1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_
#define V8_OBJECTS_FIXED_ARRAY_INL_H_
#include "src/handles/handles-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/numbers/conversions.h"
#include "src/objects/bigint.h"
#include "src/objects/compressed-slots.h"
#include "src/objects/fixed-array.h"
#include "src/objects/map.h"
#include "src/objects/maybe-object-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/slots.h"
#include "src/roots/roots-inl.h"
#include "src/torque/runtime-macro-shims.h"
#include "src/torque/runtime-support.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
#include "torque-generated/src/objects/fixed-array-tq-inl.inc"
TQ_OBJECT_CONSTRUCTORS_IMPL(FixedArrayBase)
TQ_OBJECT_CONSTRUCTORS_IMPL(FixedArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(FixedDoubleArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(ArrayList)
TQ_OBJECT_CONSTRUCTORS_IMPL(ByteArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(ExternalPointerArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(TemplateList)
TQ_OBJECT_CONSTRUCTORS_IMPL(WeakFixedArray)
TQ_OBJECT_CONSTRUCTORS_IMPL(WeakArrayList)
NEVER_READ_ONLY_SPACE_IMPL(WeakArrayList)
RELEASE_ACQUIRE_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
RELEASE_ACQUIRE_SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset)
Tagged<Object> FixedArrayBase::unchecked_length(AcquireLoadTag) const {
return ACQUIRE_READ_FIELD(*this, kLengthOffset);
}
ObjectSlot FixedArray::GetFirstElementAddress() {
return RawField(OffsetOfElementAt(0));
}
bool FixedArray::ContainsOnlySmisOrHoles() {
Tagged<Object> the_hole = GetReadOnlyRoots().the_hole_value();
ObjectSlot current = GetFirstElementAddress();
for (int i = 0; i < length(); ++i, ++current) {
Tagged<Object> candidate = *current;
if (!IsSmi(candidate) && candidate != the_hole) return false;
}
return true;
}
Tagged<Object> FixedArray::get(int index) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return get(cage_base, index);
}
Tagged<Object> FixedArray::get(PtrComprCageBase cage_base, int index) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
return TaggedField<Object>::Relaxed_Load(cage_base, *this,
OffsetOfElementAt(index));
}
Handle<Object> FixedArray::get(Tagged<FixedArray> array, int index,
Isolate* isolate) {
return handle(array->get(isolate, index), isolate);
}
bool FixedArray::is_the_hole(Isolate* isolate, int index) {
return IsTheHole(get(isolate, index), isolate);
}
void FixedArray::set(int index, Tagged<Smi> value) {
DCHECK_NE(map(), EarlyGetReadOnlyRoots().unchecked_fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
DCHECK(IsSmi(Object(value)));
int offset = OffsetOfElementAt(index);
RELAXED_WRITE_FIELD(*this, offset, value);
}
void FixedArray::set(int index, Tagged<Object> value) {
DCHECK_NE(EarlyGetReadOnlyRoots().unchecked_fixed_cow_array_map(), map());
DCHECK(IsFixedArray(*this));
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
int offset = OffsetOfElementAt(index);
RELAXED_WRITE_FIELD(*this, offset, value);
WRITE_BARRIER(*this, offset, value);
}
void FixedArray::set(int index, Tagged<Object> value, WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
int offset = OffsetOfElementAt(index);
RELAXED_WRITE_FIELD(*this, offset, value);
CONDITIONAL_WRITE_BARRIER(*this, offset, value, mode);
}
// static
void FixedArray::NoWriteBarrierSet(Tagged<FixedArray> array, int index,
Tagged<Object> value) {
DCHECK_NE(array->map(), array->GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index),
static_cast<unsigned>(array->length()));
DCHECK(!ObjectInYoungGeneration(value));
