PostgreSQL Source Code git master
bufmgr.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * bufmgr.c
4 * buffer manager interface routines
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/storage/buffer/bufmgr.c
12 *
13 *-------------------------------------------------------------------------
14 */
15/*
16 * Principal entry points:
17 *
18 * ReadBuffer() -- find or create a buffer holding the requested page,
19 * and pin it so that no one can destroy it while this process
20 * is using it.
21 *
22 * StartReadBuffer() -- as above, with separate wait step
23 * StartReadBuffers() -- multiple block version
24 * WaitReadBuffers() -- second step of above
25 *
26 * ReleaseBuffer() -- unpin a buffer
27 *
28 * MarkBufferDirty() -- mark a pinned buffer's contents as "dirty".
29 * The disk write is delayed until buffer replacement or checkpoint.
30 *
31 * See also these files:
32 * freelist.c -- chooses victim for buffer replacement
33 * buf_table.c -- manages the buffer lookup table
34 */
35#include "postgres.h"
36
37#include <sys/file.h>
38#include <unistd.h>
39
40#include "access/tableam.h"
41#include "access/xloginsert.h"
42#include "access/xlogutils.h"
43#ifdef USE_ASSERT_CHECKING
44#include "catalog/pg_tablespace_d.h"
45#endif
46#include "catalog/storage.h"
48#include "executor/instrument.h"
49#include "lib/binaryheap.h"
50#include "miscadmin.h"
51#include "pg_trace.h"
52#include "pgstat.h"
53#include "postmaster/bgwriter.h"
54#include "storage/aio.h"
56#include "storage/bufmgr.h"
57#include "storage/fd.h"
58#include "storage/ipc.h"
59#include "storage/lmgr.h"
60#include "storage/proc.h"
61#include "storage/read_stream.h"
62#include "storage/smgr.h"
63#include "storage/standby.h"
64#include "utils/memdebug.h"
65#include "utils/ps_status.h"
66#include "utils/rel.h"
67#include "utils/resowner.h"
68#include "utils/timestamp.h"
69
70
71/* Note: these two macros only work on shared buffers, not local ones! */
72#define BufHdrGetBlock(bufHdr) ((Block) (BufferBlocks + ((Size) (bufHdr)->buf_id) * BLCKSZ))
73#define BufferGetLSN(bufHdr) (PageGetLSN(BufHdrGetBlock(bufHdr)))
74
75/* Note: this macro only works on local buffers, not shared ones! */
76#define LocalBufHdrGetBlock(bufHdr) \
77 LocalBufferBlockPointers[-((bufHdr)->buf_id + 2)]
78
79/* Bits in SyncOneBuffer's return value */
80#define BUF_WRITTEN 0x01
81#define BUF_REUSABLE 0x02
82
83#define RELS_BSEARCH_THRESHOLD 20
84
85/*
86 * This is the size (in the number of blocks) above which we scan the
87 * entire buffer pool to remove the buffers for all the pages of relation
88 * being dropped. For the relations with size below this threshold, we find
89 * the buffers by doing lookups in BufMapping table.
90 */
91#define BUF_DROP_FULL_SCAN_THRESHOLD (uint64) (NBuffers / 32)
92
93/*
94 * This is separated out from PrivateRefCountEntry to allow for copying all
95 * the data members via struct assignment.
96 */
97typedef struct PrivateRefCountData
98{
99 /*
100 * How many times has the buffer been pinned by this backend.
101 */
104
106{
107 /*
108 * Note that this needs to be same as the entry's corresponding
109 * PrivateRefCountArrayKeys[i], if the entry is stored in the array. We
110 * store it in both places as this is used for the hashtable key and
111 * because it is more convenient (passing around a PrivateRefCountEntry
112 * suffices to identify the buffer) and faster (checking the keys array is
113 * faster when checking many entries, checking the entry is faster if just
114 * checking a single entry).
115 */
117
120
121/* 64 bytes, about the size of a cache line on common systems */
122#define REFCOUNT_ARRAY_ENTRIES 8
123
124/*
125 * Status of buffers to checkpoint for a particular tablespace, used
126 * internally in BufferSync.
127 */
128typedef struct CkptTsStatus
129{
130 /* oid of the tablespace */
132
133 /*
134 * Checkpoint progress for this tablespace. To make progress comparable
135 * between tablespaces the progress is, for each tablespace, measured as a
136 * number between 0 and the total number of to-be-checkpointed pages. Each
137 * page checkpointed in this tablespace increments this space's progress
138 * by progress_slice.
139 */
142
143 /* number of to-be checkpointed pages in this tablespace */
145 /* already processed pages in this tablespace */
147
148 /* current offset in CkptBufferIds for this tablespace */
149 int index;
151
152/*
153 * Type for array used to sort SMgrRelations
154 *
155 * FlushRelationsAllBuffers shares the same comparator function with
156 * DropRelationsAllBuffers. Pointer to this struct and RelFileLocator must be
157 * compatible.
158 */
159typedef struct SMgrSortArray
160{
161 RelFileLocator rlocator; /* This must be the first member */
164
165/* GUC variables */
169bool track_io_timing = false;
170
171/*
172 * How many buffers PrefetchBuffer callers should try to stay ahead of their
173 * ReadBuffer calls by. Zero means "never prefetch". This value is only used
174 * for buffers not belonging to tablespaces that have their
175 * effective_io_concurrency parameter set.
176 */
178
179/*
180 * Like effective_io_concurrency, but used by maintenance code paths that might
181 * benefit from a higher setting because they work on behalf of many sessions.
182 * Overridden by the tablespace setting of the same name.
183 */
185
186/*
187 * Limit on how many blocks should be handled in single I/O operations.
188 * StartReadBuffers() callers should respect it, as should other operations
189 * that call smgr APIs directly. It is computed as the minimum of underlying
190 * GUCs io_combine_limit_guc and io_max_combine_limit.
191 */
195
196/*
197 * GUC variables about triggering kernel writeback for buffers written; OS
198 * dependent defaults are set via the GUC mechanism.
199 */
203
204/* local state for LockBufferForCleanup */
206
207/*
208 * Backend-Private refcount management:
209 *
210 * Each buffer also has a private refcount that keeps track of the number of
211 * times the buffer is pinned in the current process. This is so that the
212 * shared refcount needs to be modified only once if a buffer is pinned more
213 * than once by an individual backend. It's also used to check that no buffers
214 * are still pinned at the end of transactions and when exiting.
215 *
216 *
217 * To avoid - as we used to - requiring an array with NBuffers entries to keep
218 * track of local buffers, we use a small sequentially searched array
219 * (PrivateRefCountArrayKeys, with the corresponding data stored in
220 * PrivateRefCountArray) and an overflow hash table (PrivateRefCountHash) to
221 * keep track of backend local pins.
222 *
223 * Until no more than REFCOUNT_ARRAY_ENTRIES buffers are pinned at once, all
224 * refcounts are kept track of in the array; after that, new array entries
225 * displace old ones into the hash table. That way a frequently used entry
226 * can't get "stuck" in the hashtable while infrequent ones clog the array.
227 *
228 * Note that in most scenarios the number of pinned buffers will not exceed
229 * REFCOUNT_ARRAY_ENTRIES.
230 *
231 *
232 * To enter a buffer into the refcount tracking mechanism first reserve a free
233 * entry using ReservePrivateRefCountEntry() and then later, if necessary,
234 * fill it with NewPrivateRefCountEntry(). That split lets us avoid doing
235 * memory allocations in NewPrivateRefCountEntry() which can be important
236 * because in some scenarios it's called with a spinlock held...
237 */
243static int ReservedRefCountSlot = -1;
245
247
248static void ReservePrivateRefCountEntry(void);
253
254/* ResourceOwner callbacks to hold in-progress I/Os and buffer pins */
255static void ResOwnerReleaseBufferIO(Datum res);
256static char *ResOwnerPrintBufferIO(Datum res);
257static void ResOwnerReleaseBufferPin(Datum res);
258static char *ResOwnerPrintBufferPin(Datum res);
259
261{
262 .name = "buffer io",
263 .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
264 .release_priority = RELEASE_PRIO_BUFFER_IOS,
265 .ReleaseResource = ResOwnerReleaseBufferIO,
266 .DebugPrint = ResOwnerPrintBufferIO
267};
268
270{
271 .name = "buffer pin",
272 .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
273 .release_priority = RELEASE_PRIO_BUFFER_PINS,
274 .ReleaseResource = ResOwnerReleaseBufferPin,
275 .DebugPrint = ResOwnerPrintBufferPin
276};
277
278/*
279 * Ensure that the PrivateRefCountArray has sufficient space to store one more
280 * entry. This has to be called before using NewPrivateRefCountEntry() to fill
281 * a new entry - but it's perfectly fine to not use a reserved entry.
282 */
283static void
285{
286 /* Already reserved (or freed), nothing to do */
287 if (ReservedRefCountSlot != -1)
288 return;
289
290 /*
291 * First search for a free entry the array, that'll be sufficient in the
292 * majority of cases.
293 */
294 {
295 int i;
296
297 for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
298 {
300 {
302
303 /*
304 * We could return immediately, but iterating till the end of
305 * the array allows compiler-autovectorization.
306 */
307 }
308 }
309
310 if (ReservedRefCountSlot != -1)
311 return;
312 }
313
314 /*
315 * No luck. All array entries are full. Move one array entry into the hash
316 * table.
317 */
318 {
319 /*
320 * Move entry from the current clock position in the array into the
321 * hashtable. Use that slot.
322 */
323 int victim_slot;
324 PrivateRefCountEntry *victim_entry;
325 PrivateRefCountEntry *hashent;
326 bool found;
327
328 /* select victim slot */
330 victim_entry = &PrivateRefCountArray[victim_slot];
331 ReservedRefCountSlot = victim_slot;
332
333 /* Better be used, otherwise we shouldn't get here. */
336 Assert(PrivateRefCountArrayKeys[victim_slot] == PrivateRefCountArray[victim_slot].buffer);
337
338 /* enter victim array entry into hashtable */
340 &PrivateRefCountArrayKeys[victim_slot],
342 &found);
343 Assert(!found);
344 /* move data from the entry in the array to the hash entry */
345 hashent->data = victim_entry->data;
346
347 /* clear the now free array slot */
349 victim_entry->buffer = InvalidBuffer;
350
351 /* clear the whole data member, just for future proofing */
352 memset(&victim_entry->data, 0, sizeof(victim_entry->data));
353 victim_entry->data.refcount = 0;
354
356 }
357}
358
359/*
360 * Fill a previously reserved refcount entry.
361 */
364{
366
367 /* only allowed to be called when a reservation has been made */
369
370 /* use up the reserved entry */
372
373 /* and fill it */
375 res->buffer = buffer;
376 res->data.refcount = 0;
377
378 /* update cache for the next lookup */
380
382
383 return res;
384}
385
386/*
387 * Slow-path for GetPrivateRefCountEntry(). This is big enough to not be worth
388 * inlining. This particularly seems to be true if the compiler is capable of
389 * auto-vectorizing the code, as that imposes additional stack-alignment
390 * requirements etc.
391 */
394{
396 int match = -1;
397 int i;
398
399 /*
400 * First search for references in the array, that'll be sufficient in the
401 * majority of cases.
402 */
403 for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
404 {
406 {
407 match = i;
408 /* see ReservePrivateRefCountEntry() for why we don't return */
409 }
410 }
411
412 if (likely(match != -1))
413 {
414 /* update cache for the next lookup */
416
417 return &PrivateRefCountArray[match];
418 }
419
420 /*
421 * By here we know that the buffer, if already pinned, isn't residing in
422 * the array.
423 *
424 * Only look up the buffer in the hashtable if we've previously overflowed
425 * into it.
426 */
428 return NULL;
429
431
432 if (res == NULL)
433 return NULL;
434 else if (!do_move)
435 {
436 /* caller doesn't want us to move the hash entry into the array */
437 return res;
438 }
439 else
440 {
441 /* move buffer from hashtable into the free array slot */
442 bool found;
444
445 /* Ensure there's a free array slot */
447
448 /* Use up the reserved slot */
452 Assert(free->buffer == InvalidBuffer);
453
454 /* and fill it */
455 free->buffer = buffer;
456 free->data = res->data;
458 /* update cache for the next lookup */
460
462
463
464 /* delete from hashtable */
466 Assert(found);
469
470 return free;
471 }
472}
473
474/*
475 * Return the PrivateRefCount entry for the passed buffer.
476 *
477 * Returns NULL if a buffer doesn't have a refcount entry. Otherwise, if
478 * do_move is true, and the entry resides in the hashtable the entry is
479 * optimized for frequent access by moving it to the array.
480 */
481static inline PrivateRefCountEntry *
483{
486
487 /*
488 * It's very common to look up the same buffer repeatedly. To make that
489 * fast, we have a one-entry cache.
490 *
491 * In contrast to the loop in GetPrivateRefCountEntrySlow(), here it
492 * faster to check PrivateRefCountArray[].buffer, as in the case of a hit
493 * fewer addresses are computed and fewer cachelines are accessed. Whereas
494 * in GetPrivateRefCountEntrySlow()'s case, checking
495 * PrivateRefCountArrayKeys saves a lot of memory accesses.
496 */
497 if (likely(PrivateRefCountEntryLast != -1) &&
499 {
501 }
502
503 /*
504 * The code for the cached lookup is small enough to be worth inlining
505 * into the caller. In the miss case however, that empirically doesn't
506 * seem worth it.
507 */
508 return GetPrivateRefCountEntrySlow(buffer, do_move);
509}
510
511/*
512 * Returns how many times the passed buffer is pinned by this backend.
513 *
514 * Only works for shared memory buffers!
515 */
516static inline int32
518{
520
523
524 /*
525 * Not moving the entry - that's ok for the current users, but we might
526 * want to change this one day.
527 */
528 ref = GetPrivateRefCountEntry(buffer, false);
529
530 if (ref == NULL)
531 return 0;
532 return ref->data.refcount;
533}
534
535/*
536 * Release resources used to track the reference count of a buffer which we no
537 * longer have pinned and don't want to pin again immediately.
538 */
539static void
541{
542 Assert(ref->data.refcount == 0);
543
544 if (ref >= &PrivateRefCountArray[0] &&
546 {
547 ref->buffer = InvalidBuffer;
549
550
551 /*
552 * Mark the just used entry as reserved - in many scenarios that
553 * allows us to avoid ever having to search the array/hash for free
554 * entries.
555 */
557 }
558 else
559 {
560 bool found;
561 Buffer buffer = ref->buffer;
562
564 Assert(found);
567 }
568}
569
570/*
571 * BufferIsPinned
572 * True iff the buffer is pinned (also checks for valid buffer number).
573 *
574 * NOTE: what we check here is that *this* backend holds a pin on
575 * the buffer. We do not care whether some other backend does.
