1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/module-decoder.h"
#include "src/logging/metrics.h"
#include "src/tracing/trace-event.h"
#include "src/wasm/constant-expression.h"
#include "src/wasm/decoder.h"
#include "src/wasm/module-decoder-impl.h"
#include "src/wasm/struct-types.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-opcodes-inl.h"
namespace v8 {
namespace internal {
namespace wasm {
const char* SectionName(SectionCode code) {
switch (code) {
case kUnknownSectionCode:
return "Unknown";
case kTypeSectionCode:
return "Type";
case kImportSectionCode:
return "Import";
case kFunctionSectionCode:
return "Function";
case kTableSectionCode:
return "Table";
case kMemorySectionCode:
return "Memory";
case kGlobalSectionCode:
return "Global";
case kExportSectionCode:
return "Export";
case kStartSectionCode:
return "Start";
case kCodeSectionCode:
return "Code";
case kElementSectionCode:
return "Element";
case kDataSectionCode:
return "Data";
case kTagSectionCode:
return "Tag";
case kStringRefSectionCode:
return "StringRef";
case kDataCountSectionCode:
return "DataCount";
case kNameSectionCode:
return kNameString;
case kSourceMappingURLSectionCode:
return kSourceMappingURLString;
case kDebugInfoSectionCode:
return kDebugInfoString;
case kExternalDebugInfoSectionCode:
return kExternalDebugInfoString;
case kInstTraceSectionCode:
return kInstTraceString;
case kCompilationHintsSectionCode:
return kCompilationHintsString;
case kBranchHintsSectionCode:
return kBranchHintsString;
default:
return "<unknown>";
}
}
ModuleResult DecodeWasmModule(
WasmFeatures enabled_features, base::Vector<const uint8_t> wire_bytes,
bool validate_functions, ModuleOrigin origin, Counters* counters,
std::shared_ptr<metrics::Recorder> metrics_recorder,
v8::metrics::Recorder::ContextId context_id,
DecodingMethod decoding_method) {
if (counters) {
auto size_counter =
SELECT_WASM_COUNTER(counters, origin, wasm, module_size_bytes);
static_assert(kV8MaxWasmModuleSize < kMaxInt);
size_counter->AddSample(static_cast<int>(wire_bytes.size()));
}
v8::metrics::WasmModuleDecoded metrics_event;
base::ElapsedTimer timer;
timer.Start();
ModuleResult result = DecodeWasmModule(enabled_features, wire_bytes,
validate_functions, origin);
if (counters && result.ok()) {
auto counter =
SELECT_WASM_COUNTER(counters, origin, wasm_functions_per, module);
counter->AddSample(
static_cast<int>(result.value()->num_declared_functions));
}
// Record event metrics.
metrics_event.wall_clock_duration_in_us = timer.Elapsed().InMicroseconds();
timer.Stop();
metrics_event.success = result.ok();
metrics_event.async = decoding_method == DecodingMethod::kAsync ||
decoding_method == DecodingMethod::kAsyncStream;
metrics_event.streamed = decoding_method == DecodingMethod::kSyncStream ||
decoding_method == DecodingMethod::kAsyncStream;
if (result.ok()) {
metrics_event.function_count = result.value()->num_declared_functions;
}
metrics_event.module_size_in_bytes = wire_bytes.size();
metrics_recorder->DelayMainThreadEvent(metrics_event, context_id);
return result;
}
ModuleResult DecodeWasmModule(
WasmFeatures enabled_features, base::Vector<const uint8_t> wire_bytes,
bool validate_functions, ModuleOrigin origin,
PopulateExplicitRecGroups populate_explicit_rec_groups) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
"wasm.DecodeWasmModule");
ModuleDecoderImpl decoder{enabled_features, wire_bytes, origin,
populate_explicit_rec_groups};
return decoder.DecodeModule(validate_functions);
}
ModuleResult DecodeWasmModuleForDisassembler(
base::Vector<const uint8_t> wire_bytes) {
constexpr bool kNoValidateFunctions = false;
ModuleDecoderImpl decoder{WasmFeatures::All(), wire_bytes, kWasmOrigin};
return decoder.DecodeModule(kNoValidateFunctions);
}
ModuleDecoder::ModuleDecoder(WasmFeatures enabled_features)
: impl_(std::make_unique<ModuleDecoderImpl>(
enabled_features, base::Vector<const uint8_t>{}, kWasmOrigin)) {}