int offset = OffsetOfElementAt(index);
RELAXED_WRITE_FIELD(array, offset, value);
}
Tagged<Object> FixedArray::get(int index, RelaxedLoadTag) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return get(cage_base, index);
}
Tagged<Object> FixedArray::get(PtrComprCageBase cage_base, int index,
RelaxedLoadTag) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
return RELAXED_READ_FIELD(*this, OffsetOfElementAt(index));
}
void FixedArray::set(int index, Tagged<Object> value, RelaxedStoreTag,
WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
RELAXED_WRITE_FIELD(*this, OffsetOfElementAt(index), value);
CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode);
}
void FixedArray::set(int index, Tagged<Smi> value, RelaxedStoreTag tag) {
DCHECK(IsSmi(Object(value)));
set(index, value, tag, SKIP_WRITE_BARRIER);
}
Tagged<Object> FixedArray::get(int index, SeqCstAccessTag) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return get(cage_base, index);
}
Tagged<Object> FixedArray::get(PtrComprCageBase cage_base, int index,
SeqCstAccessTag) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
return SEQ_CST_READ_FIELD(*this, OffsetOfElementAt(index));
}
void FixedArray::set(int index, Tagged<Object> value, SeqCstAccessTag,
WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
SEQ_CST_WRITE_FIELD(*this, OffsetOfElementAt(index), value);
CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode);
}
void FixedArray::set(int index, Tagged<Smi> value, SeqCstAccessTag tag) {
DCHECK(IsSmi(Object(value)));
set(index, value, tag, SKIP_WRITE_BARRIER);
}
Tagged<Object> FixedArray::get(int index, AcquireLoadTag) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return get(cage_base, index);
}
Tagged<Object> FixedArray::get(PtrComprCageBase cage_base, int index,
AcquireLoadTag) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
return ACQUIRE_READ_FIELD(*this, OffsetOfElementAt(index));
}
void FixedArray::set(int index, Tagged<Object> value, ReleaseStoreTag,
WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
RELEASE_WRITE_FIELD(*this, OffsetOfElementAt(index), value);
CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode);
}
void FixedArray::set(int index, Tagged<Smi> value, ReleaseStoreTag tag) {
DCHECK(IsSmi(Object(value)));
set(index, value, tag, SKIP_WRITE_BARRIER);
}
void FixedArray::set_undefined(int index) {
set_undefined(GetReadOnlyRoots(), index);
}
void FixedArray::set_undefined(Isolate* isolate, int index) {
set_undefined(ReadOnlyRoots(isolate), index);
}
void FixedArray::set_undefined(ReadOnlyRoots ro_roots, int index) {
FixedArray::NoWriteBarrierSet(*this, index, ro_roots.undefined_value());
}
void FixedArray::set_null(int index) { set_null(GetReadOnlyRoots(), index); }
void FixedArray::set_null(Isolate* isolate, int index) {
set_null(ReadOnlyRoots(isolate), index);
}
void FixedArray::set_null(ReadOnlyRoots ro_roots, int index) {
FixedArray::NoWriteBarrierSet(*this, index, ro_roots.null_value());
}
void FixedArray::set_the_hole(int index) {
set_the_hole(GetReadOnlyRoots(), index);
}
void FixedArray::set_the_hole(Isolate* isolate, int index) {
set_the_hole(ReadOnlyRoots(isolate), index);
}
void FixedArray::set_the_hole(ReadOnlyRoots ro_roots, int index) {
FixedArray::NoWriteBarrierSet(*this, index, ro_roots.the_hole_value());
}
Tagged<Object> FixedArray::swap(int index, Tagged<Object> value,
SeqCstAccessTag, WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
Tagged<Object> previous_value =
SEQ_CST_SWAP_FIELD(*this, OffsetOfElementAt(index), value);
CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode);
return previous_value;