576 */
577#define BufferIsPinned(bufnum) \
578( \
579 !BufferIsValid(bufnum) ? \
580 false \
581 : \
582 BufferIsLocal(bufnum) ? \
583 (LocalRefCount[-(bufnum) - 1] > 0) \
584 : \
585 (GetPrivateRefCount(bufnum) > 0) \
586)
587
588
590 SMgrRelation smgr, char smgr_persistence,
591 ForkNumber forkNum, BlockNumber blockNum,
594 ForkNumber fork,
595 BufferAccessStrategy strategy,
596 uint32 flags,
597 uint32 extend_by,
598 BlockNumber extend_upto,
599 Buffer *buffers,
600 uint32 *extended_by);
602 ForkNumber fork,
603 BufferAccessStrategy strategy,
604 uint32 flags,
605 uint32 extend_by,
606 BlockNumber extend_upto,
607 Buffer *buffers,
608 uint32 *extended_by);
609static bool PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy,
610 bool skip_if_not_valid);
611static void PinBuffer_Locked(BufferDesc *buf);
612static void UnpinBuffer(BufferDesc *buf);
613static void UnpinBufferNoOwner(BufferDesc *buf);
614static void BufferSync(int flags);
615static int SyncOneBuffer(int buf_id, bool skip_recently_used,
616 WritebackContext *wb_context);
617static void WaitIO(BufferDesc *buf);
618static void AbortBufferIO(Buffer buffer);
619static void shared_buffer_write_error_callback(void *arg);
620static void local_buffer_write_error_callback(void *arg);
621static inline BufferDesc *BufferAlloc(SMgrRelation smgr,
622 char relpersistence,
623 ForkNumber forkNum,
624 BlockNumber blockNum,
625 BufferAccessStrategy strategy,
626 bool *foundPtr, IOContext io_context);
627static bool AsyncReadBuffers(ReadBuffersOperation *operation, int *nblocks_progress);
628static void CheckReadBuffersOperation(ReadBuffersOperation *operation, bool is_complete);
629static Buffer GetVictimBuffer(BufferAccessStrategy strategy, IOContext io_context);
631 IOObject io_object, IOContext io_context);
632static void FlushBuffer(BufferDesc *buf, SMgrRelation reln,
633 IOObject io_object, IOContext io_context);
634static void FindAndDropRelationBuffers(RelFileLocator rlocator,
635 ForkNumber forkNum,
636 BlockNumber nForkBlock,
637 BlockNumber firstDelBlock);
639 RelFileLocator dstlocator,
640 ForkNumber forkNum, bool permanent);
641static void AtProcExit_Buffers(int code, Datum arg);
642static void CheckForBufferLeaks(void);
643#ifdef USE_ASSERT_CHECKING
644static void AssertNotCatalogBufferLock(LWLock *lock, LWLockMode mode,
645 void *unused_context);
646#endif
647static int rlocator_comparator(const void *p1, const void *p2);
648static inline int buffertag_comparator(const BufferTag *ba, const BufferTag *bb);
649static inline int ckpt_buforder_comparator(const CkptSortItem *a, const CkptSortItem *b);
650static int ts_ckpt_progress_comparator(Datum a, Datum b, void *arg);
651
652
653/*
654 * Implementation of PrefetchBuffer() for shared buffers.
655 */
658 ForkNumber forkNum,
659 BlockNumber blockNum)
660{
661 PrefetchBufferResult result = {InvalidBuffer, false};
662 BufferTag newTag; /* identity of requested block */
663 uint32 newHash; /* hash value for newTag */
664 LWLock *newPartitionLock; /* buffer partition lock for it */
665 int buf_id;
666
667 Assert(BlockNumberIsValid(blockNum));
668
669 /* create a tag so we can lookup the buffer */
670 InitBufferTag(&newTag, &smgr_reln->smgr_rlocator.locator,
671 forkNum, blockNum);
672
673 /* determine its hash code and partition lock ID */
674 newHash = BufTableHashCode(&newTag);
675 newPartitionLock = BufMappingPartitionLock(newHash);
676
677 /* see if the block is in the buffer pool already */
678 LWLockAcquire(newPartitionLock, LW_SHARED);
679 buf_id = BufTableLookup(&newTag, newHash);
680 LWLockRelease(newPartitionLock);
681
682 /* If not in buffers, initiate prefetch */
683 if (buf_id < 0)
684 {
685#ifdef USE_PREFETCH
686 /*
687 * Try to initiate an asynchronous read. This returns false in
688 * recovery if the relation file doesn't exist.
689 */
690 if ((io_direct_flags & IO_DIRECT_DATA) == 0 &&
691 smgrprefetch(smgr_reln, forkNum, blockNum, 1))
692 {
693 result.initiated_io = true;
694 }
695#endif /* USE_PREFETCH */
696 }
697 else
698 {
699 /*
700 * Report the buffer it was in at that time. The caller may be able
701 * to avoid a buffer table lookup, but it's not pinned and it must be
702 * rechecked!
703 */
704 result.recent_buffer = buf_id + 1;
705 }
706
707 /*
708 * If the block *is* in buffers, we do nothing. This is not really ideal:
709 * the block might be just about to be evicted, which would be stupid
710 * since we know we are going to need it soon. But the only easy answer
711 * is to bump the usage_count, which does not seem like a great solution:
712 * when the caller does ultimately touch the block, usage_count would get
713 * bumped again, resulting in too much favoritism for blocks that are
714 * involved in a prefetch sequence. A real fix would involve some
715 * additional per-buffer state, and it's not clear that there's enough of
716 * a problem to justify that.
717 */
718
719 return result;
720}
721
722/*
723 * PrefetchBuffer -- initiate asynchronous read of a block of a relation
724 *
725 * This is named by analogy to ReadBuffer but doesn't actually allocate a
726 * buffer. Instead it tries to ensure that a future ReadBuffer for the given
727 * block will not be delayed by the I/O. Prefetching is optional.
728 *
729 * There are three possible outcomes:
730 *
731 * 1. If the block is already cached, the result includes a valid buffer that
732 * could be used by the caller to avoid the need for a later buffer lookup, but
733 * it's not pinned, so the caller must recheck it.
734 *
735 * 2. If the kernel has been asked to initiate I/O, the initiated_io member is
736 * true. Currently there is no way to know if the data was already cached by
737 * the kernel and therefore didn't really initiate I/O, and no way to know when
738 * the I/O completes other than using synchronous ReadBuffer().
739 *
740 * 3. Otherwise, the buffer wasn't already cached by PostgreSQL, and
741 * USE_PREFETCH is not defined (this build doesn't support prefetching due to
742 * lack of a kernel facility), direct I/O is enabled, or the underlying
743 * relation file wasn't found and we are in recovery. (If the relation file
744 * wasn't found and we are not in recovery, an error is raised).
745 */
748{
749 Assert(RelationIsValid(reln));
750 Assert(BlockNumberIsValid(blockNum));
751
752 if (RelationUsesLocalBuffers(reln))
753 {
754 /* see comments in ReadBufferExtended */
755 if (RELATION_IS_OTHER_TEMP(reln))
757 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
758 errmsg("cannot access temporary tables of other sessions")));
759
760 /* pass it off to localbuf.c */
761 return PrefetchLocalBuffer(RelationGetSmgr(reln), forkNum, blockNum);
762 }
763 else
764 {
765 /* pass it to the shared buffer version */
766 return PrefetchSharedBuffer(RelationGetSmgr(reln), forkNum, blockNum);
767 }
768}
769
770/*
771 * ReadRecentBuffer -- try to pin a block in a recently observed buffer
772 *
773 * Compared to ReadBuffer(), this avoids a buffer mapping lookup when it's
774 * successful. Return true if the buffer is valid and still has the expected
775 * tag. In that case, the buffer is pinned and the usage count is bumped.
776 */
777bool
779 Buffer recent_buffer)
780{
781 BufferDesc *bufHdr;
782 BufferTag tag;
783 uint32 buf_state;
784
785 Assert(BufferIsValid(recent_buffer));
786
789 InitBufferTag(&tag, &rlocator, forkNum, blockNum);
790
791 if (BufferIsLocal(recent_buffer))
792 {
793 int b = -recent_buffer - 1;
794
795 bufHdr = GetLocalBufferDescriptor(b);
796 buf_state = pg_atomic_read_u32(&bufHdr->state);
797
798 /* Is it still valid and holding the right tag? */
799 if ((buf_state & BM_VALID) && BufferTagsEqual(&tag, &bufHdr->tag))
800 {
801 PinLocalBuffer(bufHdr, true);
802
804
805 return true;
806 }
807 }
808 else
809 {
810 bufHdr = GetBufferDescriptor(recent_buffer - 1);
811
812 /*
813 * Is it still valid and holding the right tag? We do an unlocked tag
814 * comparison first, to make it unlikely that we'll increment the
815 * usage counter of the wrong buffer, if someone calls us with a very
816 * out of date recent_buffer. Then we'll check it again if we get the
817 * pin.
818 */
819 if (BufferTagsEqual(&tag, &bufHdr->tag) &&
820 PinBuffer(bufHdr, NULL, true))
821 {
822 if (BufferTagsEqual(&tag, &bufHdr->tag))
823 {
825 return true;
826 }
827 UnpinBuffer(bufHdr);
828 }
829 }
830
831 return false;
832}
833
834/*
835 * ReadBuffer -- a shorthand for ReadBufferExtended, for reading from main
836 * fork with RBM_NORMAL mode and default strategy.
837 */
838Buffer
840{
841 return ReadBufferExtended(reln, MAIN_FORKNUM, blockNum, RBM_NORMAL, NULL);
842}
843
844/*
845 * ReadBufferExtended -- returns a buffer containing the requested
846 * block of the requested relation. If the blknum
847 * requested is P_NEW, extend the relation file and
848 * allocate a new block. (Caller is responsible for
849 * ensuring that only one backend tries to extend a
850 * relation at the same time!)
851 *
852 * Returns: the buffer number for the buffer containing
853 * the block read. The returned buffer has been pinned.
854 * Does not return on error --- elog's instead.
855 *
856 * Assume when this function is called, that reln has been opened already.
857 *
858 * In RBM_NORMAL mode, the page is read from disk, and the page header is
859 * validated. An error is thrown if the page header is not valid. (But
860 * note that an all-zero page is considered "valid"; see
861 * PageIsVerified().)
862 *
863 * RBM_ZERO_ON_ERROR is like the normal mode, but if the page header is not
864 * valid, the page is zeroed instead of throwing an error. This is intended
865 * for non-critical data, where the caller is prepared to repair errors.
866 *
867 * In RBM_ZERO_AND_LOCK mode, if the page isn't in buffer cache already, it's
868 * filled with zeros instead of reading it from disk. Useful when the caller
869 * is going to fill the page from scratch, since this saves I/O and avoids
870 * unnecessary failure if the page-on-disk has corrupt page headers.
871 * The page is returned locked to ensure that the caller has a chance to
872 * initialize the page before it's made visible to others.
873 * Caution: do not use this mode to read a page that is beyond the relation's
874 * current physical EOF; that is likely to cause problems in md.c when
875 * the page is modified and written out. P_NEW is OK, though.
876 *
877 * RBM_ZERO_AND_CLEANUP_LOCK is the same as RBM_ZERO_AND_LOCK, but acquires
878 * a cleanup-strength lock on the page.
879 *
880 * RBM_NORMAL_NO_LOG mode is treated the same as RBM_NORMAL here.
881 *
882 * If strategy is not NULL, a nondefault buffer access strategy is used.
883 * See buffer/README for details.
884 */
885inline Buffer
888{
889 Buffer buf;
890
891 /*
892 * Reject attempts to read non-local temporary relations; we would be
893 * likely to get wrong data since we have no visibility into the owning
894 * session's local buffers.
895 */
896 if (RELATION_IS_OTHER_TEMP(reln))
898 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
899 errmsg("cannot access temporary tables of other sessions")));
900
901 /*
902 * Read the buffer, and update pgstat counters to reflect a cache hit or
903 * miss.
904 */
905 buf = ReadBuffer_common(reln, RelationGetSmgr(reln), 0,
906 forkNum, blockNum, mode, strategy);
907
908 return buf;
909}
910
911
912/*
913 * ReadBufferWithoutRelcache -- like ReadBufferExtended, but doesn't require
914 * a relcache entry for the relation.
915 *
916 * Pass permanent = true for a RELPERSISTENCE_PERMANENT relation, and
917 * permanent = false for a RELPERSISTENCE_UNLOGGED relation. This function
918 * cannot be used for temporary relations (and making that work might be
919 * difficult, unless we only want to read temporary relations for our own
920 * ProcNumber).
921 */
922Buffer
925 BufferAccessStrategy strategy, bool permanent)
926{
927 SMgrRelation smgr = smgropen(rlocator, INVALID_PROC_NUMBER);
928
929 return ReadBuffer_common(NULL, smgr,
930 permanent ? RELPERSISTENCE_PERMANENT : RELPERSISTENCE_UNLOGGED,
931 forkNum, blockNum,
932 mode, strategy);
933}
934
935/*
936 * Convenience wrapper around ExtendBufferedRelBy() extending by one block.
937 */
938Buffer
940 ForkNumber forkNum,
941 BufferAccessStrategy strategy,
942 uint32 flags)
943{
944 Buffer buf;
945 uint32 extend_by = 1;
946
947 ExtendBufferedRelBy(bmr, forkNum, strategy, flags, extend_by,
948 &buf, &extend_by);
949
950 return buf;
951}
952
953/*
954 * Extend relation by multiple blocks.
955 *
956 * Tries to extend the relation by extend_by blocks. Depending on the
957 * availability of resources the relation may end up being extended by a
958 * smaller number of pages (unless an error is thrown, always by at least one
959 * page). *extended_by is updated to the number of pages the relation has been
960 * extended to.
961 *
962 * buffers needs to be an array that is at least extend_by long. Upon
963 * completion, the first extend_by array elements will point to a pinned
964 * buffer.
965 *
966 * If EB_LOCK_FIRST is part of flags, the first returned buffer is
967 * locked. This is useful for callers that want a buffer that is guaranteed to
968 * be empty.
969 */
972 ForkNumber fork,
973 BufferAccessStrategy strategy,
974 uint32 flags,
975 uint32 extend_by,
976 Buffer *buffers,
977 uint32 *extended_by)
978{
979 Assert((bmr.rel != NULL) != (bmr.smgr != NULL));
980 Assert(bmr.smgr == NULL || bmr.relpersistence != '\0');
981 Assert(extend_by > 0);
982
983 if (bmr.relpersistence == '\0')
984 bmr.relpersistence = bmr.rel->rd_rel->relpersistence;
985
986 return ExtendBufferedRelCommon(bmr, fork, strategy, flags,
987 extend_by, InvalidBlockNumber,
988 buffers, extended_by);
989}
990
991/*
992 * Extend the relation so it is at least extend_to blocks large, return buffer
993 * (extend_to - 1).
994 *
995 * This is useful for callers that want to write a specific page, regardless
996 * of the current size of the relation (e.g. useful for visibilitymap and for
997 * crash recovery).
