summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/compiler/js-inlining.cc
blob: fe5de4937cb19a7f1931278936d5bdcf73aed7b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/js-inlining.h"

#include "src/codegen/optimized-compilation-info.h"
#include "src/codegen/tick-counter.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/all-nodes.h"
#include "src/compiler/bytecode-graph-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph-reducer.h"
#include "src/compiler/js-heap-broker.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
#include "src/execution/isolate-inl.h"
#include "src/objects/feedback-cell-inl.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/compiler/wasm-compiler.h"
#include "src/wasm/names-provider.h"
#include "src/wasm/string-builder.h"
#endif  // V8_ENABLE_WEBASSEMBLY

namespace v8 {
namespace internal {
namespace compiler {

namespace {
// This is just to avoid some corner cases, especially since we allow recursive
// inlining.
static const int kMaxDepthForInlining = 50;
}  // namespace

#define TRACE(x)                         \
  do {                                   \
    if (v8_flags.trace_turbo_inlining) { \
      StdoutStream() << x << "\n";       \
    }                                    \
  } while (false)

// Provides convenience accessors for the common layout of nodes having either
// the {JSCall} or the {JSConstruct} operator.
class JSCallAccessor {
 public:
  explicit JSCallAccessor(Node* call) : call_(call) {
    DCHECK(call->opcode() == IrOpcode::kJSCall ||
           call->opcode() == IrOpcode::kJSConstruct);
  }

  Node* target() const {
    return call_->InputAt(JSCallOrConstructNode::TargetIndex());
  }

  Node* receiver() const { return JSCallNode{call_}.receiver(); }

  Node* new_target() const { return JSConstructNode{call_}.new_target(); }

  FrameState frame_state() const {
    return FrameState{NodeProperties::GetFrameStateInput(call_)};
  }

  int argument_count() const {
    return (call_->opcode() == IrOpcode::kJSCall)
               ? JSCallNode{call_}.ArgumentCount()
               : JSConstructNode{call_}.ArgumentCount();
  }

  CallFrequency const& frequency() const {
    return (call_->opcode() == IrOpcode::kJSCall)
               ? JSCallNode{call_}.Parameters().frequency()
               : JSConstructNode{call_}.Parameters().frequency();
  }

 private:
  Node* call_;
};

#if V8_ENABLE_WEBASSEMBLY
Reduction JSInliner::InlineJSWasmCall(Node* call, Node* new_target,
                                      Node* context, Node* frame_state,
                                      StartNode start, Node* end,
                                      Node* exception_target,
                                      const NodeVector& uncaught_subcalls) {
  JSWasmCallNode n(call);
  return InlineCall(
      call, new_target, context, frame_state, start, end, exception_target,
      uncaught_subcalls,
      static_cast<int>(n.Parameters().signature()->parameter_count()));
}
#endif  // V8_ENABLE_WEBASSEMBLY

Reduction JSInliner::InlineCall(Node* call, Node* new_target, Node* context,
                                Node* frame_state, StartNode start, Node* end,
                                Node* exception_target,
                                const NodeVector& uncaught_subcalls,
                                int argument_count) {
  DCHECK_IMPLIES(IrOpcode::IsInlineeOpcode(call->opcode()),
                 argument_count == JSCallAccessor(call).argument_count());

  // The scheduler is smart enough to place our code; we just ensure {control}
  // becomes the control input of the start of the inlinee, and {effect} becomes
  // the effect input of the start of the inlinee.
  Node* control = NodeProperties::GetControlInput(call);
  Node* effect = NodeProperties::GetEffectInput(call);

  int const inlinee_new_target_index = start.NewTargetOutputIndex();
  int const inlinee_arity_index = start.ArgCountOutputIndex();
  int const inlinee_context_index = start.ContextOutputIndex();

  // {inliner_inputs} counts the target, receiver/new_target, and arguments; but
  // not feedback vector, context, effect or control.
  const int inliner_inputs = argument_count +
                             JSCallOrConstructNode::kExtraInputCount -
                             JSCallOrConstructNode::kFeedbackVectorInputCount;
  // Iterate over all uses of the start node.
  for (Edge edge : start->use_edges()) {
    Node* use = edge.from();
    switch (use->opcode()) {
      case IrOpcode::kParameter: {
        int index = 1 + ParameterIndexOf(use->op());
        DCHECK_LE(index, inlinee_context_index);
        if (index < inliner_inputs && index < inlinee_new_target_index) {
          // There is an input from the call, and the index is a value
          // projection but not the context, so rewire the input.
          Replace(use, call->InputAt(index));
        } else if (index == inlinee_new_target_index) {
          // The projection is requesting the new target value.
          Replace(use, new_target);
        } else if (index == inlinee_arity_index) {
          // The projection is requesting the number of arguments.
          Replace(use, jsgraph()->Constant(argument_count));
        } else if (index == inlinee_context_index) {
          // The projection is requesting the inlinee function context.
          Replace(use, context);
        } else {
          // Call has fewer arguments than required, fill with undefined.
          Replace(use, jsgraph()->UndefinedConstant());
        }
        break;
      }
      default:
        if (NodeProperties::IsEffectEdge(edge)) {
          edge.UpdateTo(effect);
        } else if (NodeProperties::IsControlEdge(edge)) {
          edge.UpdateTo(control);
        } else if (NodeProperties::IsFrameStateEdge(edge)) {
          edge.UpdateTo(frame_state);
        } else {
          UNREACHABLE();
        }
        break;
    }
  }