}
Tagged<Object> FixedArray::compare_and_swap(int index, Tagged<Object> expected,
Tagged<Object> value,
SeqCstAccessTag,
WriteBarrierMode mode) {
DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
Tagged<Object> previous_value = SEQ_CST_COMPARE_AND_SWAP_FIELD(
*this, OffsetOfElementAt(index), expected, value);
if (previous_value == expected) {
CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode);
}
return previous_value;
}
Tagged<Object> FixedArray::swap(int index, Tagged<Smi> value,
SeqCstAccessTag tag) {
DCHECK(IsSmi(value));
return swap(index, value, tag, SKIP_WRITE_BARRIER);
}
void FixedArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
ObjectSlot FixedArray::data_start() { return RawField(OffsetOfElementAt(0)); }
ObjectSlot FixedArray::RawFieldOfElementAt(int index) {
return RawField(OffsetOfElementAt(index));
}
void FixedArray::MoveElements(Isolate* isolate, int dst_index, int src_index,
int len, WriteBarrierMode mode) {
if (len == 0) return;
DCHECK_LE(dst_index + len, length());
DCHECK_LE(src_index + len, length());
DisallowGarbageCollection no_gc;
ObjectSlot dst_slot(RawFieldOfElementAt(dst_index));
ObjectSlot src_slot(RawFieldOfElementAt(src_index));
isolate->heap()->MoveRange(*this, dst_slot, src_slot, len, mode);
}
void FixedArray::CopyElements(Isolate* isolate, int dst_index,
Tagged<FixedArray> src, int src_index, int len,
WriteBarrierMode mode) {
if (len == 0) return;
DCHECK_LE(dst_index + len, length());
DCHECK_LE(src_index + len, src->length());
DisallowGarbageCollection no_gc;
ObjectSlot dst_slot(RawFieldOfElementAt(dst_index));
ObjectSlot src_slot(src->RawFieldOfElementAt(src_index));
isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode);
}
// Due to left- and right-trimming, concurrent visitors need to read the length
// with acquire semantics.
// TODO(ulan): Acquire should not be needed anymore.
inline int FixedArray::AllocatedSize() { return SizeFor(length(kAcquireLoad)); }
inline int WeakFixedArray::AllocatedSize() {
return SizeFor(length(kAcquireLoad));
}
inline int WeakArrayList::AllocatedSize() { return SizeFor(capacity()); }
// Perform a binary search in a fixed array.
template <SearchMode search_mode, typename T>
int BinarySearch(T* array, Tagged<Name> name, int valid_entries,
int* out_insertion_index) {
DCHECK_IMPLIES(search_mode == VALID_ENTRIES, out_insertion_index == nullptr);
int low = 0;
// We have to search on all entries, even when search_mode == VALID_ENTRIES.
// This is because the InternalIndex might be different from the SortedIndex
// (i.e the first added item in {array} could be the last in the sorted
// index). After doing the binary search and getting the correct internal
// index we check to have the index lower than valid_entries, if needed.
int high = array->number_of_entries() - 1;
uint32_t hash = name->hash();
int limit = high;
DCHECK(low <= high);
while (low != high) {
int mid = low + (high - low) / 2;
Tagged<Name> mid_name = array->GetSortedKey(mid);
uint32_t mid_hash = mid_name->hash();
if (mid_hash >= hash) {
high = mid;
} else {
low = mid + 1;
}
}
for (; low <= limit; ++low) {
int sort_index = array->GetSortedKeyIndex(low);
Tagged<Name> entry = array->GetKey(InternalIndex(sort_index));
uint32_t current_hash = entry->hash();
if (current_hash != hash) {
// 'search_mode == ALL_ENTRIES' here and below is not needed since
// 'out_insertion_index != nullptr' implies 'search_mode == ALL_ENTRIES'.
// Having said that, when creating the template for <VALID_ENTRIES> these
// ifs can be elided by the C++ compiler if we add 'search_mode ==
// ALL_ENTRIES'.