998 */
999Buffer
1001 ForkNumber fork,
1002 BufferAccessStrategy strategy,
1003 uint32 flags,
1004 BlockNumber extend_to,
1006{
1008 uint32 extended_by = 0;
1010 Buffer buffers[64];
1011
1012 Assert((bmr.rel != NULL) != (bmr.smgr != NULL));
1013 Assert(bmr.smgr == NULL || bmr.relpersistence != '\0');
1014 Assert(extend_to != InvalidBlockNumber && extend_to > 0);
1015
1016 if (bmr.relpersistence == '\0')
1017 bmr.relpersistence = bmr.rel->rd_rel->relpersistence;
1018
1019 /*
1020 * If desired, create the file if it doesn't exist. If
1021 * smgr_cached_nblocks[fork] is positive then it must exist, no need for
1022 * an smgrexists call.
1023 */
1024 if ((flags & EB_CREATE_FORK_IF_NEEDED) &&
1025 (BMR_GET_SMGR(bmr)->smgr_cached_nblocks[fork] == 0 ||
1026 BMR_GET_SMGR(bmr)->smgr_cached_nblocks[fork] == InvalidBlockNumber) &&
1027 !smgrexists(BMR_GET_SMGR(bmr), fork))
1028 {
1030
1031 /* recheck, fork might have been created concurrently */
1032 if (!smgrexists(BMR_GET_SMGR(bmr), fork))
1033 smgrcreate(BMR_GET_SMGR(bmr), fork, flags & EB_PERFORMING_RECOVERY);
1034
1036 }
1037
1038 /*
1039 * If requested, invalidate size cache, so that smgrnblocks asks the
1040 * kernel.
1041 */
1042 if (flags & EB_CLEAR_SIZE_CACHE)
1043 BMR_GET_SMGR(bmr)->smgr_cached_nblocks[fork] = InvalidBlockNumber;
1044
1045 /*
1046 * Estimate how many pages we'll need to extend by. This avoids acquiring
1047 * unnecessarily many victim buffers.
1048 */
1050
1051 /*
1052 * Since no-one else can be looking at the page contents yet, there is no
1053 * difference between an exclusive lock and a cleanup-strength lock. Note
1054 * that we pass the original mode to ReadBuffer_common() below, when
1055 * falling back to reading the buffer to a concurrent relation extension.
1056 */
1058 flags |= EB_LOCK_TARGET;
1059
1060 while (current_size < extend_to)
1061 {
1062 uint32 num_pages = lengthof(buffers);
1063 BlockNumber first_block;
1064
1065 if ((uint64) current_size + num_pages > extend_to)
1066 num_pages = extend_to - current_size;
1067
1068 first_block = ExtendBufferedRelCommon(bmr, fork, strategy, flags,
1069 num_pages, extend_to,
1070 buffers, &extended_by);
1071
1072 current_size = first_block + extended_by;
1073 Assert(num_pages != 0 || current_size >= extend_to);
1074
1075 for (uint32 i = 0; i < extended_by; i++)
1076 {
1077 if (first_block + i != extend_to - 1)
1078 ReleaseBuffer(buffers[i]);
1079 else
1080 buffer = buffers[i];
1081 }
1082 }
1083
1084 /*
1085 * It's possible that another backend concurrently extended the relation.
1086 * In that case read the buffer.
1087 *
1088 * XXX: Should we control this via a flag?
1089 */
1090 if (buffer == InvalidBuffer)
1091 {
1092 Assert(extended_by == 0);
1094 fork, extend_to - 1, mode, strategy);
1095 }
1096
1097 return buffer;
1098}
1099
1100/*
1101 * Lock and optionally zero a buffer, as part of the implementation of
1102 * RBM_ZERO_AND_LOCK or RBM_ZERO_AND_CLEANUP_LOCK. The buffer must be already
1103 * pinned. If the buffer is not already valid, it is zeroed and made valid.
1104 */
1105static void
1107{
1108 BufferDesc *bufHdr;
1109 bool need_to_zero;
1110 bool isLocalBuf = BufferIsLocal(buffer);
1111
1113
1114 if (already_valid)
1115 {
1116 /*
1117 * If the caller already knew the buffer was valid, we can skip some
1118 * header interaction. The caller just wants to lock the buffer.
1119 */
1120 need_to_zero = false;
1121 }
1122 else if (isLocalBuf)
1123 {
1124 /* Simple case for non-shared buffers. */
1125 bufHdr = GetLocalBufferDescriptor(-buffer - 1);
1126 need_to_zero = StartLocalBufferIO(bufHdr, true, false);
1127 }
1128 else
1129 {
1130 /*
1131 * Take BM_IO_IN_PROGRESS, or discover that BM_VALID has been set
1132 * concurrently. Even though we aren't doing I/O, that ensures that
1133 * we don't zero a page that someone else has pinned. An exclusive
1134 * content lock wouldn't be enough, because readers are allowed to
1135 * drop the content lock after determining that a tuple is visible
1136 * (see buffer access rules in README).
1137 */
1138 bufHdr = GetBufferDescriptor(buffer - 1);
1139 need_to_zero = StartBufferIO(bufHdr, true, false);
1140 }
1141
1142 if (need_to_zero)
1143 {
1144 memset(BufferGetPage(buffer), 0, BLCKSZ);
1145
1146 /*
1147 * Grab the buffer content lock before marking the page as valid, to
1148 * make sure that no other backend sees the zeroed page before the
1149 * caller has had a chance to initialize it.
1150 *
1151 * Since no-one else can be looking at the page contents yet, there is
1152 * no difference between an exclusive lock and a cleanup-strength
1153 * lock. (Note that we cannot use LockBuffer() or
1154 * LockBufferForCleanup() here, because they assert that the buffer is
1155 * already valid.)
1156 */
1157 if (!isLocalBuf)
1159
1160 /* Set BM_VALID, terminate IO, and wake up any waiters */
1161 if (isLocalBuf)
1162 TerminateLocalBufferIO(bufHdr, false, BM_VALID, false);
1163 else
1164 TerminateBufferIO(bufHdr, false, BM_VALID, true, false);
1165 }
1166 else if (!isLocalBuf)
1167 {
1168 /*
1169 * The buffer is valid, so we can't zero it. The caller still expects
1170 * the page to be locked on return.
1171 */
1172 if (mode == RBM_ZERO_AND_LOCK)
1174 else
1176 }
1177}
1178
1179/*
1180 * Pin a buffer for a given block. *foundPtr is set to true if the block was
1181 * already present, or false if more work is required to either read it in or
1182 * zero it.
1183 */
1186 SMgrRelation smgr,
1187 char persistence,
1188 ForkNumber forkNum,
1189 BlockNumber blockNum,
1190 BufferAccessStrategy strategy,
1191 bool *foundPtr)
1192{
1193 BufferDesc *bufHdr;
1194 IOContext io_context;
1195 IOObject io_object;
1196
1197 Assert(blockNum != P_NEW);
1198
1199 /* Persistence should be set before */
1200 Assert((persistence == RELPERSISTENCE_TEMP ||
1201 persistence == RELPERSISTENCE_PERMANENT ||
1202 persistence == RELPERSISTENCE_UNLOGGED));
1203
1204 if (persistence == RELPERSISTENCE_TEMP)
1205 {
1206 io_context = IOCONTEXT_NORMAL;
1207 io_object = IOOBJECT_TEMP_RELATION;
1208 }
1209 else
1210 {
1211 io_context = IOContextForStrategy(strategy);
1212 io_object = IOOBJECT_RELATION;
1213 }
1214
1215 TRACE_POSTGRESQL_BUFFER_READ_START(forkNum, blockNum,
1219 smgr->smgr_rlocator.backend);
1220
1221 if (persistence == RELPERSISTENCE_TEMP)
1222 {
1223 bufHdr = LocalBufferAlloc(smgr, forkNum, blockNum, foundPtr);
1224 if (*foundPtr)
1226 }
1227 else
1228 {
1229 bufHdr = BufferAlloc(smgr, persistence, forkNum, blockNum,
1230 strategy, foundPtr, io_context);
1231 if (*foundPtr)
1233 }
1234 if (rel)
1235 {
1236 /*
1237 * While pgBufferUsage's "read" counter isn't bumped unless we reach
1238 * WaitReadBuffers() (so, not for hits, and not for buffers that are
1239 * zeroed instead), the per-relation stats always count them.
1240 */
1242 if (*foundPtr)
1244 }
1245 if (*foundPtr)
1246 {
1247 pgstat_count_io_op(io_object, io_context, IOOP_HIT, 1, 0);
1248 if (VacuumCostActive)
1250
1251 TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum,
1255 smgr->smgr_rlocator.backend,
1256 true);
1257 }
1258
1259 return BufferDescriptorGetBuffer(bufHdr);
1260}
1261
1262/*
1263 * ReadBuffer_common -- common logic for all ReadBuffer variants
1264 *
1265 * smgr is required, rel is optional unless using P_NEW.
1266 */
1268ReadBuffer_common(Relation rel, SMgrRelation smgr, char smgr_persistence,
1269 ForkNumber forkNum,
1271 BufferAccessStrategy strategy)
1272{
1273 ReadBuffersOperation operation;
1274 Buffer buffer;
1275 int flags;
1276 char persistence;
1277
1278 /*
1279 * Backward compatibility path, most code should use ExtendBufferedRel()
1280 * instead, as acquiring the extension lock inside ExtendBufferedRel()
1281 * scales a lot better.
1282 */
1283 if (unlikely(blockNum == P_NEW))
1284 {
1286
1287 /*
1288 * Since no-one else can be looking at the page contents yet, there is
1289 * no difference between an exclusive lock and a cleanup-strength
1290 * lock.
1291 */
1293 flags |= EB_LOCK_FIRST;
1294
1295 return ExtendBufferedRel(BMR_REL(rel), forkNum, strategy, flags);
1296 }
1297
1298 if (rel)
1299 persistence = rel->rd_rel->relpersistence;
1300 else
1301 persistence = smgr_persistence;
1302
1305 {
1306 bool found;
1307
1308 buffer = PinBufferForBlock(rel, smgr, persistence,
1309 forkNum, blockNum, strategy, &found);
1310 ZeroAndLockBuffer(buffer, mode, found);
1311 return buffer;
1312 }
1313
1314 /*
1315 * Signal that we are going to immediately wait. If we're immediately
1316 * waiting, there is no benefit in actually executing the IO
1317 * asynchronously, it would just add dispatch overhead.
1318 */
1320 if (mode == RBM_ZERO_ON_ERROR)
1322 operation.smgr = smgr;
1323 operation.rel = rel;
1324 operation.persistence = persistence;
1325 operation.forknum = forkNum;
1326 operation.strategy = strategy;
1327 if (StartReadBuffer(&operation,
1328 &buffer,
1329 blockNum,
1330 flags))
1331 WaitReadBuffers(&operation);
1332
1333 return buffer;
1334}
1335
1338 Buffer *buffers,
1339 BlockNumber blockNum,
1340 int *nblocks,
1341 int flags,
1342 bool allow_forwarding)
1343{
1344 int actual_nblocks = *nblocks;
1345 int maxcombine = 0;
1346 bool did_start_io;
1347
1348 Assert(*nblocks == 1 || allow_forwarding);
1349 Assert(*nblocks > 0);
1350 Assert(*nblocks <= MAX_IO_COMBINE_LIMIT);
1351
1352 for (int i = 0; i < actual_nblocks; ++i)
1353 {
1354 bool found;
1355
1356 if (allow_forwarding && buffers[i] != InvalidBuffer)
1357 {
1358 BufferDesc *bufHdr;
1359
1360 /*
1361 * This is a buffer that was pinned by an earlier call to
1362 * StartReadBuffers(), but couldn't be handled in one operation at
1363 * that time. The operation was split, and the caller has passed
1364 * an already pinned buffer back to us to handle the rest of the
1365 * operation. It must continue at the expected block number.
1366 */
1367 Assert(BufferGetBlockNumber(buffers[i]) == blockNum + i);
1368
1369 /*
1370 * It might be an already valid buffer (a hit) that followed the
1371 * final contiguous block of an earlier I/O (a miss) marking the
1372 * end of it, or a buffer that some other backend has since made
1373 * valid by performing the I/O for us, in which case we can handle
1374 * it as a hit now. It is safe to check for a BM_VALID flag with
1375 * a relaxed load, because we got a fresh view of it while pinning
1376 * it in the previous call.
1377 *
1378 * On the other hand if we don't see BM_VALID yet, it must be an
1379 * I/O that was split by the previous call and we need to try to
1380 * start a new I/O from this block. We're also racing against any
1381 * other backend that might start the I/O or even manage to mark
1382 * it BM_VALID after this check, but StartBufferIO() will handle
1383 * those cases.
1384 */
1385 if (BufferIsLocal(buffers[i]))
1386 bufHdr = GetLocalBufferDescriptor(-buffers[i] - 1);
1387 else
1388 bufHdr = GetBufferDescriptor(buffers[i] - 1);
1390 found = pg_atomic_read_u32(&bufHdr->state) & BM_VALID;
1391 }
1392 else
1393 {
1394 buffers[i] = PinBufferForBlock(operation->rel,
1395 operation->smgr,
1396 operation->persistence,
1397 operation->forknum,
1398 blockNum + i,
1399 operation->strategy,
1400 &found);
1401 }
1402
1403 if (found)
1404 {
1405 /*
1406 * We have a hit. If it's the first block in the requested range,
1407 * we can return it immediately and report that WaitReadBuffers()
1408 * does not need to be called. If the initial value of *nblocks
1409 * was larger, the caller will have to call again for the rest.
1410 */
1411 if (i == 0)
1412 {
1413 *nblocks = 1;
1414
1415#ifdef USE_ASSERT_CHECKING
1416
1417 /*
1418 * Initialize enough of ReadBuffersOperation to make
1419 * CheckReadBuffersOperation() work. Outside of assertions
1420 * that's not necessary when no IO is issued.
1421 */
1422 operation->buffers = buffers;
1423 operation->blocknum = blockNum;
1424 operation->nblocks = 1;
1425 operation->nblocks_done = 1;
1426 CheckReadBuffersOperation(operation, true);
1427#endif
1428 return false;
1429 }
1430
1431 /*
1432 * Otherwise we already have an I/O to perform, but this block
1433 * can't be included as it is already valid. Split the I/O here.
1434 * There may or may not be more blocks requiring I/O after this
1435 * one, we haven't checked, but they can't be contiguous with this
1436 * one in the way. We'll leave this buffer pinned, forwarding it
1437 * to the next call, avoiding the need to unpin it here and re-pin
1438 * it in the next call.
1439 */
1440 actual_nblocks = i;
1441 break;
1442 }
1443 else
1444 {
1445 /*
1446 * Check how many blocks we can cover with the same IO. The smgr
1447 * implementation might e.g. be limited due to a segment boundary.
