx: usize, forward: bool) -> usize { |
| 69 | + let curr = nums[idx]; |
| 70 | + let mut i = idx; |
| 71 | + while i > 0 && i < nums.len() && nums[i] == curr { |
| 72 | + i = if forward { i + 1 } else { i - 1 } |
| 73 | + } |
| 74 | + i |
| 75 | + } |
| 76 | +} |
| 77 | + |
| 78 | +// submission codes end |
| 79 | + |
| 80 | +#[cfg(test)] |
| 81 | +mod tests { |
| 82 | + use super::*; |
| 83 | + |
| 84 | + #[test] |
| 85 | + fn test_15() { |
| 86 | + assert_eq!(Solution::three_sum(vec![-1, 0, 1, 2, -1, -4]), vec![vec![-1, -1, 2], vec![-1, 0, 1]]); |
| 87 | + assert_eq!(Solution::three_sum( |
| 88 | + vec![-7,-4,-6,6,4,-6,-9,-10,-7,5,3,-1,-5,8,-1,-2,-8,-1,5,-3,-5,4,2,-5,-4,4,7]), |
| 89 | + vec![vec![-10,2,8],vec![-10,3,7],vec![-10,4,6],vec![-10,5,5],vec![-9,2,7],vec![-9,3,6],vec![-9,4,5],vec![-8,2,6],vec![-8,3,5],vec![-8,4,4],vec![-7,-1,8],vec![-7,2,5],vec![-7,3,4],vec![-6,-2,8],vec![-6,-1,7],vec![-6,2,4],vec![-5,-3,8],vec![-5,-2,7],vec![-5,-1,6],vec![-5,2,3],vec![-4,-4,8],vec![-4,-3,7],vec![-4,-2,6],vec![-4,-1,5],vec![-3,-2,5],vec![-3,-1,4],vec![-2,-1,3],vec![-1,-1,2]] |
| 90 | + ); |
| 91 | + assert_eq!(Solution::three_sum(vec![2,0,-2,-5,-5,-3,2,-4]), |
| 92 | + vec![vec![-4, 2, 2], vec![-2, 0, 2]]); |
| 93 | + let empty_vec: Vec<Vec<i32>> = vec![]; |
| 94 | + assert_eq!(Solution::three_sum(vec![]), empty_vec); |
| 95 | + } |
| 96 | +} |
0 commit comments