React

Free series of youtube videos on React / TypeScript best practices

PRO Egghead course on TypeScript and React

DesignTSX

Setup

Our browser quickstart already sets you up to develop react applications. Here are the key highlights.

  • Use files with the extension .tsx (instead of .ts).

  • Use "jsx" : "react" in your tsconfig.json's compilerOptions.

  • Install the definitions for JSX and React into your project : (npm i -D @types/react @types/react-dom).

  • Import react into your .tsx files (import * as React from "react").

HTML Tags vs. Components

React can either render HTML tags (strings) or React components. The JavaScript emit for these elements is different (React.createElement('div') vs. React.createElement(MyComponent)). The way this is determined is by the case of the first letter. foo is treated as an HTML tag and Foo is treated as a component.

Type Checking

HTML Tags

An HTML Tag foo is to be of the type JSX.IntrinsicElements.foo. These types are already defined for all the major tags in a file react-jsx.d.ts which we had you install as a part of the setup. Here is a sample of the the contents of the file:

Function Components

You can define function components simply with the React.FunctionComponent interface e.g.

Void Function Components

As of @types/react PR #46643, you can use a new React.VoidFunctionComponent or React.VFC type if you wish to declare that a component does not take children. This is an interim solution until the next major version of the type defs (where VoidFunctionComponent will be deprecated and FunctionComponent will by default accept no children).

Class Components

Components are type checked based on the props property of the component. This is modeled after how JSX is transformed i.e. the attributes become the props of the component.

The react.d.ts file defines the React.Component<Props,State> class which you should extend in your own class providing your own Props and State interfaces. This is demonstrated below:

React JSX Tip: Interface for renderable

React can render a few things like JSX or string. These are all consolidated into the type React.ReactNode so use it for when you want to accept renderables e.g.

React JSX Tip: Accept an instance of a Component

The react type definitions provide React.ReactElement<T> to allow you to annotate the result of a <T/> class component instantiation. e.g.

Of course you can use this as a function argument annotation and even React component prop member.

React JSX Tip: Accept a component that can act on props and be rendered using JSX

The type React.Component<Props> consolidates React.ComponentClass<P> | React.StatelessComponent<P> so you can accept something that takes type Props and renders it using JSX e.g.

React JSX Tip: Generic components

It works exactly as expected. Here is an example:

Generic functions

Something like the following works fine:

However, using an arrow generic function will not:

Workaround: Use extends on the generic parameter to hint the compiler that it's a generic, e.g.:

React Tip: Strongly Typed Refs

You basically initialize a variable as a union of the ref and null and then initialize it as as callback e.g.

And the same with ref's for native elements e.g.

Type Assertions

Use as Foo syntax for type assertions as we mentioned before.

Default Props

  • Stateful components with default props: You can tell TypeScript that a property will be provided externally (by React) by using a null assertion operator (this isn't ideal but is the simplest minimum extra code solution I could think of).

  • SFC with default props: Recommend leveraging simple JavaScript patterns as they work well with TypeScript's type system e.g.

Declaring a webcomponent

If you are using a web component the default React type definitions (@types/react) will not know about it. But you can declare it easily e.g. to declare a webcomponent called my-awesome-slider that takes Props MyAwesomeSliderProps you would:

Now you can use it in TSX:

Last updated