1448 */
1449 if (i == 0 && actual_nblocks > 1)
1450 {
1451 maxcombine = smgrmaxcombine(operation->smgr,
1452 operation->forknum,
1453 blockNum);
1454 if (unlikely(maxcombine < actual_nblocks))
1455 {
1456 elog(DEBUG2, "limiting nblocks at %u from %u to %u",
1457 blockNum, actual_nblocks, maxcombine);
1458 actual_nblocks = maxcombine;
1459 }
1460 }
1461 }
1462 }
1463 *nblocks = actual_nblocks;
1464
1465 /* Populate information needed for I/O. */
1466 operation->buffers = buffers;
1467 operation->blocknum = blockNum;
1468 operation->flags = flags;
1469 operation->nblocks = actual_nblocks;
1470 operation->nblocks_done = 0;
1471 pgaio_wref_clear(&operation->io_wref);
1472
1473 /*
1474 * When using AIO, start the IO in the background. If not, issue prefetch
1475 * requests if desired by the caller.
1476 *
1477 * The reason we have a dedicated path for IOMETHOD_SYNC here is to
1478 * de-risk the introduction of AIO somewhat. It's a large architectural
1479 * change, with lots of chances for unanticipated performance effects.
1480 *
1481 * Use of IOMETHOD_SYNC already leads to not actually performing IO
1482 * asynchronously, but without the check here we'd execute IO earlier than
1483 * we used to. Eventually this IOMETHOD_SYNC specific path should go away.
1484 */
1485 if (io_method != IOMETHOD_SYNC)
1486 {
1487 /*
1488 * Try to start IO asynchronously. It's possible that no IO needs to
1489 * be started, if another backend already performed the IO.
1490 *
1491 * Note that if an IO is started, it might not cover the entire
1492 * requested range, e.g. because an intermediary block has been read
1493 * in by another backend. In that case any "trailing" buffers we
1494 * already pinned above will be "forwarded" by read_stream.c to the
1495 * next call to StartReadBuffers().
1496 *
1497 * This is signalled to the caller by decrementing *nblocks *and*
1498 * reducing operation->nblocks. The latter is done here, but not below
1499 * WaitReadBuffers(), as in WaitReadBuffers() we can't "shorten" the
1500 * overall read size anymore, we need to retry until done in its
1501 * entirety or until failed.
1502 */
1503 did_start_io = AsyncReadBuffers(operation, nblocks);
1504
1505 operation->nblocks = *nblocks;
1506 }
1507 else
1508 {
1509 operation->flags |= READ_BUFFERS_SYNCHRONOUSLY;
1510
1511 if (flags & READ_BUFFERS_ISSUE_ADVICE)
1512 {
1513 /*
1514 * In theory we should only do this if PinBufferForBlock() had to
1515 * allocate new buffers above. That way, if two calls to
1516 * StartReadBuffers() were made for the same blocks before
1517 * WaitReadBuffers(), only the first would issue the advice.
1518 * That'd be a better simulation of true asynchronous I/O, which
1519 * would only start the I/O once, but isn't done here for
1520 * simplicity.
1521 */
1522 smgrprefetch(operation->smgr,
1523 operation->forknum,
1524 blockNum,
1525 actual_nblocks);
1526 }
1527
1528 /*
1529 * Indicate that WaitReadBuffers() should be called. WaitReadBuffers()
1530 * will initiate the necessary IO.
1531 */
1532 did_start_io = true;
1533 }
1534
1535 CheckReadBuffersOperation(operation, !did_start_io);
1536
1537 return did_start_io;
1538}
1539
1540/*
1541 * Begin reading a range of blocks beginning at blockNum and extending for
1542 * *nblocks. *nblocks and the buffers array are in/out parameters. On entry,
1543 * the buffers elements covered by *nblocks must hold either InvalidBuffer or
1544 * buffers forwarded by an earlier call to StartReadBuffers() that was split
1545 * and is now being continued. On return, *nblocks holds the number of blocks
1546 * accepted by this operation. If it is less than the original number then
1547 * this operation has been split, but buffer elements up to the original
1548 * requested size may hold forwarded buffers to be used for a continuing
1549 * operation. The caller must either start a new I/O beginning at the block
1550 * immediately following the blocks accepted by this call and pass those
1551 * buffers back in, or release them if it chooses not to. It shouldn't make
1552 * any other use of or assumptions about forwarded buffers.
1553 *
1554 * If false is returned, no I/O is necessary and the buffers covered by
1555 * *nblocks on exit are valid and ready to be accessed. If true is returned,
1556 * an I/O has been started, and WaitReadBuffers() must be called with the same
1557 * operation object before the buffers covered by *nblocks on exit can be
1558 * accessed. Along with the operation object, the caller-supplied array of
1559 * buffers must remain valid until WaitReadBuffers() is called, and any
1560 * forwarded buffers must also be preserved for a continuing call unless
1561 * they are explicitly released.
1562 */
1563bool
1565 Buffer *buffers,
1566 BlockNumber blockNum,
1567 int *nblocks,
1568 int flags)
1569{
1570 return StartReadBuffersImpl(operation, buffers, blockNum, nblocks, flags,
1571 true /* expect forwarded buffers */ );
1572}
1573
1574/*
1575 * Single block version of the StartReadBuffers(). This might save a few
1576 * instructions when called from another translation unit, because it is
1577 * specialized for nblocks == 1.
1578 *
1579 * This version does not support "forwarded" buffers: they cannot be created
1580 * by reading only one block and *buffer is ignored on entry.
1581 */
1582bool
1584 Buffer *buffer,
1585 BlockNumber blocknum,
1586 int flags)
1587{
1588 int nblocks = 1;
1589 bool result;
1590
1591 result = StartReadBuffersImpl(operation, buffer, blocknum, &nblocks, flags,
1592 false /* single block, no forwarding */ );
1593 Assert(nblocks == 1); /* single block can't be short */
1594
1595 return result;
1596}
1597
1598/*
1599 * Perform sanity checks on the ReadBuffersOperation.
1600 */
1601static void
1603{
1604#ifdef USE_ASSERT_CHECKING
1605 Assert(operation->nblocks_done <= operation->nblocks);
1606 Assert(!is_complete || operation->nblocks == operation->nblocks_done);
1607
1608 for (int i = 0; i < operation->nblocks; i++)
1609 {
1610 Buffer buffer = operation->buffers[i];
1611 BufferDesc *buf_hdr = BufferIsLocal(buffer) ?
1614
1615 Assert(BufferGetBlockNumber(buffer) == operation->blocknum + i);
1617
1618 if (i < operation->nblocks_done)
1620 }
1621#endif
1622}
1623
1624/* helper for ReadBuffersCanStartIO(), to avoid repetition */
1625static inline bool
1627{
1628 if (BufferIsLocal(buffer))
1630 true, nowait);
1631 else
1632 return StartBufferIO(GetBufferDescriptor(buffer - 1), true, nowait);
1633}
1634
1635/*
1636 * Helper for AsyncReadBuffers that tries to get the buffer ready for IO.
1637 */
1638static inline bool
1640{
1641 /*
1642 * If this backend currently has staged IO, we need to submit the pending
1643 * IO before waiting for the right to issue IO, to avoid the potential for
1644 * deadlocks (and, more commonly, unnecessary delays for other backends).
1645 */
1646 if (!nowait && pgaio_have_staged())
1647 {
1649 return true;
1650
1651 /*
1652 * Unfortunately StartBufferIO() returning false doesn't allow to
1653 * distinguish between the buffer already being valid and IO already
1654 * being in progress. Since IO already being in progress is quite
1655 * rare, this approach seems fine.
1656 */
1658 }
1659
1660 return ReadBuffersCanStartIOOnce(buffer, nowait);
1661}
1662
1663/*
1664 * Helper for WaitReadBuffers() that processes the results of a readv
1665 * operation, raising an error if necessary.
1666 */
1667static void
1669{
1670 PgAioReturn *aio_ret = &operation->io_return;
1671 PgAioResultStatus rs = aio_ret->result.status;
1672 int newly_read_blocks = 0;
1673
1674 Assert(pgaio_wref_valid(&operation->io_wref));
1675 Assert(aio_ret->result.status != PGAIO_RS_UNKNOWN);
1676
1677 /*
1678 * SMGR reports the number of blocks successfully read as the result of
1679 * the IO operation. Thus we can simply add that to ->nblocks_done.
1680 */
1681
1682 if (likely(rs != PGAIO_RS_ERROR))
1683 newly_read_blocks = aio_ret->result.result;
1684
1685 if (rs == PGAIO_RS_ERROR || rs == PGAIO_RS_WARNING)
1686 pgaio_result_report(aio_ret->result, &aio_ret->target_data,
1687 rs == PGAIO_RS_ERROR ? ERROR : WARNING);
1688 else if (aio_ret->result.status == PGAIO_RS_PARTIAL)
1689 {
1690 /*
1691 * We'll retry, so we just emit a debug message to the server log (or
1692 * not even that in prod scenarios).
1693 */
1694 pgaio_result_report(aio_ret->result, &aio_ret->target_data, DEBUG1);
1695 elog(DEBUG3, "partial read, will retry");
1696 }
1697
1698 Assert(newly_read_blocks > 0);
1699 Assert(newly_read_blocks <= MAX_IO_COMBINE_LIMIT);
1700
1701 operation->nblocks_done += newly_read_blocks;
1702
1703 Assert(operation->nblocks_done <= operation->nblocks);
1704}
1705
1706void
1708{
1709 PgAioReturn *aio_ret = &operation->io_return;
1710 IOContext io_context;
1711 IOObject io_object;
1712
1713 if (operation->persistence == RELPERSISTENCE_TEMP)
1714 {
1715 io_context = IOCONTEXT_NORMAL;
1716 io_object = IOOBJECT_TEMP_RELATION;
1717 }
1718 else
1719 {
1720 io_context = IOContextForStrategy(operation->strategy);
1721 io_object = IOOBJECT_RELATION;
1722 }
1723
1724 /*
1725 * If we get here without an IO operation having been issued, the
1726 * io_method == IOMETHOD_SYNC path must have been used. Otherwise the
1727 * caller should not have called WaitReadBuffers().
1728 *
1729 * In the case of IOMETHOD_SYNC, we start - as we used to before the
1730 * introducing of AIO - the IO in WaitReadBuffers(). This is done as part
1731 * of the retry logic below, no extra code is required.
1732 *
1733 * This path is expected to eventually go away.
1734 */
1735 if (!pgaio_wref_valid(&operation->io_wref) && io_method != IOMETHOD_SYNC)
1736 elog(ERROR, "waiting for read operation that didn't read");
1737
1738 /*
1739 * To handle partial reads, and IOMETHOD_SYNC, we re-issue IO until we're
1740 * done. We may need multiple retries, not just because we could get
1741 * multiple partial reads, but also because some of the remaining
1742 * to-be-read buffers may have been read in by other backends, limiting
1743 * the IO size.
1744 */
1745 while (true)
1746 {
1747 int ignored_nblocks_progress;
1748
1749 CheckReadBuffersOperation(operation, false);
1750
1751 /*
1752 * If there is an IO associated with the operation, we may need to
1753 * wait for it.
1754 */
1755 if (pgaio_wref_valid(&operation->io_wref))
1756 {
1757 /*
1758 * Track the time spent waiting for the IO to complete. As
1759 * tracking a wait even if we don't actually need to wait
1760 *
1761 * a) is not cheap, due to the timestamping overhead
1762 *
1763 * b) reports some time as waiting, even if we never waited
1764 *
1765 * we first check if we already know the IO is complete.
1766 */
1767 if (aio_ret->result.status == PGAIO_RS_UNKNOWN &&
1768 !pgaio_wref_check_done(&operation->io_wref))
1769 {
1771
1772 pgaio_wref_wait(&operation->io_wref);
1773
1774 /*
1775 * The IO operation itself was already counted earlier, in
1776 * AsyncReadBuffers(), this just accounts for the wait time.
1777 */
1778 pgstat_count_io_op_time(io_object, io_context, IOOP_READ,
1779 io_start, 0, 0);
1780 }
1781 else
1782 {
1783 Assert(pgaio_wref_check_done(&operation->io_wref));
1784 }
1785
1786 /*
1787 * We now are sure the IO completed. Check the results. This
1788 * includes reporting on errors if there were any.
1789 */
1790 ProcessReadBuffersResult(operation);
1791 }
1792
1793 /*
1794 * Most of the time, the one IO we already started, will read in
1795 * everything. But we need to deal with partial reads and buffers not
1796 * needing IO anymore.
1797 */
1798 if (operation->nblocks_done == operation->nblocks)
1799 break;
1800
1802
1803 /*
1804 * This may only complete the IO partially, either because some
1805 * buffers were already valid, or because of a partial read.
1806 *
1807 * NB: In contrast to after the AsyncReadBuffers() call in
1808 * StartReadBuffers(), we do *not* reduce
1809 * ReadBuffersOperation->nblocks here, callers expect the full
1810 * operation to be completed at this point (as more operations may
1811 * have been queued).
1812 */
1813 AsyncReadBuffers(operation, &ignored_nblocks_progress);
1814 }
1815
1816 CheckReadBuffersOperation(operation, true);
1817
1818 /* NB: READ_DONE tracepoint was already executed in completion callback */
1819}
1820
1821/*
1822 * Initiate IO for the ReadBuffersOperation
1823 *
1824 * This function only starts a single IO at a time. The size of the IO may be
1825 * limited to below the to-be-read blocks, if one of the buffers has
1826 * concurrently been read in. If the first to-be-read buffer is already valid,
1827 * no IO will be issued.
1828 *
1829 * To support retries after partial reads, the first operation->nblocks_done
1830 * buffers are skipped.
1831 *
1832 * On return *nblocks_progress is updated to reflect the number of buffers
1833 * affected by the call. If the first buffer is valid, *nblocks_progress is
1834 * set to 1 and operation->nblocks_done is incremented.
1835 *
1836 * Returns true if IO was initiated, false if no IO was necessary.
1837 */
1838static bool
1839AsyncReadBuffers(ReadBuffersOperation *operation, int *nblocks_progress)
1840{
1841 Buffer *buffers = &operation->buffers[0];
1842 int flags = operation->flags;
1843 BlockNumber blocknum = operation->blocknum;
1844 ForkNumber forknum = operation->forknum;
1845 char persistence = operation->persistence;
1846 int16 nblocks_done = operation->nblocks_done;
1847 Buffer *io_buffers = &operation->buffers[nblocks_done];
1848 int io_buffers_len = 0;
1849 PgAioHandle *ioh;
1850 uint32 ioh_flags = 0;
1851 void *io_pages[MAX_IO_COMBINE_LIMIT];
1852 IOContext io_context;
1853 IOObject io_object;
1854 bool did_start_io;
1855
1856 /*
1857 * When this IO is executed synchronously, either because the caller will
1858 * immediately block waiting for the IO or because IOMETHOD_SYNC is used,
1859 * the AIO subsystem needs to know.
1860 */
1861 if (flags & READ_BUFFERS_SYNCHRONOUSLY)
1862 ioh_flags |= PGAIO_HF_SYNCHRONOUS;
1863
1864 if (persistence == RELPERSISTENCE_TEMP)
1865 {
1866 io_context = IOCONTEXT_NORMAL;
1867 io_object = IOOBJECT_TEMP_RELATION;
1868 ioh_flags |= PGAIO_HF_REFERENCES_LOCAL;
1869 }
1870 else
1871 {
1872 io_context = IOContextForStrategy(operation->strategy);
1873 io_object = IOOBJECT_RELATION;
1874 }
1875
1876 /*
1877 * If zero_damaged_pages is enabled, add the READ_BUFFERS_ZERO_ON_ERROR
1878 * flag. The reason for that is that, hopefully, zero_damaged_pages isn't
1879 * set globally, but on a per-session basis. The completion callback,
1880 * which may be run in other processes, e.g. in IO workers, may have a
1881 * different value of the zero_damaged_pages GUC.
