1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/decompression-optimizer.h"
#include "src/compiler/graph.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
bool IsMachineLoad(Node* const node) {
const IrOpcode::Value opcode = node->opcode();
return opcode == IrOpcode::kLoad || opcode == IrOpcode::kProtectedLoad ||
opcode == IrOpcode::kLoadTrapOnNull ||
opcode == IrOpcode::kUnalignedLoad ||
opcode == IrOpcode::kLoadImmutable;
}
bool IsTaggedMachineLoad(Node* const node) {
return IsMachineLoad(node) &&
CanBeTaggedPointer(LoadRepresentationOf(node->op()).representation());
}
bool IsHeapConstant(Node* const node) {
return node->opcode() == IrOpcode::kHeapConstant;
}
bool IsIntConstant(Node* const node) {
return node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant;
}
bool IsTaggedPhi(Node* const node) {
if (node->opcode() == IrOpcode::kPhi) {
return CanBeTaggedPointer(PhiRepresentationOf(node->op()));
}
return false;
}
bool IsWord64BitwiseOp(Node* const node) {
return node->opcode() == IrOpcode::kWord64And ||
node->opcode() == IrOpcode::kWord64Or;
}
bool CanBeCompressed(Node* const node) {
return IsHeapConstant(node) || IsTaggedMachineLoad(node) ||
IsTaggedPhi(node) || IsWord64BitwiseOp(node);
}
void Replace(Node* const node, Node* const replacement) {
for (Edge edge : node->use_edges()) {
edge.UpdateTo(replacement);
}
node->Kill();
}
} // anonymous namespace
DecompressionOptimizer::DecompressionOptimizer(Zone* zone, Graph* graph,
CommonOperatorBuilder* common,
MachineOperatorBuilder* machine)
: graph_(graph),
common_(common),
machine_(machine),
states_(graph, static_cast<uint32_t>(State::kNumberOfStates)),
to_visit_(zone),
compressed_candidate_nodes_(zone) {}
void DecompressionOptimizer::MarkNodes() {
MaybeMarkAndQueueForRevisit(graph()->end(), State::kOnly32BitsObserved);
while (!to_visit_.empty()) {
Node* const node = to_visit_.front();
to_visit_.pop_front();
MarkNodeInputs(node);
}
}
void DecompressionOptimizer::MarkNodeInputs(Node* node) {
// Mark the value inputs.
switch (node->opcode()) {
// UNOPS.
case IrOpcode::kBitcastTaggedToWord:
case IrOpcode::kBitcastTaggedToWordForTagAndSmiBits:
case IrOpcode::kBitcastWordToTagged:
// Replicate the bitcast's state for its input.
DCHECK_EQ(node->op()->ValueInputCount(), 1);
MaybeMarkAndQueueForRevisit(node->InputAt(0),
states_.Get(node)); // value
break;
case IrOpcode::kTruncateInt64ToInt32:
DCHECK_EQ(node->op()->ValueInputCount(), 1);
MaybeMarkAndQueueForRevisit(node->InputAt(0),
State::kOnly32BitsObserved); // value
break;
// BINOPS.
case IrOpcode::kInt32LessThan:
case IrOpcode::kInt32LessThanOrEqual:
case IrOpcode::kUint32LessThan:
case IrOpcode::kUint32LessThanOrEqual:
case IrOpcode::kWord32Equal:
#define Word32Op(Name) case IrOpcode::k##Name:
MACHINE_BINOP_32_LIST(Word32Op)
#undef Word32Op
DCHECK_EQ(node->op()->ValueInputCount(), 2);
MaybeMarkAndQueueForRevisit(node->InputAt(0),
State::kOnly32BitsObserved); // value_0
MaybeMarkAndQueueForRevisit(node->InputAt(1),
State::kOnly32BitsObserved); // value_1
break;
// SPECIAL CASES.
// SPECIAL CASES - Load.
case IrOpcode::kLoad:
case IrOpcode::kProtectedLoad:
case IrOpcode::kLoadTrapOnNull:
case IrOpcode::kUnalignedLoad:
case IrOpcode::kLoadImmutable:
DCHECK_EQ(node->op()->ValueInputCount(), 2);
// Mark addressing base pointer in compressed form to allow pointer
// decompression via complex addressing mode.
if (DECOMPRESS_POINTER_BY_ADDRESSING_MODE &&
node->InputAt(0)->OwnedBy(node) && IsIntConstant(node->InputAt(1))) {
MarkAddressingBase(node->InputAt(0));
} else {
MaybeMarkAndQueueForRevisit(
node->InputAt(0),
State::kEverythingObserved); // base pointer
MaybeMarkAndQueueForRevisit(node->InputAt(1),
State::kEverythingObserved); // index
}
break;
// SPECIAL CASES - Store.
case IrOpcode::kStore:
case IrOpcode::kStorePair:
case IrOpcode::kProtectedStore:
case IrOpcode::kStoreTrapOnNull:
case IrOpcode::kUnalignedStore: {
DCHECK(node->op()->ValueInputCount() == 3 ||
(node->opcode() == IrOpcode::kStorePair &&
node->op()->ValueInputCount() == 4));
MaybeMarkAndQueueForRevisit(node->InputAt(0),
State::kEverythingObserved); // base pointer
MaybeMarkAndQueueForRevisit(node->InputAt(1),
State::kEverythingObserved); // index
// TODO(v8:7703): When the implementation is done, check if this ternary
// operator is too restrictive, since we only mark Tagged stores as 32
// bits.