ModuleDecoder::~ModuleDecoder() = default;
const std::shared_ptr<WasmModule>& ModuleDecoder::shared_module() const {
return impl_->shared_module();
}
void ModuleDecoder::DecodeModuleHeader(base::Vector<const uint8_t> bytes) {
impl_->DecodeModuleHeader(bytes);
}
void ModuleDecoder::DecodeSection(SectionCode section_code,
base::Vector<const uint8_t> bytes,
uint32_t offset) {
impl_->DecodeSection(section_code, bytes, offset);
}
void ModuleDecoder::DecodeFunctionBody(uint32_t index, uint32_t length,
uint32_t offset) {
impl_->DecodeFunctionBody(index, length, offset);
}
void ModuleDecoder::StartCodeSection(WireBytesRef section_bytes) {
impl_->StartCodeSection(section_bytes);
}
bool ModuleDecoder::CheckFunctionsCount(uint32_t functions_count,
uint32_t error_offset) {
return impl_->CheckFunctionsCount(functions_count, error_offset);
}
ModuleResult ModuleDecoder::FinishDecoding() { return impl_->FinishDecoding(); }
size_t ModuleDecoder::IdentifyUnknownSection(ModuleDecoder* decoder,
base::Vector<const uint8_t> bytes,
uint32_t offset,
SectionCode* result) {
if (!decoder->ok()) return 0;
decoder->impl_->Reset(bytes, offset);
*result =
IdentifyUnknownSectionInternal(decoder->impl_.get(), ITracer::NoTrace);
return decoder->impl_->pc() - bytes.begin();
}
bool ModuleDecoder::ok() { return impl_->ok(); }
Result<const FunctionSig*> DecodeWasmSignatureForTesting(
WasmFeatures enabled_features, Zone* zone,
base::Vector<const uint8_t> bytes) {
ModuleDecoderImpl decoder{enabled_features, bytes, kWasmOrigin};
return decoder.toResult(decoder.DecodeFunctionSignature(zone, bytes.begin()));
}
ConstantExpression DecodeWasmInitExprForTesting(
WasmFeatures enabled_features, base::Vector<const uint8_t> bytes,
ValueType expected) {
ModuleDecoderImpl decoder{enabled_features, bytes, kWasmOrigin};
return decoder.DecodeInitExprForTesting(expected);
}
FunctionResult DecodeWasmFunctionForTesting(
WasmFeatures enabled_features, Zone* zone, ModuleWireBytes wire_bytes,
const WasmModule* module, base::Vector<const uint8_t> function_bytes) {
if (function_bytes.size() > kV8MaxWasmFunctionSize) {
return FunctionResult{
WasmError{0, "size > maximum function size (%zu): %zu",
kV8MaxWasmFunctionSize, function_bytes.size()}};
}
ModuleDecoderImpl decoder{enabled_features, function_bytes, kWasmOrigin};
return decoder.DecodeSingleFunctionForTesting(zone, wire_bytes, module);
}
AsmJsOffsetsResult DecodeAsmJsOffsets(
base::Vector<const uint8_t> encoded_offsets) {
std::vector<AsmJsOffsetFunctionEntries> functions;
Decoder decoder(encoded_offsets);
uint32_t functions_count = decoder.consume_u32v("functions count");
// Consistency check.
DCHECK_GE(encoded_offsets.size(), functions_count);
functions.reserve(functions_count);
for (uint32_t i = 0; i < functions_count; ++i) {
uint32_t size = decoder.consume_u32v("table size");
if (size == 0) {
functions.emplace_back();
continue;
}
DCHECK(decoder.checkAvailable(size));
const uint8_t* table_end = decoder.pc() + size;
uint32_t locals_size = decoder.consume_u32v("locals size");
int function_start_position = decoder.consume_u32v("function start pos");
int function_end_position = function_start_position;
int last_byte_offset = locals_size;
int last_asm_position = function_start_position;
std::vector<AsmJsOffsetEntry> func_asm_offsets;
func_asm_offsets.reserve(size / 4); // conservative estimation
// Add an entry for the stack check, associated with position 0.
func_asm_offsets.push_back(
{0, function_start_position, function_start_position});
while (decoder.pc() < table_end) {
DCHECK(decoder.ok());
last_byte_offset += decoder.consume_u32v("byte offset delta");
int call_position =
last_asm_position + decoder.consume_i32v("call position delta");
int to_number_position =
call_position + decoder.consume_i32v("to_number position delta");
last_asm_position = to_number_position;
if (decoder.pc() == table_end) {
// The last entry is the function end marker.