1882 *
1883 * XXX: We probably should eventually use a different flag for
1884 * zero_damaged_pages, so we can report different log levels / error codes
1885 * for zero_damaged_pages and ZERO_ON_ERROR.
1886 */
1889
1890 /*
1891 * For the same reason as with zero_damaged_pages we need to use this
1892 * backend's ignore_checksum_failure value.
1893 */
1896
1897
1898 /*
1899 * To be allowed to report stats in the local completion callback we need
1900 * to prepare to report stats now. This ensures we can safely report the
1901 * checksum failure even in a critical section.
1902 */
1904
1905 /*
1906 * Get IO handle before ReadBuffersCanStartIO(), as pgaio_io_acquire()
1907 * might block, which we don't want after setting IO_IN_PROGRESS.
1908 *
1909 * If we need to wait for IO before we can get a handle, submit
1910 * already-staged IO first, so that other backends don't need to wait.
1911 * There wouldn't be a deadlock risk, as pgaio_io_acquire() just needs to
1912 * wait for already submitted IO, which doesn't require additional locks,
1913 * but it could still cause undesirable waits.
1914 *
1915 * A secondary benefit is that this would allow us to measure the time in
1916 * pgaio_io_acquire() without causing undue timer overhead in the common,
1917 * non-blocking, case. However, currently the pgstats infrastructure
1918 * doesn't really allow that, as it a) asserts that an operation can't
1919 * have time without operations b) doesn't have an API to report
1920 * "accumulated" time.
1921 */
1923 if (unlikely(!ioh))
1924 {
1926
1928 }
1929
1930 /*
1931 * Check if we can start IO on the first to-be-read buffer.
1932 *
1933 * If an I/O is already in progress in another backend, we want to wait
1934 * for the outcome: either done, or something went wrong and we will
1935 * retry.
1936 */
1937 if (!ReadBuffersCanStartIO(buffers[nblocks_done], false))
1938 {
1939 /*
1940 * Someone else has already completed this block, we're done.
1941 *
1942 * When IO is necessary, ->nblocks_done is updated in
1943 * ProcessReadBuffersResult(), but that is not called if no IO is
1944 * necessary. Thus update here.
1945 */
1946 operation->nblocks_done += 1;
1947 *nblocks_progress = 1;
1948
1949 pgaio_io_release(ioh);
1950 pgaio_wref_clear(&operation->io_wref);
1951 did_start_io = false;
1952
1953 /*
1954 * Report and track this as a 'hit' for this backend, even though it
1955 * must have started out as a miss in PinBufferForBlock(). The other
1956 * backend will track this as a 'read'.
1957 */
1958 TRACE_POSTGRESQL_BUFFER_READ_DONE(forknum, blocknum + operation->nblocks_done,
1959 operation->smgr->smgr_rlocator.locator.spcOid,
1960 operation->smgr->smgr_rlocator.locator.dbOid,
1961 operation->smgr->smgr_rlocator.locator.relNumber,
1962 operation->smgr->smgr_rlocator.backend,
1963 true);
1964
1965 if (persistence == RELPERSISTENCE_TEMP)
1967 else
1969
1970 if (operation->rel)
1971 pgstat_count_buffer_hit(operation->rel);
1972
1973 pgstat_count_io_op(io_object, io_context, IOOP_HIT, 1, 0);
1974
1975 if (VacuumCostActive)
1977 }
1978 else
1979 {
1980 instr_time io_start;
1981
1982 /* We found a buffer that we need to read in. */
1983 Assert(io_buffers[0] == buffers[nblocks_done]);
1984 io_pages[0] = BufferGetBlock(buffers[nblocks_done]);
1985 io_buffers_len = 1;
1986
1987 /*
1988 * How many neighboring-on-disk blocks can we scatter-read into other
1989 * buffers at the same time? In this case we don't wait if we see an
1990 * I/O already in progress. We already set BM_IO_IN_PROGRESS for the
1991 * head block, so we should get on with that I/O as soon as possible.
1992 */
1993 for (int i = nblocks_done + 1; i < operation->nblocks; i++)
1994 {
1995 if (!ReadBuffersCanStartIO(buffers[i], true))
1996 break;
1997 /* Must be consecutive block numbers. */
1998 Assert(BufferGetBlockNumber(buffers[i - 1]) ==
1999 BufferGetBlockNumber(buffers[i]) - 1);
2000 Assert(io_buffers[io_buffers_len] == buffers[i]);
2001
2002 io_pages[io_buffers_len++] = BufferGetBlock(buffers[i]);
2003 }
2004
2005 /* get a reference to wait for in WaitReadBuffers() */
2006 pgaio_io_get_wref(ioh, &operation->io_wref);
2007
2008 /* provide the list of buffers to the completion callbacks */
2009 pgaio_io_set_handle_data_32(ioh, (uint32 *) io_buffers, io_buffers_len);
2010
2012 persistence == RELPERSISTENCE_TEMP ?
2015 flags);
2016
2017 pgaio_io_set_flag(ioh, ioh_flags);
2018
2019 /* ---
2020 * Even though we're trying to issue IO asynchronously, track the time
2021 * in smgrstartreadv():
2022 * - if io_method == IOMETHOD_SYNC, we will always perform the IO
2023 * immediately
2024 * - the io method might not support the IO (e.g. worker IO for a temp
2025 * table)
2026 * ---
2027 */
2029 smgrstartreadv(ioh, operation->smgr, forknum,
2030 blocknum + nblocks_done,
2031 io_pages, io_buffers_len);
2032 pgstat_count_io_op_time(io_object, io_context, IOOP_READ,
2033 io_start, 1, io_buffers_len * BLCKSZ);
2034
2035 if (persistence == RELPERSISTENCE_TEMP)
2036 pgBufferUsage.local_blks_read += io_buffers_len;
2037 else
2038 pgBufferUsage.shared_blks_read += io_buffers_len;
2039
2040 /*
2041 * Track vacuum cost when issuing IO, not after waiting for it.
2042 * Otherwise we could end up issuing a lot of IO in a short timespan,
2043 * despite a low cost limit.
2044 */
2045 if (VacuumCostActive)
2046 VacuumCostBalance += VacuumCostPageMiss * io_buffers_len;
2047
2048 *nblocks_progress = io_buffers_len;
2049 did_start_io = true;
2050 }
2051
2052 return did_start_io;
2053}
2054
2055/*
2056 * BufferAlloc -- subroutine for PinBufferForBlock. Handles lookup of a shared
2057 * buffer. If no buffer exists already, selects a replacement victim and
2058 * evicts the old page, but does NOT read in new page.
2059 *
2060 * "strategy" can be a buffer replacement strategy object, or NULL for
2061 * the default strategy. The selected buffer's usage_count is advanced when
2062 * using the default strategy, but otherwise possibly not (see PinBuffer).
2063 *
2064 * The returned buffer is pinned and is already marked as holding the
2065 * desired page. If it already did have the desired page, *foundPtr is
2066 * set true. Otherwise, *foundPtr is set false.
2067 *
2068 * io_context is passed as an output parameter to avoid calling
2069 * IOContextForStrategy() when there is a shared buffers hit and no IO
2070 * statistics need be captured.
2071 *
2072 * No locks are held either at entry or exit.
2073 */
2075BufferAlloc(SMgrRelation smgr, char relpersistence, ForkNumber forkNum,
2076 BlockNumber blockNum,
2077 BufferAccessStrategy strategy,
2078 bool *foundPtr, IOContext io_context)
2079{
2080 BufferTag newTag; /* identity of requested block */
2081 uint32 newHash; /* hash value for newTag */
2082 LWLock *newPartitionLock; /* buffer partition lock for it */
2083 int existing_buf_id;
2084 Buffer victim_buffer;
2085 BufferDesc *victim_buf_hdr;
2086 uint32 victim_buf_state;
2087 uint32 set_bits = 0;
2088
2089 /* Make sure we will have room to remember the buffer pin */
2092
2093 /* create a tag so we can lookup the buffer */
2094 InitBufferTag(&newTag, &smgr->smgr_rlocator.locator, forkNum, blockNum);
2095
2096 /* determine its hash code and partition lock ID */
2097 newHash = BufTableHashCode(&newTag);
2098 newPartitionLock = BufMappingPartitionLock(newHash);
2099
2100 /* see if the block is in the buffer pool already */
2101 LWLockAcquire(newPartitionLock, LW_SHARED);
2102 existing_buf_id = BufTableLookup(&newTag, newHash);
2103 if (existing_buf_id >= 0)
2104 {
2105 BufferDesc *buf;
2106 bool valid;
2107
2108 /*
2109 * Found it. Now, pin the buffer so no one can steal it from the
2110 * buffer pool, and check to see if the correct data has been loaded
2111 * into the buffer.
2112 */
2113 buf = GetBufferDescriptor(existing_buf_id);
2114
2115 valid = PinBuffer(buf, strategy, false);
2116
2117 /* Can release the mapping lock as soon as we've pinned it */
2118 LWLockRelease(newPartitionLock);
2119
2120 *foundPtr = true;
2121
2122 if (!valid)
2123 {
2124 /*
2125 * We can only get here if (a) someone else is still reading in
2126 * the page, (b) a previous read attempt failed, or (c) someone
2127 * called StartReadBuffers() but not yet WaitReadBuffers().
2128 */
2129 *foundPtr = false;
2130 }
2131
2132 return buf;
2133 }
2134
2135 /*
2136 * Didn't find it in the buffer pool. We'll have to initialize a new
2137 * buffer. Remember to unlock the mapping lock while doing the work.
2138 */
2139 LWLockRelease(newPartitionLock);
2140
2141 /*
2142 * Acquire a victim buffer. Somebody else might try to do the same, we
2143 * don't hold any conflicting locks. If so we'll have to undo our work
2144 * later.
2145 */
2146 victim_buffer = GetVictimBuffer(strategy, io_context);
2147 victim_buf_hdr = GetBufferDescriptor(victim_buffer - 1);
2148
2149 /*
2150 * Try to make a hashtable entry for the buffer under its new tag. If
2151 * somebody else inserted another buffer for the tag, we'll release the
2152 * victim buffer we acquired and use the already inserted one.
2153 */
2154 LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
2155 existing_buf_id = BufTableInsert(&newTag, newHash, victim_buf_hdr->buf_id);
2156 if (existing_buf_id >= 0)
2157 {
2158 BufferDesc *existing_buf_hdr;
2159 bool valid;
2160
2161 /*
2162 * Got a collision. Someone has already done what we were about to do.
2163 * We'll just handle this as if it were found in the buffer pool in
2164 * the first place. First, give up the buffer we were planning to
2165 * use.
2166 *
2167 * We could do this after releasing the partition lock, but then we'd
2168 * have to call ResourceOwnerEnlarge() & ReservePrivateRefCountEntry()
2169 * before acquiring the lock, for the rare case of such a collision.
2170 */
2171 UnpinBuffer(victim_buf_hdr);
2172
2173 /* remaining code should match code at top of routine */
2174
2175 existing_buf_hdr = GetBufferDescriptor(existing_buf_id);
2176
2177 valid = PinBuffer(existing_buf_hdr, strategy, false);
2178
2179 /* Can release the mapping lock as soon as we've pinned it */
2180 LWLockRelease(newPartitionLock);
2181
2182 *foundPtr = true;
2183
2184 if (!valid)
2185 {
2186 /*
2187 * We can only get here if (a) someone else is still reading in
2188 * the page, (b) a previous read attempt failed, or (c) someone
2189 * called StartReadBuffers() but not yet WaitReadBuffers().
2190 */
2191 *foundPtr = false;
2192 }
2193
2194 return existing_buf_hdr;
2195 }
2196
2197 /*
2198 * Need to lock the buffer header too in order to change its tag.
2199 */
2200 victim_buf_state = LockBufHdr(victim_buf_hdr);
2201
2202 /* some sanity checks while we hold the buffer header lock */
2203 Assert(BUF_STATE_GET_REFCOUNT(victim_buf_state) == 1);
2204 Assert(!(victim_buf_state & (BM_TAG_VALID | BM_VALID | BM_DIRTY | BM_IO_IN_PROGRESS)));
2205
2206 victim_buf_hdr->tag = newTag;
2207
2208 /*
2209 * Make sure BM_PERMANENT is set for buffers that must be written at every
2210 * checkpoint. Unlogged buffers only need to be written at shutdown
2211 * checkpoints, except for their "init" forks, which need to be treated
2212 * just like permanent relations.
2213 */
2214 set_bits |= BM_TAG_VALID | BUF_USAGECOUNT_ONE;
2215 if (relpersistence == RELPERSISTENCE_PERMANENT || forkNum == INIT_FORKNUM)
2216 set_bits |= BM_PERMANENT;
2217
2218 UnlockBufHdrExt(victim_buf_hdr, victim_buf_state,
2219 set_bits, 0, 0);
2220
2221 LWLockRelease(newPartitionLock);
2222
2223 /*
2224 * Buffer contents are currently invalid.
2225 */
2226 *foundPtr = false;
2227
2228 return victim_buf_hdr;
2229}
2230
2231/*
2232 * InvalidateBuffer -- mark a shared buffer invalid.
2233 *
2234 * The buffer header spinlock must be held at entry. We drop it before
2235 * returning. (This is sane because the caller must have locked the
2236 * buffer in order to be sure it should be dropped.)
2237 *
2238 * This is used only in contexts such as dropping a relation. We assume
2239 * that no other backend could possibly be interested in using the page,
2240 * so the only reason the buffer might be pinned is if someone else is
2241 * trying to write it out. We have to let them finish before we can
2242 * reclaim the buffer.
2243 *
2244 * The buffer could get reclaimed by someone else while we are waiting
2245 * to acquire the necessary locks; if so, don't mess it up.
2246 */
2247static void
2249{
2250 BufferTag oldTag;
2251 uint32 oldHash; /* hash value for oldTag */
2252 LWLock *oldPartitionLock; /* buffer partition lock for it */
2253 uint32 oldFlags;
2254 uint32 buf_state;
2255
2256 /* Save the original buffer tag before dropping the spinlock */
2257 oldTag = buf->tag;
2258
2260
2261 /*
2262 * Need to compute the old tag's hashcode and partition lock ID. XXX is it
2263 * worth storing the hashcode in BufferDesc so we need not recompute it
2264 * here? Probably not.
2265 */
2266 oldHash = BufTableHashCode(&oldTag);
2267 oldPartitionLock = BufMappingPartitionLock(oldHash);
2268
2269retry:
2270
2271 /*
2272 * Acquire exclusive mapping lock in preparation for changing the buffer's
2273 * association.