  if (exception_target != nullptr) {
    // Link uncaught calls in the inlinee to {exception_target}
    int subcall_count = static_cast<int>(uncaught_subcalls.size());
    if (subcall_count > 0) {
      TRACE("Inlinee contains " << subcall_count
                                << " calls without local exception handler; "
                                << "linking to surrounding exception handler.");
    }
    NodeVector on_exception_nodes(local_zone_);
    for (Node* subcall : uncaught_subcalls) {
      Node* on_success = graph()->NewNode(common()->IfSuccess(), subcall);
      NodeProperties::ReplaceUses(subcall, subcall, subcall, on_success);
      NodeProperties::ReplaceControlInput(on_success, subcall);
      Node* on_exception =
          graph()->NewNode(common()->IfException(), subcall, subcall);
      on_exception_nodes.push_back(on_exception);
    }

    DCHECK_EQ(subcall_count, static_cast<int>(on_exception_nodes.size()));
    if (subcall_count > 0) {
      Node* control_output =
          graph()->NewNode(common()->Merge(subcall_count), subcall_count,
                           &on_exception_nodes.front());
      NodeVector values_effects(local_zone_);
      values_effects = on_exception_nodes;
      values_effects.push_back(control_output);
      Node* value_output = graph()->NewNode(
          common()->Phi(MachineRepresentation::kTagged, subcall_count),
          subcall_count + 1, &values_effects.front());
      Node* effect_output =
          graph()->NewNode(common()->EffectPhi(subcall_count),
                           subcall_count + 1, &values_effects.front());
      ReplaceWithValue(exception_target, value_output, effect_output,
                       control_output);
    } else {
      ReplaceWithValue(exception_target, exception_target, exception_target,
                       jsgraph()->Dead());
    }
  }

  NodeVector values(local_zone_);
  NodeVector effects(local_zone_);
  NodeVector controls(local_zone_);
  for (Node* const input : end->inputs()) {
    switch (input->opcode()) {
      case IrOpcode::kReturn:
        values.push_back(NodeProperties::GetValueInput(input, 1));
        effects.push_back(NodeProperties::GetEffectInput(input));
        controls.push_back(NodeProperties::GetControlInput(input));
        break;
      case IrOpcode::kDeoptimize:
      case IrOpcode::kTerminate:
      case IrOpcode::kThrow:
        MergeControlToEnd(graph(), common(), input);
        break;
      default:
        UNREACHABLE();
    }
  }
  DCHECK_EQ(values.size(), effects.size());
  DCHECK_EQ(values.size(), controls.size());

  // Depending on whether the inlinee produces a value, we either replace value
  // uses with said value or kill value uses if no value can be returned.
  if (values.size() > 0) {
    int const input_count = static_cast<int>(controls.size());
    Node* control_output = graph()->NewNode(common()->Merge(input_count),
                                            input_count, &controls.front());
    values.push_back(control_output);
    effects.push_back(control_output);
    Node* value_output = graph()->NewNode(
        common()->Phi(MachineRepresentation::kTagged, input_count),
        static_cast<int>(values.size()), &values.front());
    Node* effect_output =
        graph()->NewNode(common()->EffectPhi(input_count),
                         static_cast<int>(effects.size()), &effects.front());
    ReplaceWithValue(call, value_output, effect_output, control_output);
    return Changed(value_output);
  } else {
    ReplaceWithValue(call, jsgraph()->Dead(), jsgraph()->Dead(),
                     jsgraph()->Dead());
    return Changed(call);
  }
}

FrameState JSInliner::CreateArtificialFrameState(
    Node* node, FrameState outer_frame_state, int parameter_count,
    FrameStateType frame_state_type, SharedFunctionInfoRef shared,
    Node* context, Node* callee) {
  const int parameter_count_with_receiver =
      parameter_count + JSCallOrConstructNode::kReceiverOrNewTargetInputCount;
  const FrameStateFunctionInfo* state_info =
      common()->CreateFrameStateFunctionInfo(
          frame_state_type, parameter_count_with_receiver, 0, shared.object());

  const Operator* op = common()->FrameState(
      BytecodeOffset::None(), OutputFrameStateCombine::Ignore(), state_info);
  const Operator* op0 = common()->StateValues(0, SparseInputMask::Dense());
  Node* node0 = graph()->NewNode(op0);