DCHECK_EQ(call_position, to_number_position);
function_end_position = call_position;
} else {
func_asm_offsets.push_back(
{last_byte_offset, call_position, to_number_position});
}
}
DCHECK_EQ(decoder.pc(), table_end);
functions.emplace_back(AsmJsOffsetFunctionEntries{
function_start_position, function_end_position,
std::move(func_asm_offsets)});
}
DCHECK(decoder.ok());
DCHECK(!decoder.more());
return decoder.toResult(AsmJsOffsets{std::move(functions)});
}
std::vector<CustomSectionOffset> DecodeCustomSections(
base::Vector<const uint8_t> bytes) {
Decoder decoder(bytes);
decoder.consume_bytes(4, "wasm magic");
decoder.consume_bytes(4, "wasm version");
std::vector<CustomSectionOffset> result;
while (decoder.more()) {
uint8_t section_code = decoder.consume_u8("section code");
uint32_t section_length = decoder.consume_u32v("section length");
uint32_t section_start = decoder.pc_offset();
if (section_code != 0) {
// Skip known sections.
decoder.consume_bytes(section_length, "section bytes");
continue;
}
uint32_t name_length = decoder.consume_u32v("name length");
uint32_t name_offset = decoder.pc_offset();
decoder.consume_bytes(name_length, "section name");
uint32_t payload_offset = decoder.pc_offset();
if (section_length < (payload_offset - section_start)) {
decoder.error("invalid section length");
break;
}
uint32_t payload_length = section_length - (payload_offset - section_start);
decoder.consume_bytes(payload_length);
if (decoder.failed()) break;
result.push_back({{section_start, section_length},
{name_offset, name_length},
{payload_offset, payload_length}});
}
return result;
}
namespace {
bool FindNameSection(Decoder* decoder) {
static constexpr int kModuleHeaderSize = 8;
decoder->consume_bytes(kModuleHeaderSize, "module header");
WasmSectionIterator section_iter(decoder, ITracer::NoTrace);
while (decoder->ok() && section_iter.more() &&
section_iter.section_code() != kNameSectionCode) {
section_iter.advance(true);
}
if (!section_iter.more()) return false;
// Reset the decoder to not read beyond the name section end.
decoder->Reset(section_iter.payload(), decoder->pc_offset());
return true;
}
enum class EmptyNames : bool { kAllow, kSkip };
void DecodeNameMapInternal(NameMap& target, Decoder& decoder,
EmptyNames empty_names = EmptyNames::kSkip) {
uint32_t count = decoder.consume_u32v("names count");
for (uint32_t i = 0; i < count; i++) {
uint32_t index = decoder.consume_u32v("index");
WireBytesRef name =
consume_string(&decoder, unibrow::Utf8Variant::kLossyUtf8, "name");
if (!decoder.ok()) break;
if (index > NameMap::kMaxKey) continue;
if (empty_names == EmptyNames::kSkip && name.is_empty()) continue;
if (!validate_utf8(&decoder, name)) continue;
target.Put(index, name);
}
target.FinishInitialization();
}
void DecodeNameMap(NameMap& target, Decoder& decoder,
uint32_t subsection_payload_length,
EmptyNames empty_names = EmptyNames::kSkip) {
if (target.is_set()) {
decoder.consume_bytes(subsection_payload_length);
return;
}
DecodeNameMapInternal(target, decoder, empty_names);
}
void DecodeIndirectNameMap(IndirectNameMap& target, Decoder& decoder,
uint32_t subsection_payload_length) {
if (target.is_set()) {
decoder.consume_bytes(subsection_payload_length);
return;
}
uint32_t outer_count = decoder.consume_u32v("outer count");
for (uint32_t i = 0; i < outer_count; ++i) {
uint32_t outer_index = decoder.consume_u32v("outer index");
if (outer_index > IndirectNameMap::kMaxKey) continue;
NameMap names;
DecodeNameMapInternal(names, decoder);
target.Put(outer_index, std::move(names));
if (!decoder.ok()) break;
}
target.FinishInitialization();
}
} // namespace
void DecodeFunctionNames(base::Vector<const uint8_t> wire_bytes,
NameMap& names) {
Decoder decoder(wire_bytes);
if (FindNameSection(&decoder)) {
while (decoder.ok() && decoder.more()) {
uint8_t name_type = decoder.consume_u8("name type");
if (name_type & 0x80) break; // no varuint7
uint32_t name_payload_len = decoder.consume_u32v("name payload length");
if (!decoder.checkAvailable(name_payload_len)) break;
if (name_type != NameSectionKindCode::kFunctionCode) {
decoder.consume_bytes(name_payload_len, "name subsection payload");
continue;
}
// We need to allow empty function names for spec-conformant stack traces.