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
}
return T::kNotFound;
}
if (entry == name) {
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
return sort_index;
}
return T::kNotFound;
}
}
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = limit + 1;
}
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template <SearchMode search_mode, typename T>
int LinearSearch(T* array, Tagged<Name> name, int valid_entries,
int* out_insertion_index) {
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
uint32_t hash = name->hash();
int len = array->number_of_entries();
for (int number = 0; number < len; number++) {
int sorted_index = array->GetSortedKeyIndex(number);
Tagged<Name> entry = array->GetKey(InternalIndex(sorted_index));
uint32_t current_hash = entry->hash();
if (current_hash > hash) {
*out_insertion_index = sorted_index;
return T::kNotFound;
}
if (entry == name) return sorted_index;
}
*out_insertion_index = len;
return T::kNotFound;
} else {
DCHECK_LE(valid_entries, array->number_of_entries());
DCHECK_NULL(out_insertion_index); // Not supported here.
for (int number = 0; number < valid_entries; number++) {
if (array->GetKey(InternalIndex(number)) == name) return number;
}
return T::kNotFound;
}
}
template <SearchMode search_mode, typename T>
int Search(T* array, Tagged<Name> name, int valid_entries,
int* out_insertion_index, bool concurrent_search) {
SLOW_DCHECK_IMPLIES(!concurrent_search, array->IsSortedNoDuplicates());
if (valid_entries == 0) {
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
*out_insertion_index = 0;
}
return T::kNotFound;
}
// Do linear search for small arrays, and for searches in the background
// thread.
const int kMaxElementsForLinearSearch = 8;
if (valid_entries <= kMaxElementsForLinearSearch || concurrent_search) {
return LinearSearch<search_mode>(array, name, valid_entries,
out_insertion_index);
}
return BinarySearch<search_mode>(array, name, valid_entries,
out_insertion_index);
}
double FixedDoubleArray::get_scalar(int index) {
DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
map() != GetReadOnlyRoots().fixed_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
DCHECK(!is_the_hole(index));
return ReadField<double>(kHeaderSize + index * kDoubleSize);
}
uint64_t FixedDoubleArray::get_representation(int index) {
DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
map() != GetReadOnlyRoots().fixed_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
int offset = kHeaderSize + index * kDoubleSize;
// Bug(v8:8875): Doubles may be unaligned.
return base::ReadUnalignedValue<uint64_t>(field_address(offset));
}
Handle<Object> FixedDoubleArray::get(Tagged<FixedDoubleArray> array, int index,
Isolate* isolate) {
if (array->is_the_hole(index)) {
return ReadOnlyRoots(isolate).the_hole_value_handle();
} else {
return isolate->factory()->NewNumber(array->get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
map() != GetReadOnlyRoots().fixed_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
int offset = kHeaderSize + index * kDoubleSize;
if (std::isnan(value)) {
WriteField<double>(offset, std::numeric_limits<double>::quiet_NaN());
} else {
WriteField<double>(offset, value);
}
DCHECK(!is_the_hole(index));
}
void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) {
set_the_hole(index);
}
void FixedDoubleArray::set_the_hole(int index) {
DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
map() != GetReadOnlyRoots().fixed_array_map());
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
int offset = kHeaderSize + index * kDoubleSize;