  Node* params_node = nullptr;
#if V8_ENABLE_WEBASSEMBLY
  const bool skip_params =
      frame_state_type == FrameStateType::kWasmInlinedIntoJS;
#else
  const bool skip_params = false;
#endif
  if (skip_params) {
    // For wasm inlined into JS the frame state doesn't need to be used for
    // deopts. Also, due to different calling conventions, there isn't a
    // receiver at input 1. We still need to store an undefined node here as the
    // code requires this state values to have at least 1 entry.
    // TODO(mliedtke): Can we clean up the FrameState handling, so that wasm
    // inline FrameStates are closer to JS FrameStates without affecting
    // performance?
    const Operator* op_param =
        common()->StateValues(1, SparseInputMask::Dense());
    params_node = graph()->NewNode(op_param, jsgraph()->UndefinedConstant());
  } else {
    NodeVector params(local_zone_);
    params.push_back(
        node->InputAt(JSCallOrConstructNode::ReceiverOrNewTargetIndex()));
    for (int i = 0; i < parameter_count; i++) {
      params.push_back(node->InputAt(JSCallOrConstructNode::ArgumentIndex(i)));
    }
    const Operator* op_param = common()->StateValues(
        static_cast<int>(params.size()), SparseInputMask::Dense());
    params_node = graph()->NewNode(op_param, static_cast<int>(params.size()),
                                   &params.front());
  }
  if (context == nullptr) context = jsgraph()->UndefinedConstant();
  if (callee == nullptr) {
    callee = node->InputAt(JSCallOrConstructNode::TargetIndex());
  }
  return FrameState{graph()->NewNode(op, params_node, node0, node0, context,
                                     callee, outer_frame_state)};
}

namespace {

bool NeedsImplicitReceiver(SharedFunctionInfoRef shared_info) {
  DisallowGarbageCollection no_gc;
  return !shared_info.construct_as_builtin() &&
         !IsDerivedConstructor(shared_info.kind());
}

}  // namespace

// Determines whether the call target of the given call {node} is statically
// known and can be used as an inlining candidate. The {SharedFunctionInfo} of
// the call target is provided (the exact closure might be unknown).
OptionalSharedFunctionInfoRef JSInliner::DetermineCallTarget(Node* node) {
  DCHECK(IrOpcode::IsInlineeOpcode(node->opcode()));
  Node* target = node->InputAt(JSCallOrConstructNode::TargetIndex());
  HeapObjectMatcher match(target);

  // This reducer can handle both normal function calls as well a constructor
  // calls whenever the target is a constant function object, as follows:
  //  - JSCall(target:constant, receiver, args..., vector)
  //  - JSConstruct(target:constant, new.target, args..., vector)
  if (match.HasResolvedValue() && match.Ref(broker()).IsJSFunction()) {
    JSFunctionRef function = match.Ref(broker()).AsJSFunction();

    // The function might have not been called yet.
    if (!function.feedback_vector(broker()).has_value()) {
      return base::nullopt;
    }

    // Disallow cross native-context inlining for now. This means that all parts
    // of the resulting code will operate on the same global object. This also
    // prevents cross context leaks, where we could inline functions from a
    // different context and hold on to that context (and closure) from the code
    // object.
    // TODO(turbofan): We might want to revisit this restriction later when we
    // have a need for this, and we know how to model different native contexts
    // in the same graph in a compositional way.
    if (!function.native_context(broker()).equals(
            broker()->target_native_context())) {
      return base::nullopt;
    }

    return function.shared(broker());
  }

  // This reducer can also handle calls where the target is statically known to
  // be the result of a closure instantiation operation, as follows:
  //  - JSCall(JSCreateClosure[shared](context), receiver, args..., vector)
  //  - JSConstruct(JSCreateClosure[shared](context),
  //                new.target, args..., vector)
  if (match.IsJSCreateClosure()) {
    JSCreateClosureNode n(target);
    FeedbackCellRef cell = n.GetFeedbackCellRefChecked(broker());
    return cell.shared_function_info(broker());
  } else if (match.IsCheckClosure()) {
    FeedbackCellRef cell = MakeRef(broker(), FeedbackCellOf(match.op()));
    return cell.shared_function_info(broker());
  }

  return base::nullopt;
}

// Determines statically known information about the call target (assuming that
// the call target is known according to {DetermineCallTarget} above). The
// following static information is provided:
//  - context         : The context (as SSA value) bound by the call target.
//  - feedback_vector : The target is guaranteed to use this feedback vector.
FeedbackCellRef JSInliner::DetermineCallContext(Node* node,
                                                Node** context_out) {
  DCHECK(IrOpcode::IsInlineeOpcode(node->opcode()));
  Node* target = node->InputAt(JSCallOrConstructNode::TargetIndex());
  HeapObjectMatcher match(target);

  if (match.HasResolvedValue() && match.Ref(broker()).IsJSFunction()) {
    JSFunctionRef function = match.Ref(broker()).AsJSFunction();
    // This was already ensured by DetermineCallTarget
    CHECK(function.feedback_vector(broker()).has_value());