2274 */
2275 LWLockAcquire(oldPartitionLock, LW_EXCLUSIVE);
2276
2277 /* Re-lock the buffer header */
2278 buf_state = LockBufHdr(buf);
2279
2280 /* If it's changed while we were waiting for lock, do nothing */
2281 if (!BufferTagsEqual(&buf->tag, &oldTag))
2282 {
2284 LWLockRelease(oldPartitionLock);
2285 return;
2286 }
2287
2288 /*
2289 * We assume the reason for it to be pinned is that either we were
2290 * asynchronously reading the page in before erroring out or someone else
2291 * is flushing the page out. Wait for the IO to finish. (This could be
2292 * an infinite loop if the refcount is messed up... it would be nice to
2293 * time out after awhile, but there seems no way to be sure how many loops
2294 * may be needed. Note that if the other guy has pinned the buffer but
2295 * not yet done StartBufferIO, WaitIO will fall through and we'll
2296 * effectively be busy-looping here.)
2297 */
2298 if (BUF_STATE_GET_REFCOUNT(buf_state) != 0)
2299 {
2301 LWLockRelease(oldPartitionLock);
2302 /* safety check: should definitely not be our *own* pin */
2304 elog(ERROR, "buffer is pinned in InvalidateBuffer");
2305 WaitIO(buf);
2306 goto retry;
2307 }
2308
2309 /*
2310 * Clear out the buffer's tag and flags. We must do this to ensure that
2311 * linear scans of the buffer array don't think the buffer is valid.
2312 */
2313 oldFlags = buf_state & BUF_FLAG_MASK;
2314 ClearBufferTag(&buf->tag);
2315
2316 UnlockBufHdrExt(buf, buf_state,
2317 0,
2319 0);
2320
2321 /*
2322 * Remove the buffer from the lookup hashtable, if it was in there.
2323 */
2324 if (oldFlags & BM_TAG_VALID)
2325 BufTableDelete(&oldTag, oldHash);
2326
2327 /*
2328 * Done with mapping lock.
2329 */
2330 LWLockRelease(oldPartitionLock);
2331}
2332
2333/*
2334 * Helper routine for GetVictimBuffer()
2335 *
2336 * Needs to be called on a buffer with a valid tag, pinned, but without the
2337 * buffer header spinlock held.
2338 *
2339 * Returns true if the buffer can be reused, in which case the buffer is only
2340 * pinned by this backend and marked as invalid, false otherwise.
2341 */
2342static bool
2344{
2345 uint32 buf_state;
2346 uint32 hash;
2347 LWLock *partition_lock;
2348 BufferTag tag;
2349
2351
2352 /* have buffer pinned, so it's safe to read tag without lock */
2353 tag = buf_hdr->tag;
2354
2355 hash = BufTableHashCode(&tag);
2356 partition_lock = BufMappingPartitionLock(hash);
2357
2358 LWLockAcquire(partition_lock, LW_EXCLUSIVE);
2359
2360 /* lock the buffer header */
2361 buf_state = LockBufHdr(buf_hdr);
2362
2363 /*
2364 * We have the buffer pinned nobody else should have been able to unset
2365 * this concurrently.
2366 */
2367 Assert(buf_state & BM_TAG_VALID);
2368 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
2369 Assert(BufferTagsEqual(&buf_hdr->tag, &tag));
2370
2371 /*
2372 * If somebody else pinned the buffer since, or even worse, dirtied it,
2373 * give up on this buffer: It's clearly in use.
2374 */
2375 if (BUF_STATE_GET_REFCOUNT(buf_state) != 1 || (buf_state & BM_DIRTY))
2376 {
2377 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
2378
2379 UnlockBufHdr(buf_hdr);
2380 LWLockRelease(partition_lock);
2381
2382 return false;
2383 }
2384
2385 /*
2386 * Clear out the buffer's tag and flags and usagecount. This is not
2387 * strictly required, as BM_TAG_VALID/BM_VALID needs to be checked before
2388 * doing anything with the buffer. But currently it's beneficial, as the
2389 * cheaper pre-check for several linear scans of shared buffers use the
2390 * tag (see e.g. FlushDatabaseBuffers()).
2391 */
2392 ClearBufferTag(&buf_hdr->tag);
2393 UnlockBufHdrExt(buf_hdr, buf_state,
2394 0,
2396 0);
2397
2398 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
2399
2400 /* finally delete buffer from the buffer mapping table */
2401 BufTableDelete(&tag, hash);
2402
2403 LWLockRelease(partition_lock);
2404
2405 buf_state = pg_atomic_read_u32(&buf_hdr->state);
2406 Assert(!(buf_state & (BM_DIRTY | BM_VALID | BM_TAG_VALID)));
2407 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
2409
2410 return true;
2411}
2412
2413static Buffer
2415{
2416 BufferDesc *buf_hdr;
2417 Buffer buf;
2418 uint32 buf_state;
2419 bool from_ring;
2420
2421 /*
2422 * Ensure, before we pin a victim buffer, that there's a free refcount
2423 * entry and resource owner slot for the pin.
2424 */
2427
2428 /* we return here if a prospective victim buffer gets used concurrently */
2429again:
2430
2431 /*
2432 * Select a victim buffer. The buffer is returned pinned and owned by
2433 * this backend.
2434 */
2435 buf_hdr = StrategyGetBuffer(strategy, &buf_state, &from_ring);
2436 buf = BufferDescriptorGetBuffer(buf_hdr);
2437
2438 /*
2439 * We shouldn't have any other pins for this buffer.
2440 */
2442
2443 /*
2444 * If the buffer was dirty, try to write it out. There is a race
2445 * condition here, in that someone might dirty it after we released the
2446 * buffer header lock above, or even while we are writing it out (since
2447 * our share-lock won't prevent hint-bit updates). We will recheck the
2448 * dirty bit after re-locking the buffer header.
2449 */
2450 if (buf_state & BM_DIRTY)
2451 {
2452 LWLock *content_lock;
2453
2454 Assert(buf_state & BM_TAG_VALID);
2455 Assert(buf_state & BM_VALID);
2456
2457 /*
2458 * We need a share-lock on the buffer contents to write it out (else
2459 * we might write invalid data, eg because someone else is compacting
2460 * the page contents while we write). We must use a conditional lock
2461 * acquisition here to avoid deadlock. Even though the buffer was not
2462 * pinned (and therefore surely not locked) when StrategyGetBuffer
2463 * returned it, someone else could have pinned and exclusive-locked it
2464 * by the time we get here. If we try to get the lock unconditionally,
2465 * we'd block waiting for them; if they later block waiting for us,
2466 * deadlock ensues. (This has been observed to happen when two
2467 * backends are both trying to split btree index pages, and the second
2468 * one just happens to be trying to split the page the first one got
2469 * from StrategyGetBuffer.)
2470 */
2471 content_lock = BufferDescriptorGetContentLock(buf_hdr);
2472 if (!LWLockConditionalAcquire(content_lock, LW_SHARED))
2473 {
2474 /*
2475 * Someone else has locked the buffer, so give it up and loop back
2476 * to get another one.
2477 */
2478 UnpinBuffer(buf_hdr);
2479 goto again;
2480 }
2481
2482 /*
2483 * If using a nondefault strategy, and writing the buffer would
2484 * require a WAL flush, let the strategy decide whether to go ahead
2485 * and write/reuse the buffer or to choose another victim. We need a
2486 * lock to inspect the page LSN, so this can't be done inside
2487 * StrategyGetBuffer.
2488 */
2489 if (strategy != NULL)
2490 {
2491 XLogRecPtr lsn;
2492
2493 /* Read the LSN while holding buffer header lock */
2494 buf_state = LockBufHdr(buf_hdr);
2495 lsn = BufferGetLSN(buf_hdr);
2496 UnlockBufHdr(buf_hdr);
2497
2498 if (XLogNeedsFlush(lsn)
2499 && StrategyRejectBuffer(strategy, buf_hdr, from_ring))
2500 {
2501 LWLockRelease(content_lock);
2502 UnpinBuffer(buf_hdr);
2503 goto again;
2504 }
2505 }
2506
2507 /* OK, do the I/O */
2508 FlushBuffer(buf_hdr, NULL, IOOBJECT_RELATION, io_context);
2509 LWLockRelease(content_lock);
2510
2512 &buf_hdr->tag);
2513 }
2514
2515
2516 if (buf_state & BM_VALID)
2517 {
2518 /*
2519 * When a BufferAccessStrategy is in use, blocks evicted from shared
2520 * buffers are counted as IOOP_EVICT in the corresponding context
2521 * (e.g. IOCONTEXT_BULKWRITE). Shared buffers are evicted by a
2522 * strategy in two cases: 1) while initially claiming buffers for the
2523 * strategy ring 2) to replace an existing strategy ring buffer
2524 * because it is pinned or in use and cannot be reused.
2525 *
2526 * Blocks evicted from buffers already in the strategy ring are
2527 * counted as IOOP_REUSE in the corresponding strategy context.
2528 *
2529 * At this point, we can accurately count evictions and reuses,
2530 * because we have successfully claimed the valid buffer. Previously,
2531 * we may have been forced to release the buffer due to concurrent
2532 * pinners or erroring out.
2533 */
2535 from_ring ? IOOP_REUSE : IOOP_EVICT, 1, 0);
2536 }
2537
2538 /*
2539 * If the buffer has an entry in the buffer mapping table, delete it. This
2540 * can fail because another backend could have pinned or dirtied the
2541 * buffer.
2542 */
2543 if ((buf_state & BM_TAG_VALID) && !InvalidateVictimBuffer(buf_hdr))
2544 {
2545 UnpinBuffer(buf_hdr);
2546 goto again;
2547 }
2548
2549 /* a final set of sanity checks */
2550#ifdef USE_ASSERT_CHECKING
2551 buf_state = pg_atomic_read_u32(&buf_hdr->state);
2552
2553 Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 1);
2554 Assert(!(buf_state & (BM_TAG_VALID | BM_VALID | BM_DIRTY)));
2555
2557#endif
2558
2559 return buf;
2560}
2561
2562/*
2563 * Return the maximum number of buffers that a backend should try to pin once,
2564 * to avoid exceeding its fair share. This is the highest value that
2565 * GetAdditionalPinLimit() could ever return. Note that it may be zero on a
2566 * system with a very small buffer pool relative to max_connections.
2567 */
2568uint32
2570{
2571 return MaxProportionalPins;
2572}
2573
2574/*
2575 * Return the maximum number of additional buffers that this backend should
2576 * pin if it wants to stay under the per-backend limit, considering the number
2577 * of buffers it has already pinned. Unlike LimitAdditionalPins(), the limit
2578 * return by this function can be zero.
2579 */
2580uint32
2582{
2583 uint32 estimated_pins_held;
2584
2585 /*
2586 * We get the number of "overflowed" pins for free, but don't know the
2587 * number of pins in PrivateRefCountArray. The cost of calculating that
2588 * exactly doesn't seem worth it, so just assume the max.
2589 */
2590 estimated_pins_held = PrivateRefCountOverflowed + REFCOUNT_ARRAY_ENTRIES;
2591
2592 /* Is this backend already holding more than its fair share? */
2593 if (estimated_pins_held > MaxProportionalPins)
2594 return 0;
2595
2596 return MaxProportionalPins - estimated_pins_held;
2597}
2598
2599/*
2600 * Limit the number of pins a batch operation may additionally acquire, to
2601 * avoid running out of pinnable buffers.
2602 *
2603 * One additional pin is always allowed, on the assumption that the operation
2604 * requires at least one to make progress.
2605 */
2606void
2608{
2609 uint32 limit;
2610
2611 if (*additional_pins <= 1)
2612 return;
2613
2614 limit = GetAdditionalPinLimit();
2615 limit = Max(limit, 1);
2616 if (limit < *additional_pins)
2617 *additional_pins = limit;
2618}
2619
2620/*
2621 * Logic shared between ExtendBufferedRelBy(), ExtendBufferedRelTo(). Just to
2622 * avoid duplicating the tracing and relpersistence related logic.
2623 */
2624static BlockNumber
2626 ForkNumber fork,
2627 BufferAccessStrategy strategy,
2628 uint32 flags,
2629 uint32 extend_by,
2630 BlockNumber extend_upto,
2631 Buffer *buffers,
2632 uint32 *extended_by)
2633{
2634 BlockNumber first_block;
2635
2636 TRACE_POSTGRESQL_BUFFER_EXTEND_START(fork,
2637 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.spcOid,
2638 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.dbOid,
2639 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.relNumber,
2640 BMR_GET_SMGR(bmr)->smgr_rlocator.backend,
2641 extend_by);
2642
2643 if (bmr.relpersistence == RELPERSISTENCE_TEMP)
2644 first_block = ExtendBufferedRelLocal(bmr, fork, flags,
2645 extend_by, extend_upto,
2646 buffers, &extend_by);
2647 else
2648 first_block = ExtendBufferedRelShared(bmr, fork, strategy, flags,
2649 extend_by, extend_upto,
2650 buffers, &extend_by);
2651 *extended_by = extend_by;
2652
2653 TRACE_POSTGRESQL_BUFFER_EXTEND_DONE(fork,
2654 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.spcOid,
2655 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.dbOid,
2656 BMR_GET_SMGR(bmr)->smgr_rlocator.locator.relNumber,
2657 BMR_GET_SMGR(bmr)->smgr_rlocator.backend,
2658 *extended_by,
2659 first_block);
2660
2661 return first_block;
2662}
2663
2664/*
2665 * Implementation of ExtendBufferedRelBy() and ExtendBufferedRelTo() for
2666 * shared buffers.
2667 */
2668static BlockNumber
2670 ForkNumber fork,
2671 BufferAccessStrategy strategy,
2672 uint32 flags,
2673 uint32 extend_by,
2674 BlockNumber extend_upto,
2675 Buffer *buffers,
2676 uint32 *extended_by)
2677{
2678 BlockNumber first_block;
2679 IOContext io_context = IOContextForStrategy(strategy);
2680 instr_time io_start;
2681
2682 LimitAdditionalPins(&extend_by);
2683
2684 /*
2685 * Acquire victim buffers for extension without holding extension lock.
2686 * Writing out victim buffers is the most expensive part of extending the
2687 * relation, particularly when doing so requires WAL flushes. Zeroing out
2688 * the buffers is also quite expensive, so do that before holding the
2689 * extension lock as well.
2690 *
2691 * These pages are pinned by us and not valid. While we hold the pin they
2692 * can't be acquired as victim buffers by another backend.
2693 */
2694 for (uint32 i = 0; i < extend_by; i++)
2695 {
2696 Block buf_block;
2697
2698 buffers[i] = GetVictimBuffer(strategy, io_context);
2699 buf_block = BufHdrGetBlock(GetBufferDescriptor(buffers[i] - 1));
2700
2701 /* new buffers are zero-filled */
2702 MemSet(buf_block, 0, BLCKSZ);
2703 }
2704
2705 /*
2706 * Lock relation against concurrent extensions, unless requested not to.
2707 *
2708 * We use the same extension lock for all forks. That's unnecessarily
2709 * restrictive, but currently extensions for forks don't happen often
2710 * enough to make it worth locking more granularly.