base::WriteUnalignedValue<uint64_t>(field_address(offset), kHoleNanInt64);
}
bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) {
return is_the_hole(index);
}
bool FixedDoubleArray::is_the_hole(int index) {
return get_representation(index) == kHoleNanInt64;
}
void FixedDoubleArray::MoveElements(Isolate* isolate, int dst_index,
int src_index, int len,
WriteBarrierMode mode) {
DCHECK_EQ(SKIP_WRITE_BARRIER, mode);
double* data_start = reinterpret_cast<double*>(field_address(kHeaderSize));
MemMove(data_start + dst_index, data_start + src_index, len * kDoubleSize);
}
void FixedDoubleArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
MaybeObject WeakFixedArray::Get(int index) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return Get(cage_base, index);
}
MaybeObject WeakFixedArray::Get(PtrComprCageBase cage_base, int index) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(length()));
return objects(cage_base, index, kRelaxedLoad);
}
void WeakFixedArray::Set(int index, MaybeObject value, WriteBarrierMode mode) {
set_objects(index, value, mode);
}
Handle<WeakFixedArray> WeakFixedArray::EnsureSpace(Isolate* isolate,
Handle<WeakFixedArray> array,
int length) {
if (array->length() < length) {
int grow_by = length - array->length();
array = isolate->factory()->CopyWeakFixedArrayAndGrow(array, grow_by);
}
return array;
}
MaybeObjectSlot WeakFixedArray::data_start() {
return RawMaybeWeakField(kObjectsOffset);
}
MaybeObjectSlot WeakFixedArray::RawFieldOfElementAt(int index) {
return RawMaybeWeakField(OffsetOfElementAt(index));
}
void WeakFixedArray::CopyElements(Isolate* isolate, int dst_index,
Tagged<WeakFixedArray> src, int src_index,
int len, WriteBarrierMode mode) {
if (len == 0) return;
DCHECK_LE(dst_index + len, length());
DCHECK_LE(src_index + len, src->length());
DisallowGarbageCollection no_gc;
MaybeObjectSlot dst_slot(data_start() + dst_index);
MaybeObjectSlot src_slot(src->data_start() + src_index);
isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode);
}
MaybeObject WeakArrayList::Get(int index) const {
PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
return Get(cage_base, index);
}
MaybeObject WeakArrayList::Get(PtrComprCageBase cage_base, int index) const {
DCHECK_LT(static_cast<unsigned>(index), static_cast<unsigned>(capacity()));
return objects(cage_base, index, kRelaxedLoad);
}
void WeakArrayList::Set(int index, MaybeObject value, WriteBarrierMode mode) {
set_objects(index, value, mode);
}
void WeakArrayList::Set(int index, Tagged<Smi> value) {
Set(index, MaybeObject::FromSmi(value), SKIP_WRITE_BARRIER);
}
MaybeObjectSlot WeakArrayList::data_start() {
return RawMaybeWeakField(kObjectsOffset);
}
void WeakArrayList::CopyElements(Isolate* isolate, int dst_index,
Tagged<WeakArrayList> src, int src_index,
int len, WriteBarrierMode mode) {
if (len == 0) return;
DCHECK_LE(dst_index + len, capacity());
DCHECK_LE(src_index + len, src->capacity());
DisallowGarbageCollection no_gc;
MaybeObjectSlot dst_slot(data_start() + dst_index);
MaybeObjectSlot src_slot(src->data_start() + src_index);
isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode);
}
Tagged<HeapObject> WeakArrayList::Iterator::Next() {
if (!array_.is_null()) {
while (index_ < array_->length()) {
MaybeObject item = array_->Get(index_++);
DCHECK(item->IsWeakOrCleared());
if (!item->IsCleared()) return item.GetHeapObjectAssumeWeak();
}
array_ = WeakArrayList();
}
return Tagged<HeapObject>();
}
int ArrayList::Length() const {
if (FixedArray::cast(*this)->length() == 0) return 0;