    // The inlinee specializes to the context from the JSFunction object.
    *context_out = jsgraph()->Constant(function.context(broker()), broker());
    return function.raw_feedback_cell(broker());
  }

  if (match.IsJSCreateClosure()) {
    // Load the feedback vector of the target by looking up its vector cell at
    // the instantiation site (we only decide to inline if it's populated).
    JSCreateClosureNode n(target);
    FeedbackCellRef cell = n.GetFeedbackCellRefChecked(broker());

    // The inlinee uses the locally provided context at instantiation.
    *context_out = NodeProperties::GetContextInput(match.node());
    return cell;
  } else if (match.IsCheckClosure()) {
    FeedbackCellRef cell = MakeRef(broker(), FeedbackCellOf(match.op()));

    Node* effect = NodeProperties::GetEffectInput(node);
    Node* control = NodeProperties::GetControlInput(node);
    *context_out = effect = graph()->NewNode(
        simplified()->LoadField(AccessBuilder::ForJSFunctionContext()),
        match.node(), effect, control);
    NodeProperties::ReplaceEffectInput(node, effect);

    return cell;
  }

  // Must succeed.
  UNREACHABLE();
}

#if V8_ENABLE_WEBASSEMBLY
static std::string WasmFunctionNameForTrace(wasm::NativeModule* native_module,
                                            int fct_index) {
  wasm::StringBuilder builder;
  native_module->GetNamesProvider()->PrintFunctionName(builder, fct_index);
  if (builder.length() == 0) return "<no name>";
  return {builder.start(), builder.length()};
}

JSInliner::WasmInlineResult JSInliner::TryWasmInlining(
    const JSWasmCallNode& call_node) {
  const JSWasmCallParameters& wasm_call_params = call_node.Parameters();
  wasm::NativeModule* native_module = wasm_call_params.native_module();
  const int fct_index = wasm_call_params.function_index();
  TRACE("Considering wasm function ["
        << fct_index << "] "
        << WasmFunctionNameForTrace(native_module, fct_index) << " of module "
        << wasm_call_params.module() << " for inlining");

  if (native_module->module() != wasm_module_) {
    // Inlining of multiple wasm modules into the same JS function is not
    // supported.
    TRACE("- not inlining: another wasm module is already used for inlining");
    return {};
  }
  if (NodeProperties::IsExceptionalCall(call_node)) {
    // TODO(14034): It would be useful to also support inlining of wasm
    // functions if they are surrounded by a try block which requires further
    // work, so that the wasm trap gets forwarded to the corresponding catch
    // block.
    TRACE("- not inlining: wasm inlining into try catch is not supported");
    return {};
  }

  const wasm::FunctionSig* sig = wasm_call_params.signature();
  Graph::SubgraphScope graph_scope(graph());
  WasmGraphBuilder builder(nullptr, zone(), jsgraph(), sig, source_positions_,
                           WasmGraphBuilder::kNoSpecialParameterMode, isolate(),
                           native_module->enabled_features());
  SourcePosition call_pos = source_positions_->GetSourcePosition(call_node);
  // Calculate hypothetical inlining id, so if we can't inline, we do not add
  // the wasm function to the list of inlined functions.
  int inlining_id = static_cast<int>(info_->inlined_functions().size());
  bool can_inline_body =
      builder.TryWasmInlining(fct_index, native_module, inlining_id);
  if (can_inline_body) {
    int actual_id =
        info_->AddInlinedFunction(wasm_call_params.shared_fct_info().object(),
                                  Handle<BytecodeArray>(), call_pos);
    CHECK_EQ(inlining_id, actual_id);
  }
  return {can_inline_body, graph()->start(), graph()->end()};
}

Reduction JSInliner::ReduceJSWasmCall(Node* node) {
  JSWasmCallNode call_node(node);
  const JSWasmCallParameters& wasm_call_params = call_node.Parameters();
  int fct_index = wasm_call_params.function_index();
  wasm::NativeModule* native_module = wasm_call_params.native_module();
  const wasm::FunctionSig* sig = wasm_call_params.signature();

  // Try "full" inlining of very simple wasm functions (mainly getters / setters
  // for wasm gc objects).
  WasmInlineResult inline_result;
  if (inline_wasm_fct_if_supported_ && fct_index != -1 && native_module &&
      native_module->enabled_features().has_gc()) {
    inline_result = TryWasmInlining(call_node);
  }

  // Create the subgraph for the wrapper inlinee.
  Node* wrapper_start_node;
  Node* wrapper_end_node;
  size_t subgraph_min_node_id;
  {
    Graph::SubgraphScope scope(graph());
    graph()->SetEnd(nullptr);

    // Create a nested frame state inside the frame state attached to the
    // call; this will ensure that lazy deoptimizations at this point will
    // still return the result of the Wasm function call.
    Node* continuation_frame_state =
        CreateJSWasmCallBuiltinContinuationFrameState(
            jsgraph(), call_node.context(), call_node.frame_state(), sig);