MachineRepresentation representation;
if (node->opcode() == IrOpcode::kUnalignedStore) {
representation = UnalignedStoreRepresentationOf(node->op());
} else if (node->opcode() == IrOpcode::kStorePair) {
representation =
StorePairRepresentationOf(node->op()).first.representation();
} else {
representation = StoreRepresentationOf(node->op()).representation();
}
State observed = ElementSizeLog2Of(representation) <= 2
? State::kOnly32BitsObserved
: State::kEverythingObserved;
// Special case, if we're storing this value as an indirect pointer, then
// we need access to all pointer bits since we'll also perform a load (of
// the 'self' indirect pointer) from the value being stored.
if (representation == MachineRepresentation::kIndirectPointer) {
observed = State::kEverythingObserved;
}
MaybeMarkAndQueueForRevisit(node->InputAt(2), observed); // value
if (node->opcode() == IrOpcode::kStorePair) {
MaybeMarkAndQueueForRevisit(node->InputAt(3), observed); // value 2
}
} break;
// SPECIAL CASES - Variable inputs.
// The deopt code knows how to handle Compressed inputs, both
// MachineRepresentation kCompressed values and CompressedHeapConstants.
case IrOpcode::kFrameState: // Fall through.
case IrOpcode::kStateValues:
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
// TODO(chromium:1470602): We assume that kStateValues has only tagged
// inputs so it is safe to mark them as kOnly32BitsObserved.
DCHECK(!IsWord64BitwiseOp(node->InputAt(i)));
MaybeMarkAndQueueForRevisit(node->InputAt(i),
State::kOnly32BitsObserved);
}
break;
case IrOpcode::kTypedStateValues: {
const ZoneVector<MachineType>* machine_types = MachineTypesOf(node->op());
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
State observed = IsAnyTagged(machine_types->at(i).representation())
? State::kOnly32BitsObserved
: State::kEverythingObserved;
MaybeMarkAndQueueForRevisit(node->InputAt(i), observed);
}
break;
}
case IrOpcode::kPhi: {
// Replicate the phi's state for its inputs.
State curr_state = states_.Get(node);
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
MaybeMarkAndQueueForRevisit(node->InputAt(i), curr_state);
}
break;
}
default:
// To be conservative, we assume that all value inputs need to be 64 bits
// unless noted otherwise.
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
MaybeMarkAndQueueForRevisit(node->InputAt(i),
State::kEverythingObserved);
}
break;
}
// We always mark the non-value input nodes as kOnly32BitsObserved so that
// they will be visited. If they need to be kEverythingObserved, they will be
// marked as such in a future pass.
for (int i = node->op()->ValueInputCount(); i < node->InputCount(); ++i) {
MaybeMarkAndQueueForRevisit(node->InputAt(i), State::kOnly32BitsObserved);
}
}
// We mark the addressing base pointer as kOnly32BitsObserved so it can be
// optimized to compressed form. This allows us to move the decompression to
// use-site on X64.
void DecompressionOptimizer::MarkAddressingBase(Node* base) {
if (IsTaggedMachineLoad(base)) {
MaybeMarkAndQueueForRevisit(base,
State::kOnly32BitsObserved); // base pointer
} else if (IsTaggedPhi(base)) {
bool should_compress = true;
for (int i = 0; i < base->op()->ValueInputCount(); ++i) {
if (!IsTaggedMachineLoad(base->InputAt(i)) ||
!base->InputAt(i)->OwnedBy(base)) {
should_compress = false;
break;
}
}
MaybeMarkAndQueueForRevisit(
base,
should_compress ? State::kOnly32BitsObserved
: State::kEverythingObserved); // base pointer
} else {
MaybeMarkAndQueueForRevisit(base,
State::kEverythingObserved); // base pointer
}
}
void DecompressionOptimizer::MaybeMarkAndQueueForRevisit(Node* const node,
State state) {
DCHECK_NE(state, State::kUnvisited);
State previous_state = states_.Get(node);
// Only update the state if we have relevant new information.