return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex));
}
void ArrayList::SetLength(int length) {
return FixedArray::cast(*this)->set(kLengthIndex, Smi::FromInt(length));
}
Tagged<Object> ArrayList::Get(int index) const {
return FixedArray::cast(*this)->get(kFirstIndex + index);
}
Tagged<Object> ArrayList::Get(PtrComprCageBase cage_base, int index) const {
return FixedArray::cast(*this)->get(cage_base, kFirstIndex + index);
}
ObjectSlot ArrayList::Slot(int index) {
return RawField(OffsetOfElementAt(kFirstIndex + index));
}
void ArrayList::Set(int index, Tagged<Object> obj, WriteBarrierMode mode) {
FixedArray::cast(*this)->set(kFirstIndex + index, obj, mode);
}
void ArrayList::Set(int index, Tagged<Smi> value) {
DCHECK(IsSmi(Object(value)));
Set(index, value, SKIP_WRITE_BARRIER);
}
void ArrayList::Clear(int index, Tagged<Object> undefined) {
DCHECK(IsUndefined(undefined));
FixedArray::cast(*this)->set(kFirstIndex + index, undefined,
SKIP_WRITE_BARRIER);
}
int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kTaggedSize); }
uint8_t ByteArray::get(int offset) const {
DCHECK_GE(offset, 0);
DCHECK_LT(offset, length());
return ReadField<uint8_t>(kHeaderSize + offset);
}
void ByteArray::set(int offset, uint8_t value) {
DCHECK_GE(offset, 0);
DCHECK_LT(offset, length());
WriteField<uint8_t>(kHeaderSize + offset, value);
}
int ByteArray::get_int(int offset) const {
DCHECK_GE(offset, 0);
DCHECK_LE(offset + sizeof(int), length());
return ReadField<int>(kHeaderSize + offset);
}
void ByteArray::set_int(int offset, int value) {
DCHECK_GE(offset, 0);
DCHECK_LE(offset + sizeof(int), length());
WriteField<int>(kHeaderSize + offset, value);
}
Address FixedAddressArray::get_sandboxed_pointer(int offset) const {
DCHECK_GE(offset, 0);
DCHECK_GT(length(), offset);
int actual_offset = offset * sizeof(Address);
PtrComprCageBase sandbox_base = GetPtrComprCageBase(*this);
return ReadSandboxedPointerField(kHeaderSize + actual_offset, sandbox_base);
}
void FixedAddressArray::set_sandboxed_pointer(int offset, Address value) {
DCHECK_GE(offset, 0);
DCHECK_GT(length(), offset);
int actual_offset = offset * sizeof(Address);
PtrComprCageBase sandbox_base = GetPtrComprCageBase(*this);
WriteSandboxedPointerField(kHeaderSize + actual_offset, sandbox_base, value);
}
// static
Handle<FixedAddressArray> FixedAddressArray::New(Isolate* isolate, int length,
AllocationType allocation) {
return Handle<FixedAddressArray>::cast(
FixedIntegerArray<Address>::New(isolate, length, allocation));
}
FixedAddressArray::FixedAddressArray(Address ptr)
: FixedIntegerArray<Address>(ptr) {}
CAST_ACCESSOR(FixedAddressArray)
void ByteArray::copy_in(int offset, const uint8_t* buffer, int slice_length) {
DCHECK_GE(offset, 0);
DCHECK_GE(slice_length, 0);
DCHECK_LE(slice_length, kMaxInt - offset);
DCHECK_LE(offset + slice_length, length());
Address dst_addr = field_address(kHeaderSize + offset);
memcpy(reinterpret_cast<void*>(dst_addr), buffer, slice_length);
}
void ByteArray::copy_out(int offset, uint8_t* buffer, int slice_length) {
DCHECK_GE(offset, 0);
DCHECK_GE(slice_length, 0);
DCHECK_LE(slice_length, kMaxInt - offset);
DCHECK_LE(offset + slice_length, length());
Address src_addr = field_address(kHeaderSize + offset);
memcpy(buffer, reinterpret_cast<void*>(src_addr), slice_length);
}
void ByteArray::clear_padding() {
int data_size = length() + kHeaderSize;
memset(reinterpret_cast<void*>(address() + data_size), 0, Size() - data_size);
}
Tagged<ByteArray> ByteArray::FromDataStartAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return ByteArray::cast(Object(address - kHeaderSize + kHeapObjectTag));