    // All the nodes inserted by the inlined subgraph will have
    // id >= subgraph_min_node_id. We use this later to avoid wire nodes that
    // are not inserted by the inlinee but were already part of the graph to the
    // surrounding exception handler, if present.
    subgraph_min_node_id = graph()->NodeCount();

    bool set_in_wasm_flag = !inline_result.can_inline_body;
    BuildInlinedJSToWasmWrapper(
        graph()->zone(), jsgraph(), sig, wasm_call_params.module(), isolate(),
        source_positions_, wasm::WasmFeatures::FromFlags(),
        continuation_frame_state, set_in_wasm_flag);

    // Extract the inlinee start/end nodes.
    wrapper_start_node = graph()->start();
    wrapper_end_node = graph()->end();
  }
  StartNode start{wrapper_start_node};

  Node* exception_target = nullptr;
  NodeProperties::IsExceptionalCall(node, &exception_target);

  // If we are inlining into a surrounding exception handler, we collect all
  // potentially throwing nodes within the inlinee that are not handled locally
  // by the inlinee itself. They are later wired into the surrounding handler.
  NodeVector uncaught_subcalls(local_zone_);
  if (exception_target != nullptr) {
    // Find all uncaught 'calls' in the inlinee.
    AllNodes inlined_nodes(local_zone_, wrapper_end_node, graph());
    for (Node* subnode : inlined_nodes.reachable) {
      // Ignore nodes that are not part of the inlinee.
      if (subnode->id() < subgraph_min_node_id) continue;

      // Every possibly throwing node should get {IfSuccess} and {IfException}
      // projections, unless there already is local exception handling.
      if (subnode->op()->HasProperty(Operator::kNoThrow)) continue;
      if (!NodeProperties::IsExceptionalCall(subnode)) {
        DCHECK_EQ(2, subnode->op()->ControlOutputCount());
        uncaught_subcalls.push_back(subnode);
      }
    }
  }

  // Search in inlined nodes for call to inline wasm.
  // Note: We can only inline wasm functions of a single wasm module into any
  // given JavaScript function (due to the WasmGCLowering being dependent on
  // module-specific type indices).
  Node* wasm_fct_call = nullptr;
  if (inline_result.can_inline_body) {
    AllNodes inlined_nodes(local_zone_, wrapper_end_node, graph());
    for (Node* subnode : inlined_nodes.reachable) {
      // Ignore nodes that are not part of the inlinee.
      if (subnode->id() < subgraph_min_node_id) continue;

      if (subnode->opcode() == IrOpcode::kCall &&
          CallDescriptorOf(subnode->op())->kind() ==
              CallDescriptor::kCallWasmFunction) {
        wasm_fct_call = subnode;
        break;
      }
    }
    DCHECK(wasm_fct_call != nullptr);
  }

  Node* context = NodeProperties::GetContextInput(node);
  Node* frame_state = NodeProperties::GetFrameStateInput(node);
  Node* new_target = jsgraph()->UndefinedConstant();

  // Inline the wasm wrapper.
  Reduction r =
      InlineJSWasmCall(node, new_target, context, frame_state, start,
                       wrapper_end_node, exception_target, uncaught_subcalls);
  // Inline the wrapped wasm body if supported.
  if (inline_result.can_inline_body) {
    InlineWasmFunction(wasm_fct_call, inline_result.body_start,
                       inline_result.body_end, call_node.frame_state(),
                       wasm_call_params.shared_fct_info(),
                       call_node.ArgumentCount(), context);
  }
  return r;
}

void JSInliner::InlineWasmFunction(Node* call, Node* inlinee_start,
                                   Node* inlinee_end, Node* frame_state,
                                   SharedFunctionInfoRef shared_fct_info,
                                   int argument_count, Node* context) {
  // TODO(14034): This is very similar to what is done for wasm inlining inside
  // another wasm function. Can we reuse some of its code?
  // 1) Rewire function entry.
  Node* control = NodeProperties::GetControlInput(call);
  Node* effect = NodeProperties::GetEffectInput(call);

  // Add checkpoint with artificial Framestate for inlined wasm function.
  // Treat the call as having no arguments. The arguments are not needed for
  // stack trace creation and it costs runtime to save them at the checkpoint.
  argument_count = 0;
  // We do not have a proper callee JSFunction object.
  Node* callee = jsgraph()->UndefinedConstant();
  Node* frame_state_inside = CreateArtificialFrameState(
      call, FrameState{frame_state}, argument_count,
      FrameStateType::kWasmInlinedIntoJS, shared_fct_info, context, callee);
  Node* check_point = graph()->NewNode(common()->Checkpoint(),
                                       frame_state_inside, effect, control);
  effect = check_point;

  for (Edge edge : inlinee_start->use_edges()) {
    Node* use = edge.from();
    if (use == nullptr) continue;
    switch (use->opcode()) {
      case IrOpcode::kParameter: {
        // Index 0 is the callee node.
        int index = 1 + ParameterIndexOf(use->op());
        Node* arg = NodeProperties::GetValueInput(call, index);
        Replace(use, arg);
        break;
      }
      default:
        if (NodeProperties::IsEffectEdge(edge)) {
          edge.UpdateTo(effect);
        } else if (NodeProperties::IsControlEdge(edge)) {
          // Projections pointing to the inlinee start are floating
          // control. They should point to the graph's start.
          edge.UpdateTo(use->opcode() == IrOpcode::kProjection
                            ? graph()->start()
                            : control);
        } else {
          UNREACHABLE();
        }
        Revisit(edge.from());
        break;
    }
  }