2711 *
2712 * Note that another backend might have extended the relation by the time
2713 * we get the lock.
2714 */
2715 if (!(flags & EB_SKIP_EXTENSION_LOCK))
2717
2718 /*
2719 * If requested, invalidate size cache, so that smgrnblocks asks the
2720 * kernel.
2721 */
2722 if (flags & EB_CLEAR_SIZE_CACHE)
2723 BMR_GET_SMGR(bmr)->smgr_cached_nblocks[fork] = InvalidBlockNumber;
2724
2725 first_block = smgrnblocks(BMR_GET_SMGR(bmr), fork);
2726
2727 /*
2728 * Now that we have the accurate relation size, check if the caller wants
2729 * us to extend to only up to a specific size. If there were concurrent
2730 * extensions, we might have acquired too many buffers and need to release
2731 * them.
2732 */
2733 if (extend_upto != InvalidBlockNumber)
2734 {
2735 uint32 orig_extend_by = extend_by;
2736
2737 if (first_block > extend_upto)
2738 extend_by = 0;
2739 else if ((uint64) first_block + extend_by > extend_upto)
2740 extend_by = extend_upto - first_block;
2741
2742 for (uint32 i = extend_by; i < orig_extend_by; i++)
2743 {
2744 BufferDesc *buf_hdr = GetBufferDescriptor(buffers[i] - 1);
2745
2746 UnpinBuffer(buf_hdr);
2747 }
2748
2749 if (extend_by == 0)
2750 {
2751 if (!(flags & EB_SKIP_EXTENSION_LOCK))
2753 *extended_by = extend_by;
2754 return first_block;
2755 }
2756 }
2757
2758 /* Fail if relation is already at maximum possible length */
2759 if ((uint64) first_block + extend_by >= MaxBlockNumber)
2760 ereport(ERROR,
2761 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2762 errmsg("cannot extend relation %s beyond %u blocks",
2763 relpath(BMR_GET_SMGR(bmr)->smgr_rlocator, fork).str,
2764 MaxBlockNumber)));
2765
2766 /*
2767 * Insert buffers into buffer table, mark as IO_IN_PROGRESS.
2768 *
2769 * This needs to happen before we extend the relation, because as soon as
2770 * we do, other backends can start to read in those pages.
2771 */
2772 for (uint32 i = 0; i < extend_by; i++)
2773 {
2774 Buffer victim_buf = buffers[i];
2775 BufferDesc *victim_buf_hdr = GetBufferDescriptor(victim_buf - 1);
2776 BufferTag tag;
2777 uint32 hash;
2778 LWLock *partition_lock;
2779 int existing_id;
2780
2781 /* in case we need to pin an existing buffer below */
2784
2785 InitBufferTag(&tag, &BMR_GET_SMGR(bmr)->smgr_rlocator.locator, fork,
2786 first_block + i);
2787 hash = BufTableHashCode(&tag);
2788 partition_lock = BufMappingPartitionLock(hash);
2789
2790 LWLockAcquire(partition_lock, LW_EXCLUSIVE);
2791
2792 existing_id = BufTableInsert(&tag, hash, victim_buf_hdr->buf_id);
2793
2794 /*
2795 * We get here only in the corner case where we are trying to extend
2796 * the relation but we found a pre-existing buffer. This can happen
2797 * because a prior attempt at extending the relation failed, and
2798 * because mdread doesn't complain about reads beyond EOF (when
2799 * zero_damaged_pages is ON) and so a previous attempt to read a block
2800 * beyond EOF could have left a "valid" zero-filled buffer.
2801 *
2802 * This has also been observed when relation was overwritten by
2803 * external process. Since the legitimate cases should always have
2804 * left a zero-filled buffer, complain if not PageIsNew.
2805 */
2806 if (existing_id >= 0)
2807 {
2808 BufferDesc *existing_hdr = GetBufferDescriptor(existing_id);
2809 Block buf_block;
2810 bool valid;
2811
2812 /*
2813 * Pin the existing buffer before releasing the partition lock,
2814 * preventing it from being evicted.
2815 */
2816 valid = PinBuffer(existing_hdr, strategy, false);
2817
2818 LWLockRelease(partition_lock);
2819 UnpinBuffer(victim_buf_hdr);
2820
2821 buffers[i] = BufferDescriptorGetBuffer(existing_hdr);
2822 buf_block = BufHdrGetBlock(existing_hdr);
2823
2824 if (valid && !PageIsNew((Page) buf_block))
2825 ereport(ERROR,
2826 (errmsg("unexpected data beyond EOF in block %u of relation \"%s\"",
2827 existing_hdr->tag.blockNum,
2828 relpath(BMR_GET_SMGR(bmr)->smgr_rlocator, fork).str)));
2829
2830 /*
2831 * We *must* do smgr[zero]extend before succeeding, else the page
2832 * will not be reserved by the kernel, and the next P_NEW call
2833 * will decide to return the same page. Clear the BM_VALID bit,
2834 * do StartBufferIO() and proceed.
2835 *
2836 * Loop to handle the very small possibility that someone re-sets
2837 * BM_VALID between our clearing it and StartBufferIO inspecting
2838 * it.
2839 */
2840 do
2841 {
2842 pg_atomic_fetch_and_u32(&existing_hdr->state, ~BM_VALID);
2843 } while (!StartBufferIO(existing_hdr, true, false));
2844 }
2845 else
2846 {
2847 uint32 buf_state;
2848 uint32 set_bits = 0;
2849
2850 buf_state = LockBufHdr(victim_buf_hdr);
2851
2852 /* some sanity checks while we hold the buffer header lock */
2853 Assert(!(buf_state & (BM_VALID | BM_TAG_VALID | BM_DIRTY | BM_JUST_DIRTIED)));
2854 Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 1);
2855
2856 victim_buf_hdr->tag = tag;
2857
2858 set_bits |= BM_TAG_VALID | BUF_USAGECOUNT_ONE;
2859 if (bmr.relpersistence == RELPERSISTENCE_PERMANENT || fork == INIT_FORKNUM)
2860 set_bits |= BM_PERMANENT;
2861
2862 UnlockBufHdrExt(victim_buf_hdr, buf_state,
2863 set_bits, 0,
2864 0);
2865
2866 LWLockRelease(partition_lock);
2867
2868 /* XXX: could combine the locked operations in it with the above */
2869 StartBufferIO(victim_buf_hdr, true, false);
2870 }
2871 }
2872
2874
2875 /*
2876 * Note: if smgrzeroextend fails, we will end up with buffers that are
2877 * allocated but not marked BM_VALID. The next relation extension will
2878 * still select the same block number (because the relation didn't get any
2879 * longer on disk) and so future attempts to extend the relation will find
2880 * the same buffers (if they have not been recycled) but come right back
2881 * here to try smgrzeroextend again.
2882 *
2883 * We don't need to set checksum for all-zero pages.
2884 */
2885 smgrzeroextend(BMR_GET_SMGR(bmr), fork, first_block, extend_by, false);
2886
2887 /*
2888 * Release the file-extension lock; it's now OK for someone else to extend
2889 * the relation some more.
2890 *
2891 * We remove IO_IN_PROGRESS after this, as waking up waiting backends can
2892 * take noticeable time.
2893 */
2894 if (!(flags & EB_SKIP_EXTENSION_LOCK))
2896
2898 io_start, 1, extend_by * BLCKSZ);
2899
2900 /* Set BM_VALID, terminate IO, and wake up any waiters */
2901 for (uint32 i = 0; i < extend_by; i++)
2902 {
2903 Buffer buf = buffers[i];
2904 BufferDesc *buf_hdr = GetBufferDescriptor(buf - 1);
2905 bool lock = false;
2906
2907 if (flags & EB_LOCK_FIRST && i == 0)
2908 lock = true;
2909 else if (flags & EB_LOCK_TARGET)
2910 {
2911 Assert(extend_upto != InvalidBlockNumber);
2912 if (first_block + i + 1 == extend_upto)
2913 lock = true;
2914 }
2915
2916 if (lock)
2918
2919 TerminateBufferIO(buf_hdr, false, BM_VALID, true, false);
2920 }
2921
2923
2924 *extended_by = extend_by;
2925
2926 return first_block;
2927}
2928
2929/*
2930 * BufferIsLockedByMe
2931 *
2932 * Checks if this backend has the buffer locked in any mode.
2933 *
2934 * Buffer must be pinned.
2935 */
2936bool
2938{
2939 BufferDesc *bufHdr;
2940
2942
2943 if (BufferIsLocal(buffer))
2944 {
2945 /* Content locks are not maintained for local buffers. */
2946 return true;
2947 }
2948 else
2949 {
2950 bufHdr = GetBufferDescriptor(buffer - 1);
2952 }
2953}
2954
2955/*
2956 * BufferIsLockedByMeInMode
2957 *
2958 * Checks if this backend has the buffer locked in the specified mode.
2959 *
2960 * Buffer must be pinned.
2961 */
2962bool
2964{
2965 BufferDesc *bufHdr;
2966
2968
2969 if (BufferIsLocal(buffer))
2970 {
2971 /* Content locks are not maintained for local buffers. */
2972 return true;
2973 }
2974 else
2975 {
2976 LWLockMode lw_mode;
2977
2978 switch (mode)
2979 {
2981 lw_mode = LW_EXCLUSIVE;
2982 break;
2983 case BUFFER_LOCK_SHARE:
2984 lw_mode = LW_SHARED;
2985 break;
2986 default:
2988 }
2989
2990 bufHdr = GetBufferDescriptor(buffer - 1);
2992 lw_mode);
2993 }
2994}
2995
2996/*
2997 * BufferIsDirty
2998 *
2999 * Checks if buffer is already dirty.
3000 *
3001 * Buffer must be pinned and exclusive-locked. (Without an exclusive lock,
3002 * the result may be stale before it's returned.)
3003 */
3004bool
3006{
3007 BufferDesc *bufHdr;
3008
3010
3011 if (BufferIsLocal(buffer))
3012 {
3013 int bufid = -buffer - 1;
3014
3015 bufHdr = GetLocalBufferDescriptor(bufid);
3016 /* Content locks are not maintained for local buffers. */
3017 }
3018 else
3019 {
3020 bufHdr = GetBufferDescriptor(buffer - 1);
3022 }
3023
3024 return pg_atomic_read_u32(&bufHdr->state) & BM_DIRTY;
3025}
3026
3027/*
3028 * MarkBufferDirty
3029 *
3030 * Marks buffer contents as dirty (actual write happens later).
3031 *
3032 * Buffer must be pinned and exclusive-locked. (If caller does not hold
3033 * exclusive lock, then somebody could be in process of writing the buffer,
3034 * leading to risk of bad data written to disk.)
3035 */
3036void
3038{
3039 BufferDesc *bufHdr;
3040 uint32 buf_state;
3041 uint32 old_buf_state;
3042
3043 if (!BufferIsValid(buffer))
3044 elog(ERROR, "bad buffer ID: %d", buffer);
3045
3046 if (BufferIsLocal(buffer))
3047 {
3049 return;
3050 }
3051
3052 bufHdr = GetBufferDescriptor(buffer - 1);
3053
3056
3057 /*
3058 * NB: We have to wait for the buffer header spinlock to be not held, as
3059 * TerminateBufferIO() relies on the spinlock.
3060 */
3061 old_buf_state = pg_atomic_read_u32(&bufHdr->state);
3062 for (;;)
3063 {
3064 if (old_buf_state & BM_LOCKED)
3065 old_buf_state = WaitBufHdrUnlocked(bufHdr);
3066
3067 buf_state = old_buf_state;
3068
3069 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
3070 buf_state |= BM_DIRTY | BM_JUST_DIRTIED;
3071
3072 if (pg_atomic_compare_exchange_u32(&bufHdr->state, &old_buf_state,
3073 buf_state))
3074 break;
3075 }
3076
3077 /*
3078 * If the buffer was not dirty already, do vacuum accounting.
3079 */
3080 if (!(old_buf_state & BM_DIRTY))
3081 {
3083 if (VacuumCostActive)
3085 }
3086}
3087
3088/*
3089 * ReleaseAndReadBuffer -- combine ReleaseBuffer() and ReadBuffer()
3090 *
3091 * Formerly, this saved one cycle of acquiring/releasing the BufMgrLock
3092 * compared to calling the two routines separately. Now it's mainly just
3093 * a convenience function. However, if the passed buffer is valid and
3094 * already contains the desired block, we just return it as-is; and that
3095 * does save considerable work compared to a full release and reacquire.
3096 *
3097 * Note: it is OK to pass buffer == InvalidBuffer, indicating that no old
3098 * buffer actually needs to be released. This case is the same as ReadBuffer,
3099 * but can save some tests in the caller.
3100 */
3101Buffer
3103 Relation relation,
3104 BlockNumber blockNum)
3105{
3106 ForkNumber forkNum = MAIN_FORKNUM;
3107 BufferDesc *bufHdr;
3108
3109 if (BufferIsValid(buffer))
3110 {
3112 if (BufferIsLocal(buffer))
3113 {
3114 bufHdr = GetLocalBufferDescriptor(-buffer - 1);
3115 if (bufHdr->tag.blockNum == blockNum &&
3116 BufTagMatchesRelFileLocator(&bufHdr->tag, &relation->rd_locator) &&
3117 BufTagGetForkNum(&bufHdr->tag) == forkNum)
3118 return buffer;
3120 }
3121 else
3122 {
3123 bufHdr = GetBufferDescriptor(buffer - 1);
3124 /* we have pin, so it's ok to examine tag without spinlock */
3125 if (bufHdr->tag.blockNum == blockNum &&
3126 BufTagMatchesRelFileLocator(&bufHdr->tag, &relation->rd_locator) &&
3127 BufTagGetForkNum(&bufHdr->tag) == forkNum)
3128 return buffer;
3129 UnpinBuffer(bufHdr);
3130 }
3131 }
3132
3133 return ReadBuffer(relation, blockNum);
3134}
3135
3136/*
3137 * PinBuffer -- make buffer unavailable for replacement.
3138 *
3139 * For the default access strategy, the buffer's usage_count is incremented
3140 * when we first pin it; for other strategies we just make sure the usage_count
3141 * isn't zero. (The idea of the latter is that we don't want synchronized
3142 * heap scans to inflate the count, but we need it to not be zero to discourage
3143 * other backends from stealing buffers from our ring. As long as we cycle
3144 * through the ring faster than the global clock-sweep cycles, buffers in
3145 * our ring won't be chosen as victims for replacement by other backends.)
3146 *
3147 * This should be applied only to shared buffers, never local ones.
3148 *
3149 * Since buffers are pinned/unpinned very frequently, pin buffers without
3150 * taking the buffer header lock; instead update the state variable in loop of
3151 * CAS operations. Hopefully it's just a single CAS.
3152 *
3153 * Note that ResourceOwnerEnlarge() and ReservePrivateRefCountEntry()
3154 * must have been done already.
3155 *
3156 * Returns true if buffer is BM_VALID, else false. This provision allows
3157 * some callers to avoid an extra spinlock cycle. If skip_if_not_valid is
3158 * true, then a false return value also indicates that the buffer was
3159 * (recently) invalid and has not been pinned.