DecodeNameMapInternal(names, decoder, EmptyNames::kAllow);
// The spec allows only one occurrence of each subsection. We could be
// more permissive and allow repeated subsections; in that case we'd
// have to delay calling {target.FinishInitialization()} on the function
// names map until we've seen them all.
// For now, we stop decoding after finding the first function names
// subsection.
return;
}
}
}
namespace {
// A task that validates multiple functions in parallel, storing the earliest
// validation error in {this} decoder.
class ValidateFunctionsTask : public JobTask {
public:
explicit ValidateFunctionsTask(base::Vector<const uint8_t> wire_bytes,
const WasmModule* module,
WasmFeatures enabled_features,
std::function<bool(int)> filter,
WasmError* error_out)
: wire_bytes_(wire_bytes),
module_(module),
enabled_features_(enabled_features),
filter_(std::move(filter)),
next_function_(module->num_imported_functions),
after_last_function_(next_function_ + module->num_declared_functions),
error_out_(error_out) {
DCHECK(!error_out->has_error());
}
void Run(JobDelegate* delegate) override {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
"wasm.ValidateFunctionsTask");
do {
// Get the index of the next function to validate.
// {fetch_add} might overrun {after_last_function_} by a bit. Since the
// number of functions is limited to a value much smaller than the
// integer range, this is near impossible to happen.
static_assert(kV8MaxWasmFunctions < kMaxInt / 2);
int func_index;
do {
func_index = next_function_.fetch_add(1, std::memory_order_relaxed);
if (V8_UNLIKELY(func_index >= after_last_function_)) return;
DCHECK_LE(0, func_index);
} while ((filter_ && !filter_(func_index)) ||
module_->function_was_validated(func_index));
if (!ValidateFunction(func_index)) {
// No need to validate any more functions.
next_function_.store(after_last_function_, std::memory_order_relaxed);
return;
}
} while (!delegate->ShouldYield());
}
size_t GetMaxConcurrency(size_t /* worker_count */) const override {
int next_func = next_function_.load(std::memory_order_relaxed);
return std::max(0, after_last_function_ - next_func);
}
private:
bool ValidateFunction(int func_index) {
WasmFeatures unused_detected_features;
const WasmFunction& function = module_->functions[func_index];
DCHECK_LT(0, function.code.offset());
FunctionBody body{function.sig, function.code.offset(),
wire_bytes_.begin() + function.code.offset(),
wire_bytes_.begin() + function.code.end_offset()};
DecodeResult validation_result = ValidateFunctionBody(
enabled_features_, module_, &unused_detected_features, body);
if (V8_UNLIKELY(validation_result.failed())) {
SetError(func_index, std::move(validation_result).error());
return false;
}
module_->set_function_validated(func_index);
return true;
}
// Set the error from the argument if it's earlier than the error we already
// have (or if we have none yet). Thread-safe.
void SetError(int func_index, WasmError error) {
base::MutexGuard mutex_guard{&set_error_mutex_};
if (error_out_->has_error() && error_out_->offset() <= error.offset()) {
return;
}
*error_out_ = GetWasmErrorWithName(wire_bytes_, func_index, module_, error);
}
const base::Vector<const uint8_t> wire_bytes_;
const WasmModule* const module_;
const WasmFeatures enabled_features_;
const std::function<bool(int)> filter_;
std::atomic<int> next_function_;
const int after_last_function_;
base::Mutex set_error_mutex_;
WasmError* const error_out_;
};
} // namespace
WasmError ValidateFunctions(const WasmModule* module,
WasmFeatures enabled_features,
base::Vector<const uint8_t> wire_bytes,
std::function<bool(int)> filter) {
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
"wasm.ValidateFunctions", "num_declared_functions",
module->num_declared_functions, "has_filter", filter != nullptr);
DCHECK_EQ(kWasmOrigin, module->origin);
class NeverYieldDelegate final : public JobDelegate {
public:
bool ShouldYield() override { return false; }
bool IsJoiningThread() const override { UNIMPLEMENTED(); }
void NotifyConcurrencyIncrease() override { UNIMPLEMENTED(); }
uint8_t GetTaskId() override { UNIMPLEMENTED(); }
};
// Create a {ValidateFunctionsTask} to validate all functions. The earliest
// error found will be set on this decoder.