if (previous_state == State::kUnvisited ||
(previous_state == State::kOnly32BitsObserved &&
state == State::kEverythingObserved)) {
states_.Set(node, state);
to_visit_.push_back(node);
if (state == State::kOnly32BitsObserved && CanBeCompressed(node)) {
compressed_candidate_nodes_.push_back(node);
}
}
}
void DecompressionOptimizer::ChangeHeapConstant(Node* const node) {
DCHECK(IsHeapConstant(node));
NodeProperties::ChangeOp(
node, common()->CompressedHeapConstant(HeapConstantOf(node->op())));
}
void DecompressionOptimizer::ChangePhi(Node* const node) {
DCHECK(IsTaggedPhi(node));
MachineRepresentation mach_rep = PhiRepresentationOf(node->op());
if (mach_rep == MachineRepresentation::kTagged) {
mach_rep = MachineRepresentation::kCompressed;
} else {
DCHECK_EQ(mach_rep, MachineRepresentation::kTaggedPointer);
mach_rep = MachineRepresentation::kCompressedPointer;
}
NodeProperties::ChangeOp(
node, common()->Phi(mach_rep, node->op()->ValueInputCount()));
}
void DecompressionOptimizer::ChangeLoad(Node* const node) {
DCHECK(IsMachineLoad(node));
// Change to a Compressed MachRep to avoid the full decompression.
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
LoadRepresentation compressed_load_rep;
if (load_rep == MachineType::AnyTagged()) {
compressed_load_rep = MachineType::AnyCompressed();
} else {
DCHECK_EQ(load_rep, MachineType::TaggedPointer());
compressed_load_rep = MachineType::CompressedPointer();
}
// Change to the Operator with the Compressed MachineRepresentation.
switch (node->opcode()) {
case IrOpcode::kLoad:
NodeProperties::ChangeOp(node, machine()->Load(compressed_load_rep));
break;
case IrOpcode::kLoadImmutable:
NodeProperties::ChangeOp(node,
machine()->LoadImmutable(compressed_load_rep));
break;
case IrOpcode::kProtectedLoad:
NodeProperties::ChangeOp(node,
machine()->ProtectedLoad(compressed_load_rep));
break;
case IrOpcode::kLoadTrapOnNull:
NodeProperties::ChangeOp(node,
machine()->LoadTrapOnNull(compressed_load_rep));
break;
case IrOpcode::kUnalignedLoad:
NodeProperties::ChangeOp(node,
machine()->UnalignedLoad(compressed_load_rep));
break;
default:
UNREACHABLE();
}
}
void DecompressionOptimizer::ChangeWord64BitwiseOp(Node* const node,
const Operator* new_op) {
Int64Matcher mleft(node->InputAt(0));
Int64Matcher mright(node->InputAt(1));
// Replace inputs.
if (mleft.IsChangeInt32ToInt64() || mleft.IsChangeUint32ToUint64()) {
node->ReplaceInput(0, mleft.node()->InputAt(0));
} else if (mleft.IsInt64Constant()) {
node->ReplaceInput(0, graph()->NewNode(common()->Int32Constant(
static_cast<int32_t>(mleft.ResolvedValue()))));
} else {
node->ReplaceInput(
0, graph()->NewNode(machine()->TruncateInt64ToInt32(), mleft.node()));
}
if (mright.IsChangeInt32ToInt64() || mright.IsChangeUint32ToUint64()) {
node->ReplaceInput(1, mright.node()->InputAt(0));
} else if (mright.IsInt64Constant()) {
node->ReplaceInput(1, graph()->NewNode(common()->Int32Constant(
static_cast<int32_t>(mright.ResolvedValue()))));
} else {
node->ReplaceInput(
1, graph()->NewNode(machine()->TruncateInt64ToInt32(), mright.node()));
}
// Replace uses.
Node* replacement = nullptr;
for (Edge edge : node->use_edges()) {
Node* user = edge.from();
if (user->opcode() == IrOpcode::kTruncateInt64ToInt32) {
Replace(user, node);
} else {
if (replacement == nullptr) {
replacement =
graph()->NewNode(machine()->BitcastWord32ToWord64(), node);
}
edge.UpdateTo(replacement);
}
}
// Change operator.
NodeProperties::ChangeOp(node, new_op);
}
void DecompressionOptimizer::ChangeNodes() {
for (Node* const node : compressed_candidate_nodes_) {
// compressed_candidate_nodes_ contains all the nodes that once had the
// State::kOnly32BitsObserved. If we later updated the state to be
// State::IsEverythingObserved, then we have to ignore them. This is less
// costly than removing them from the compressed_candidate_nodes_ NodeVector
// when we update them to State::IsEverythingObserved.
if (IsEverythingObserved(node)) continue;
switch (node->opcode()) {
case IrOpcode::kHeapConstant:
ChangeHeapConstant(node);
break;
case IrOpcode::kPhi:
ChangePhi(node);
break;
case IrOpcode::kWord64And:
ChangeWord64BitwiseOp(node, machine()->Word32And());
break;
case IrOpcode::kWord64Or:
ChangeWord64BitwiseOp(node, machine()->Word32Or());
break;
default:
ChangeLoad(node);
break;
}
}
}
void DecompressionOptimizer::Reduce() {
MarkNodes();
ChangeNodes();
}
} // namespace compiler
} // namespace internal
} // namespace v8
|