  // 2) Handle all graph terminators for the callee.
  // Special case here: There is only one call terminator.
  DCHECK_EQ(inlinee_end->inputs().count(), 1);
  Node* terminator = *inlinee_end->inputs().begin();
  DCHECK_EQ(terminator->opcode(), IrOpcode::kReturn);
  inlinee_end->Kill();

  // 3) Rewire unhandled calls to the handler.
  // This is not supported yet resulting in exceptional calls being treated
  // as non-inlineable.
  DCHECK(!NodeProperties::IsExceptionalCall(call));

  // 4) Handle return values.
  int return_values = terminator->InputCount();
  DCHECK_GE(return_values, 3);
  DCHECK_LE(return_values, 4);
  // Subtract effect, control and drop count.
  int return_count = return_values - 3;
  Node* effect_output = terminator->InputAt(return_count + 1);
  Node* control_output = terminator->InputAt(return_count + 2);
  for (Edge use_edge : call->use_edges()) {
    if (NodeProperties::IsValueEdge(use_edge)) {
      Node* use = use_edge.from();
      // There is at most one value edge.
      ReplaceWithValue(use, return_count == 1 ? terminator->InputAt(1)
                                              : jsgraph()->UndefinedConstant());
    }
  }
  // All value inputs are replaced by the above loop, so it is ok to use
  // Dead() as a dummy for value replacement.
  ReplaceWithValue(call, jsgraph()->Dead(), effect_output, control_output);
}

#endif  // V8_ENABLE_WEBASSEMBLY

Reduction JSInliner::ReduceJSCall(Node* node) {
  DCHECK(IrOpcode::IsInlineeOpcode(node->opcode()));
#if V8_ENABLE_WEBASSEMBLY
  DCHECK_NE(node->opcode(), IrOpcode::kJSWasmCall);
#endif  // V8_ENABLE_WEBASSEMBLY
  JSCallAccessor call(node);

  // Determine the call target.
  OptionalSharedFunctionInfoRef shared_info(DetermineCallTarget(node));
  if (!shared_info.has_value()) return NoChange();

  SharedFunctionInfoRef outer_shared_info =
      MakeRef(broker(), info_->shared_info());

  SharedFunctionInfo::Inlineability inlineability =
      shared_info->GetInlineability(broker());
  if (inlineability != SharedFunctionInfo::kIsInlineable) {
    // The function is no longer inlineable. The only way this can happen is if
    // the function had its optimization disabled in the meantime, e.g. because
    // another optimization job failed too often.
    CHECK_EQ(inlineability, SharedFunctionInfo::kHasOptimizationDisabled);
    TRACE("Not inlining " << *shared_info << " into " << outer_shared_info
                          << " because it had its optimization disabled.");
    return NoChange();
  }
  // NOTE: Even though we bailout in the kHasOptimizationDisabled case above, we
  // won't notice if the function's optimization is disabled after this point.

  // Constructor must be constructable.
  if (node->opcode() == IrOpcode::kJSConstruct &&
      !IsConstructable(shared_info->kind())) {
    TRACE("Not inlining " << *shared_info << " into " << outer_shared_info
                          << " because constructor is not constructable.");
    return NoChange();
  }

  // Class constructors are callable, but [[Call]] will raise an exception.
  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList ).
  if (node->opcode() == IrOpcode::kJSCall &&
      IsClassConstructor(shared_info->kind())) {
    TRACE("Not inlining " << *shared_info << " into " << outer_shared_info
                          << " because callee is a class constructor.");
    return NoChange();
  }

  // To ensure inlining always terminates, we have an upper limit on inlining
  // the nested calls.
  int nesting_level = 0;
  for (Node* frame_state = call.frame_state();
       frame_state->opcode() == IrOpcode::kFrameState;
       frame_state = FrameState{frame_state}.outer_frame_state()) {
    nesting_level++;
    if (nesting_level > kMaxDepthForInlining) {
      TRACE("Not inlining "
            << *shared_info << " into " << outer_shared_info
            << " because call has exceeded the maximum depth for function "
               "inlining.");
      return NoChange();
    }
  }

  Node* exception_target = nullptr;
  NodeProperties::IsExceptionalCall(node, &exception_target);