WasmError validation_error;
std::unique_ptr<JobTask> validate_job =
std::make_unique<ValidateFunctionsTask>(
wire_bytes, module, enabled_features, std::move(filter),
&validation_error);
if (v8_flags.single_threaded) {
// In single-threaded mode, run the {ValidateFunctionsTask} synchronously.
NeverYieldDelegate delegate;
validate_job->Run(&delegate);
} else {
// Spawn the task and join it.
std::unique_ptr<JobHandle> job_handle = V8::GetCurrentPlatform()->CreateJob(
TaskPriority::kUserVisible, std::move(validate_job));
job_handle->Join();
}
return validation_error;
}
WasmError GetWasmErrorWithName(base::Vector<const uint8_t> wire_bytes,
int func_index, const WasmModule* module,
WasmError error) {
WasmName name = ModuleWireBytes{wire_bytes}.GetNameOrNull(func_index, module);
if (name.begin() == nullptr) {
return WasmError(error.offset(), "Compiling function #%d failed: %s",
func_index, error.message().c_str());
} else {
TruncatedUserString<> truncated_name(name);
return WasmError(error.offset(),
"Compiling function #%d:\"%.*s\" failed: %s", func_index,
truncated_name.length(), truncated_name.start(),
error.message().c_str());
}
}
DecodedNameSection::DecodedNameSection(base::Vector<const uint8_t> wire_bytes,
WireBytesRef name_section) {
if (name_section.is_empty()) return; // No name section.
Decoder decoder(wire_bytes.begin() + name_section.offset(),
wire_bytes.begin() + name_section.end_offset(),
name_section.offset());
while (decoder.ok() && decoder.more()) {
uint8_t name_type = decoder.consume_u8("name type");
if (name_type & 0x80) break; // no varuint7
uint32_t name_payload_len = decoder.consume_u32v("name payload length");
if (!decoder.checkAvailable(name_payload_len)) break;
switch (name_type) {
case kModuleCode:
case kFunctionCode:
// Already handled elsewhere.
decoder.consume_bytes(name_payload_len);
break;
case kLocalCode:
static_assert(kV8MaxWasmFunctions <= IndirectNameMap::kMaxKey);
static_assert(kV8MaxWasmFunctionLocals <= NameMap::kMaxKey);
DecodeIndirectNameMap(local_names_, decoder, name_payload_len);
break;
case kLabelCode:
static_assert(kV8MaxWasmFunctions <= IndirectNameMap::kMaxKey);
static_assert(kV8MaxWasmFunctionSize <= NameMap::kMaxKey);
DecodeIndirectNameMap(label_names_, decoder, name_payload_len);
break;
case kTypeCode:
static_assert(kV8MaxWasmTypes <= NameMap::kMaxKey);
DecodeNameMap(type_names_, decoder, name_payload_len);
break;
case kTableCode:
static_assert(kV8MaxWasmTables <= NameMap::kMaxKey);
DecodeNameMap(table_names_, decoder, name_payload_len);
break;
case kMemoryCode:
static_assert(kV8MaxWasmMemories <= NameMap::kMaxKey);
DecodeNameMap(memory_names_, decoder, name_payload_len);
break;
case kGlobalCode:
static_assert(kV8MaxWasmGlobals <= NameMap::kMaxKey);
DecodeNameMap(global_names_, decoder, name_payload_len);
break;
case kElementSegmentCode:
static_assert(kV8MaxWasmTableInitEntries <= NameMap::kMaxKey);
DecodeNameMap(element_segment_names_, decoder, name_payload_len);
break;
case kDataSegmentCode:
static_assert(kV8MaxWasmDataSegments <= NameMap::kMaxKey);
DecodeNameMap(data_segment_names_, decoder, name_payload_len);
break;
case kFieldCode:
static_assert(kV8MaxWasmTypes <= IndirectNameMap::kMaxKey);
static_assert(kV8MaxWasmStructFields <= NameMap::kMaxKey);
DecodeIndirectNameMap(field_names_, decoder, name_payload_len);
break;
case kTagCode:
static_assert(kV8MaxWasmTags <= NameMap::kMaxKey);
DecodeNameMap(tag_names_, decoder, name_payload_len);
break;
}
}
}
#undef TRACE
} // namespace wasm
} // namespace internal
} // namespace v8
|