}
int ByteArray::DataSize() const { return RoundUp(length(), kTaggedSize); }
uint8_t* ByteArray::GetDataStartAddress() {
return reinterpret_cast<uint8_t*>(address() + kHeaderSize);
}
uint8_t* ByteArray::GetDataEndAddress() {
return GetDataStartAddress() + length();
}
template <typename T>
FixedIntegerArray<T>::FixedIntegerArray(Address ptr) : ByteArray(ptr) {
DCHECK_EQ(ByteArray::length() % sizeof(T), 0);
}
template <typename T>
CAST_ACCESSOR(FixedIntegerArray<T>)
// static
template <typename T>
Handle<FixedIntegerArray<T>> FixedIntegerArray<T>::New(
Isolate* isolate, int length, AllocationType allocation) {
int byte_length;
CHECK(!base::bits::SignedMulOverflow32(length, sizeof(T), &byte_length));
return Handle<FixedIntegerArray<T>>::cast(
isolate->factory()->NewByteArray(byte_length, allocation));
}
template <typename T>
T FixedIntegerArray<T>::get(int index) const {
static_assert(std::is_integral<T>::value);
DCHECK_GE(index, 0);
DCHECK_LT(index, length());
return ReadField<T>(kHeaderSize + index * sizeof(T));
}
template <typename T>
void FixedIntegerArray<T>::set(int index, T value) {
static_assert(std::is_integral<T>::value);
DCHECK_GE(index, 0);
DCHECK_LT(index, length());
WriteField<T>(kHeaderSize + index * sizeof(T), value);
}
template <typename T>
int FixedIntegerArray<T>::length() const {
DCHECK_EQ(ByteArray::length() % sizeof(T), 0);
return ByteArray::length() / sizeof(T);
}
template <ExternalPointerTag tag>
inline Address ExternalPointerArray::get(int index, Isolate* isolate) {
return ReadExternalPointerField<tag>(OffsetOfElementAt(index), isolate);
}
template <ExternalPointerTag tag>
inline void ExternalPointerArray::set(int index, Isolate* isolate,
Address value) {
WriteLazilyInitializedExternalPointerField<tag>(OffsetOfElementAt(index),
isolate, value);
}
inline void ExternalPointerArray::clear(int index) {
ResetLazilyInitializedExternalPointerField(OffsetOfElementAt(index));
}
// static
Handle<ExternalPointerArray> ExternalPointerArray::New(
Isolate* isolate, int length, AllocationType allocation) {
return isolate->factory()->NewExternalPointerArray(length, allocation);
}
template <class T>
PodArray<T>::PodArray(Address ptr) : ByteArray(ptr) {}
template <class T>
CAST_ACCESSOR(PodArray<T>)
// static
template <class T>
Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length,
AllocationType allocation) {
int byte_length;
CHECK(!base::bits::SignedMulOverflow32(length, sizeof(T), &byte_length));
return Handle<PodArray<T>>::cast(
isolate->factory()->NewByteArray(byte_length, allocation));
}
// static
template <class T>
Handle<PodArray<T>> PodArray<T>::New(LocalIsolate* isolate, int length) {
int byte_length;
CHECK(!base::bits::SignedMulOverflow32(length, sizeof(T), &byte_length));
return Handle<PodArray<T>>::cast(
isolate->factory()->NewByteArray(byte_length, AllocationType::kOld));
}
template <class T>
int PodArray<T>::length() const {
return ByteArray::length() / sizeof(T);
}
int TemplateList::length() const {
return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex));
}
Tagged<Object> TemplateList::get(int index) const {
return FixedArray::cast(*this)->get(kFirstElementIndex + index);
}
Tagged<Object> TemplateList::get(PtrComprCageBase cage_base, int index) const {
return FixedArray::cast(*this)->get(cage_base, kFirstElementIndex + index);
}
void TemplateList::set(int index, Tagged<Object> value) {
FixedArray::cast(*this)->set(kFirstElementIndex + index, value);
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_FIXED_ARRAY_INL_H_
|