  // JSInliningHeuristic has already filtered candidates without a BytecodeArray
  // based on SharedFunctionInfoRef::GetInlineability. For the inlineable ones
  // (kIsInlineable), the broker holds a reference to the bytecode array, which
  // prevents it from getting flushed.  Therefore, the following check should
  // always hold true.
  CHECK(shared_info->is_compiled());

  if (info_->source_positions() &&
      !shared_info->object()->AreSourcePositionsAvailable(
          broker()->local_isolate_or_isolate())) {
    // This case is expected to be very rare, since we generate source
    // positions for all functions when debugging or profiling are turned
    // on (see Isolate::NeedsDetailedOptimizedCodeLineInfo). Source
    // positions should only be missing here if there is a race between 1)
    // enabling/disabling the debugger/profiler, and 2) this compile job.
    // In that case, we simply don't inline.
    TRACE("Not inlining " << *shared_info << " into " << outer_shared_info
                          << " because source positions are missing.");
    return NoChange();
  }

  // Determine the target's feedback vector and its context.
  Node* context;
  FeedbackCellRef feedback_cell = DetermineCallContext(node, &context);

  TRACE("Inlining " << *shared_info << " into " << outer_shared_info
                    << ((exception_target != nullptr) ? " (inside try-block)"
                                                      : ""));
  // ----------------------------------------------------------------
  // After this point, we've made a decision to inline this function.
  // We shall not bailout from inlining if we got here.

  BytecodeArrayRef bytecode_array = shared_info->GetBytecodeArray(broker());

  // Remember that we inlined this function.
  int inlining_id =
      info_->AddInlinedFunction(shared_info->object(), bytecode_array.object(),
                                source_positions_->GetSourcePosition(node));

  // Create the subgraph for the inlinee.
  Node* start_node;
  Node* end;
  {
    // Run the BytecodeGraphBuilder to create the subgraph.
    Graph::SubgraphScope scope(graph());
    BytecodeGraphBuilderFlags flags(
        BytecodeGraphBuilderFlag::kSkipFirstStackAndTierupCheck);
    if (info_->analyze_environment_liveness()) {
      flags |= BytecodeGraphBuilderFlag::kAnalyzeEnvironmentLiveness;
    }
    if (info_->bailout_on_uninitialized()) {
      flags |= BytecodeGraphBuilderFlag::kBailoutOnUninitialized;
    }
    {
      CallFrequency frequency = call.frequency();
      BuildGraphFromBytecode(broker(), zone(), *shared_info, feedback_cell,
                             BytecodeOffset::None(), jsgraph(), frequency,
                             source_positions_, node_origins_, inlining_id,
                             info_->code_kind(), flags, &info_->tick_counter());
    }

    // Extract the inlinee start/end nodes.
    start_node = graph()->start();
    end = graph()->end();
  }
  StartNode start{start_node};

  // If we are inlining into a surrounding exception handler, we collect all
  // potentially throwing nodes within the inlinee that are not handled locally
  // by the inlinee itself. They are later wired into the surrounding handler.
  NodeVector uncaught_subcalls(local_zone_);
  if (exception_target != nullptr) {
    // Find all uncaught 'calls' in the inlinee.
    AllNodes inlined_nodes(local_zone_, end, graph());
    for (Node* subnode : inlined_nodes.reachable) {
      // Every possibly throwing node should get {IfSuccess} and {IfException}
      // projections, unless there already is local exception handling.
      if (subnode->op()->HasProperty(Operator::kNoThrow)) continue;
      if (!NodeProperties::IsExceptionalCall(subnode)) {
        DCHECK_EQ(2, subnode->op()->ControlOutputCount());
        uncaught_subcalls.push_back(subnode);
      }
    }
  }

  FrameState frame_state = call.frame_state();
  Node* new_target = jsgraph()->UndefinedConstant();

  // Inline {JSConstruct} requires some additional magic.
  if (node->opcode() == IrOpcode::kJSConstruct) {
    static_assert(JSCallOrConstructNode::kHaveIdenticalLayouts);
    JSConstructNode n(node);

    new_target = n.new_target();

    // Insert nodes around the call that model the behavior required for a
    // constructor dispatch (allocate implicit receiver and check return value).
    // This models the behavior usually accomplished by our {JSConstructStub}.
    // Note that the context has to be the callers context (input to call node).
    // Also note that by splitting off the {JSCreate} piece of the constructor
    // call, we create an observable deoptimization point after the receiver
    // instantiation but before the invocation (i.e. inside {JSConstructStub}
    // where execution continues at {construct_stub_create_deopt_pc_offset}).
    Node* receiver = jsgraph()->TheHoleConstant();  // Implicit receiver.
    Node* caller_context = NodeProperties::GetContextInput(node);
    if (NeedsImplicitReceiver(*shared_info)) {
      Effect effect = n.effect();
      Control control = n.control();
      Node* frame_state_inside;
      HeapObjectMatcher m(new_target);
      if (m.HasResolvedValue() && m.Ref(broker()).IsJSFunction()) {
        // If {new_target} is a JSFunction, then we cannot deopt in the
        // NewObject call. Therefore we do not need the artificial frame state.
        frame_state_inside = frame_state;
      } else {
        frame_state_inside = CreateArtificialFrameState(
            node, frame_state, n.ArgumentCount(),
            FrameStateType::kConstructCreateStub, *shared_info, caller_context);
      }
      Node* create =
          graph()->NewNode(javascript()->Create(), call.target(), new_target,
                           caller_context, frame_state_inside, effect, control);
      uncaught_subcalls.push_back(create);  // Adds {IfSuccess} & {IfException}.
      NodeProperties::ReplaceControlInput(node, create);
      NodeProperties::ReplaceEffectInput(node, create);
      // Placeholder to hold {node}'s value dependencies while {node} is
      // replaced.
      Node* dummy = graph()->NewNode(common()->Dead());
      NodeProperties::ReplaceUses(node, dummy, node, node, node);
      Node* result;
      // Insert a check of the return value to determine whether the return
      // value or the implicit receiver should be selected as a result of the
      // call.
      Node* check = graph()->NewNode(simplified()->ObjectIsReceiver(), node);
      result =
          graph()->NewNode(common()->Select(MachineRepresentation::kTagged),
                           check, node, create);
      receiver = create;  // The implicit receiver.
      ReplaceWithValue(dummy, result);
    } else if (IsDerivedConstructor(shared_info->kind())) {
      Node* node_success =
          NodeProperties::FindSuccessfulControlProjection(node);
      Node* is_receiver =
          graph()->NewNode(simplified()->ObjectIsReceiver(), node);
      Node* branch_is_receiver =
          graph()->NewNode(common()->Branch(), is_receiver, node_success);
      Node* branch_is_receiver_true =
          graph()->NewNode(common()->IfTrue(), branch_is_receiver);
      Node* branch_is_receiver_false =
          graph()->NewNode(common()->IfFalse(), branch_is_receiver);
      branch_is_receiver_false = graph()->NewNode(
          javascript()->CallRuntime(
              Runtime::kThrowConstructorReturnedNonObject),
          caller_context, NodeProperties::GetFrameStateInput(node), node,
          branch_is_receiver_false);
      uncaught_subcalls.push_back(branch_is_receiver_false);
      branch_is_receiver_false =
          graph()->NewNode(common()->Throw(), branch_is_receiver_false,
                           branch_is_receiver_false);
      MergeControlToEnd(graph(), common(), branch_is_receiver_false);

      ReplaceWithValue(node_success, node_success, node_success,
                       branch_is_receiver_true);
      // Fix input destroyed by the above {ReplaceWithValue} call.
      NodeProperties::ReplaceControlInput(branch_is_receiver, node_success, 0);
    }
    node->ReplaceInput(JSCallNode::ReceiverIndex(), receiver);
    // Insert a construct stub frame into the chain of frame states. This will
    // reconstruct the proper frame when deoptimizing within the constructor.
    frame_state = CreateArtificialFrameState(
        node, frame_state, 0, FrameStateType::kConstructInvokeStub,
        *shared_info, caller_context);
  }

  // Insert a JSConvertReceiver node for sloppy callees. Note that the context
  // passed into this node has to be the callees context (loaded above).
  if (node->opcode() == IrOpcode::kJSCall &&
      is_sloppy(shared_info->language_mode()) && !shared_info->native()) {
    Effect effect{NodeProperties::GetEffectInput(node)};
    if (NodeProperties::CanBePrimitive(broker(), call.receiver(), effect)) {
      CallParameters const& p = CallParametersOf(node->op());
      Node* global_proxy = jsgraph()->Constant(
          broker()->target_native_context().global_proxy_object(broker()),
          broker());
      Node* receiver = effect =
          graph()->NewNode(simplified()->ConvertReceiver(p.convert_mode()),
                           call.receiver(), global_proxy, effect, start);
      NodeProperties::ReplaceValueInput(node, receiver,
                                        JSCallNode::ReceiverIndex());
      NodeProperties::ReplaceEffectInput(node, effect);
    }
  }

  // Insert inlined extra arguments if required. The callees formal parameter
  // count have to match the number of arguments passed to the call.
  int parameter_count =
      shared_info->internal_formal_parameter_count_without_receiver();
  DCHECK_EQ(parameter_count, start.FormalParameterCountWithoutReceiver());
  if (call.argument_count() != parameter_count) {
    frame_state = CreateArtificialFrameState(
        node, frame_state, call.argument_count(),
        FrameStateType::kInlinedExtraArguments, *shared_info);
  }

  return InlineCall(node, new_target, context, frame_state, start, end,
                    exception_target, uncaught_subcalls, call.argument_count());
}

Graph* JSInliner::graph() const { return jsgraph()->graph(); }

JSOperatorBuilder* JSInliner::javascript() const {
  return jsgraph()->javascript();
}

CommonOperatorBuilder* JSInliner::common() const { return jsgraph()->common(); }

SimplifiedOperatorBuilder* JSInliner::simplified() const {
  return jsgraph()->simplified();
}

#undef TRACE

}  // namespace compiler
}  // namespace internal
}  // namespace v8