3160 */
3161static bool
3163 bool skip_if_not_valid)
3164{
3166 bool result;
3168
3171
3172 ref = GetPrivateRefCountEntry(b, true);
3173
3174 if (ref == NULL)
3175 {
3176 uint32 buf_state;
3177 uint32 old_buf_state;
3178
3179 old_buf_state = pg_atomic_read_u32(&buf->state);
3180 for (;;)
3181 {
3182 if (unlikely(skip_if_not_valid && !(old_buf_state & BM_VALID)))
3183 return false;
3184
3185 /*
3186 * We're not allowed to increase the refcount while the buffer
3187 * header spinlock is held. Wait for the lock to be released.
3188 */
3189 if (old_buf_state & BM_LOCKED)
3190 old_buf_state = WaitBufHdrUnlocked(buf);
3191
3192 buf_state = old_buf_state;
3193
3194 /* increase refcount */
3195 buf_state += BUF_REFCOUNT_ONE;
3196
3197 if (strategy == NULL)
3198 {
3199 /* Default case: increase usagecount unless already max. */
3201 buf_state += BUF_USAGECOUNT_ONE;
3202 }
3203 else
3204 {
3205 /*
3206 * Ring buffers shouldn't evict others from pool. Thus we
3207 * don't make usagecount more than 1.
3208 */
3209 if (BUF_STATE_GET_USAGECOUNT(buf_state) == 0)
3210 buf_state += BUF_USAGECOUNT_ONE;
3211 }
3212
3213 if (pg_atomic_compare_exchange_u32(&buf->state, &old_buf_state,
3214 buf_state))
3215 {
3216 result = (buf_state & BM_VALID) != 0;
3217
3219 break;
3220 }
3221 }
3222 }
3223 else
3224 {
3225 /*
3226 * If we previously pinned the buffer, it is likely to be valid, but
3227 * it may not be if StartReadBuffers() was called and
3228 * WaitReadBuffers() hasn't been called yet. We'll check by loading
3229 * the flags without locking. This is racy, but it's OK to return
3230 * false spuriously: when WaitReadBuffers() calls StartBufferIO(),
3231 * it'll see that it's now valid.
3232 *
3233 * Note: We deliberately avoid a Valgrind client request here.
3234 * Individual access methods can optionally superimpose buffer page
3235 * client requests on top of our client requests to enforce that
3236 * buffers are only accessed while locked (and pinned). It's possible
3237 * that the buffer page is legitimately non-accessible here. We
3238 * cannot meddle with that.
3239 */
3240 result = (pg_atomic_read_u32(&buf->state) & BM_VALID) != 0;
3241
3242 Assert(ref->data.refcount > 0);
3243 ref->data.refcount++;
3245 }
3246
3247 return result;
3248}
3249
3250/*
3251 * PinBuffer_Locked -- as above, but caller already locked the buffer header.
3252 * The spinlock is released before return.
3253 *
3254 * As this function is called with the spinlock held, the caller has to
3255 * previously call ReservePrivateRefCountEntry() and
3256 * ResourceOwnerEnlarge(CurrentResourceOwner);
3257 *
3258 * Currently, no callers of this function want to modify the buffer's
3259 * usage_count at all, so there's no need for a strategy parameter.
3260 * Also we don't bother with a BM_VALID test (the caller could check that for
3261 * itself).
3262 *
3263 * Also all callers only ever use this function when it's known that the
3264 * buffer can't have a preexisting pin by this backend. That allows us to skip
3265 * searching the private refcount array & hash, which is a boon, because the
3266 * spinlock is still held.
3267 *
3268 * Note: use of this routine is frequently mandatory, not just an optimization
3269 * to save a spin lock/unlock cycle, because we need to pin a buffer before
3270 * its state can change under us.
3271 */
3272static void
3274{
3275 uint32 old_buf_state;
3276
3277 /*
3278 * As explained, We don't expect any preexisting pins. That allows us to
3279 * manipulate the PrivateRefCount after releasing the spinlock
3280 */
3282
3283 /*
3284 * Since we hold the buffer spinlock, we can update the buffer state and
3285 * release the lock in one operation.
3286 */
3287 old_buf_state = pg_atomic_read_u32(&buf->state);
3288
3289 UnlockBufHdrExt(buf, old_buf_state,
3290 0, 0, 1);
3291
3293}
3294
3295/*
3296 * Support for waking up another backend that is waiting for the cleanup lock
3297 * to be released using BM_PIN_COUNT_WAITER.
3298 *
3299 * See LockBufferForCleanup().
3300 *
3301 * Expected to be called just after releasing a buffer pin (in a BufferDesc,
3302 * not just reducing the backend-local pincount for the buffer).
3303 */
3304static void
3306{
3307 /*
3308 * Acquire the buffer header lock, re-check that there's a waiter. Another
3309 * backend could have unpinned this buffer, and already woken up the
3310 * waiter.
3311 *
3312 * There's no danger of the buffer being replaced after we unpinned it
3313 * above, as it's pinned by the waiter. The waiter removes
3314 * BM_PIN_COUNT_WAITER if it stops waiting for a reason other than this
3315 * backend waking it up.
3316 */
3317 uint32 buf_state = LockBufHdr(buf);
3318
3319 if ((buf_state & BM_PIN_COUNT_WAITER) &&
3320 BUF_STATE_GET_REFCOUNT(buf_state) == 1)
3321 {
3322 /* we just released the last pin other than the waiter's */
3323 int wait_backend_pgprocno = buf->wait_backend_pgprocno;
3324
3325 UnlockBufHdrExt(buf, buf_state,
3327 0);
3328 ProcSendSignal(wait_backend_pgprocno);
3329 }
3330 else
3332}
3333
3334/*
3335 * UnpinBuffer -- make buffer available for replacement.
3336 *
3337 * This should be applied only to shared buffers, never local ones. This
3338 * always adjusts CurrentResourceOwner.
3339 */
3340static void
3342{
3344
3347}
3348
3349static void
3351{
3354
3356
3357 /* not moving as we're likely deleting it soon anyway */
3358 ref = GetPrivateRefCountEntry(b, false);
3359 Assert(ref != NULL);
3360 Assert(ref->data.refcount > 0);
3361 ref->data.refcount--;
3362 if (ref->data.refcount == 0)
3363 {
3364 uint32 old_buf_state;
3365
3366 /*
3367 * Mark buffer non-accessible to Valgrind.
3368 *
3369 * Note that the buffer may have already been marked non-accessible
3370 * within access method code that enforces that buffers are only
3371 * accessed while a buffer lock is held.
3372 */
3374
3375 /*
3376 * I'd better not still hold the buffer content lock. Can't use
3377 * BufferIsLockedByMe(), as that asserts the buffer is pinned.
3378 */
3380
3381 /* decrement the shared reference count */
3382 old_buf_state = pg_atomic_fetch_sub_u32(&buf->state, BUF_REFCOUNT_ONE);
3383
3384 /* Support LockBufferForCleanup() */
3385 if (old_buf_state & BM_PIN_COUNT_WAITER)
3387
3389 }
3390}
3391
3392/*
3393 * Set up backend-local tracking of a buffer pinned the first time by this
3394 * backend.
3395 */
3396inline void
3398{
3400
3402 ref->data.refcount++;
3403
3405
3406 /*
3407 * This is the first pin for this page by this backend, mark its page as
3408 * defined to valgrind. While the page contents might not actually be
3409 * valid yet, we don't currently guarantee that such pages are marked
3410 * undefined or non-accessible.
3411 *
3412 * It's not necessarily the prettiest to do this here, but otherwise we'd
3413 * need this block of code in multiple places.
3414 */
3416 BLCKSZ);
3417}
3418
3419#define ST_SORT sort_checkpoint_bufferids
3420#define ST_ELEMENT_TYPE CkptSortItem
3421#define ST_COMPARE(a, b) ckpt_buforder_comparator(a, b)
3422#define ST_SCOPE static
3423#define ST_DEFINE
3424#include "lib/sort_template.h"
3425
3426/*
3427 * BufferSync -- Write out all dirty buffers in the pool.
3428 *
3429 * This is called at checkpoint time to write out all dirty shared buffers.
3430 * The checkpoint request flags should be passed in. If CHECKPOINT_FAST is
3431 * set, we disable delays between writes; if CHECKPOINT_IS_SHUTDOWN,
3432 * CHECKPOINT_END_OF_RECOVERY or CHECKPOINT_FLUSH_UNLOGGED is set, we write
3433 * even unlogged buffers, which are otherwise skipped. The remaining flags
3434 * currently have no effect here.
3435 */
3436static void
3437BufferSync(int flags)
3438{
3439 uint32 buf_state;
3440 int buf_id;
3441 int num_to_scan;
3442 int num_spaces;
3443 int num_processed;
3444 int num_written;
3445 CkptTsStatus *per_ts_stat = NULL;
3446 Oid last_tsid;
3447 binaryheap *ts_heap;
3448 int i;
3449 uint32 mask = BM_DIRTY;
3450 WritebackContext wb_context;
3451
3452 /*
3453 * Unless this is a shutdown checkpoint or we have been explicitly told,
3454 * we write only permanent, dirty buffers. But at shutdown or end of
3455 * recovery, we write all dirty buffers.
3456 */
3459 mask |= BM_PERMANENT;
3460
3461 /*
3462 * Loop over all buffers, and mark the ones that need to be written with
3463 * BM_CHECKPOINT_NEEDED. Count them as we go (num_to_scan), so that we
3464 * can estimate how much work needs to be done.
3465 *
3466 * This allows us to write only those pages that were dirty when the
3467 * checkpoint began, and not those that get dirtied while it proceeds.
3468 * Whenever a page with BM_CHECKPOINT_NEEDED is written out, either by us
3469 * later in this function, or by normal backends or the bgwriter cleaning
3470 * scan, the flag is cleared. Any buffer dirtied after this point won't
3471 * have the flag set.
3472 *
3473 * Note that if we fail to write some buffer, we may leave buffers with
3474 * BM_CHECKPOINT_NEEDED still set. This is OK since any such buffer would
3475 * certainly need to be written for the next checkpoint attempt, too.
3476 */
3477 num_to_scan = 0;
3478 for (buf_id = 0; buf_id < NBuffers; buf_id++)
3479 {
3480 BufferDesc *bufHdr = GetBufferDescriptor(buf_id);
3481 uint32 set_bits = 0;
3482
3483 /*
3484 * Header spinlock is enough to examine BM_DIRTY, see comment in
3485 * SyncOneBuffer.
3486 */
3487 buf_state = LockBufHdr(bufHdr);
3488
3489 if ((buf_state & mask) == mask)
3490 {
3491 CkptSortItem *item;
3492
3493 set_bits = BM_CHECKPOINT_NEEDED;
3494
3495 item = &CkptBufferIds[num_to_scan++];
3496 item->buf_id = buf_id;
3497 item->tsId = bufHdr->tag.spcOid;
3498 item->relNumber = BufTagGetRelNumber(&bufHdr->tag);
3499 item->forkNum = BufTagGetForkNum(&bufHdr->tag);
3500 item->blockNum = bufHdr->tag.blockNum;
3501 }
3502
3503 UnlockBufHdrExt(bufHdr, buf_state,
3504 set_bits, 0,
3505 0);
3506
3507 /* Check for barrier events in case NBuffers is large. */
3510 }
3511
3512 if (num_to_scan == 0)
3513 return; /* nothing to do */
3514
3516
3517 TRACE_POSTGRESQL_BUFFER_SYNC_START(NBuffers, num_to_scan);
3518
3519 /*
3520 * Sort buffers that need to be written to reduce the likelihood of random
3521 * IO. The sorting is also important for the implementation of balancing
3522 * writes between tablespaces. Without balancing writes we'd potentially
3523 * end up writing to the tablespaces one-by-one; possibly overloading the
3524 * underlying system.
3525 */
3526 sort_checkpoint_bufferids(CkptBufferIds, num_to_scan);
3527
3528 num_spaces = 0;
3529
3530 /*
3531 * Allocate progress status for each tablespace with buffers that need to
3532 * be flushed. This requires the to-be-flushed array to be sorted.
3533 */
3534 last_tsid = InvalidOid;
3535 for (i = 0; i < num_to_scan; i++)
3536 {
3537 CkptTsStatus *s;
3538 Oid cur_tsid;
3539
3540 cur_tsid = CkptBufferIds[i].tsId;
3541
3542 /*
3543 * Grow array of per-tablespace status structs, every time a new
3544 * tablespace is found.
3545 */
3546 if (last_tsid == InvalidOid || last_tsid != cur_tsid)
3547 {
3548 Size sz;
3549
3550 num_spaces++;
3551
3552 /*
3553 * Not worth adding grow-by-power-of-2 logic here - even with a
3554 * few hundred tablespaces this should be fine.
3555 */
3556 sz = sizeof(CkptTsStatus) * num_spaces;
3557
3558 if (per_ts_stat == NULL)
3559 per_ts_stat = (CkptTsStatus *) palloc(sz);
3560 else
3561 per_ts_stat = (CkptTsStatus *) repalloc(per_ts_stat, sz);
3562
3563 s = &per_ts_stat[num_spaces - 1];
3564 memset(s, 0, sizeof(*s));
3565 s->tsId = cur_tsid;
3566
3567 /*
3568 * The first buffer in this tablespace. As CkptBufferIds is sorted
3569 * by tablespace all (s->num_to_scan) buffers in this tablespace
3570 * will follow afterwards.
3571 */
3572 s->index = i;
3573
3574 /*
3575 * progress_slice will be determined once we know how many buffers
3576 * are in each tablespace, i.e. after this loop.
3577 */
3578
3579 last_tsid = cur_tsid;
3580 }
3581 else
3582 {
3583 s = &per_ts_stat[num_spaces - 1];
3584 }
3585
3586 s->num_to_scan++;
3587
3588 /* Check for barrier events. */
3591 }
3592
3593 Assert(num_spaces > 0);
3594
3595 /*
3596 * Build a min-heap over the write-progress in the individual tablespaces,
3597 * and compute how large a portion of the total progress a single
3598 * processed buffer is.
3599 */
3600 ts_heap = binaryheap_allocate(num_spaces,
3602 NULL);
3603
3604 for (i = 0; i < num_spaces; i++)
3605 {
3606 CkptTsStatus *ts_stat = &per_ts_stat[i];
3607
3608 ts_stat->progress_slice = (float8) num_to_scan / ts_stat->num_to_scan;
3609
3610 binaryheap_add_unordered(ts_heap, PointerGetDatum(ts_stat));
3611 }
3612
3613 binaryheap_build(ts_heap);
3614
3615 /*
3616 * Iterate through to-be-checkpointed buffers and write the ones (still)
3617 * marked with BM_CHECKPOINT_NEEDED. The writes are balanced between
3618 * tablespaces; otherwise the sorting would lead to only one tablespace
3619 * receiving writes at a time, making inefficient use of the hardware.
3620 */
3621 num_processed = 0;
3622 num_written = 0;
3623 while (!binaryheap_empty(ts_heap))
3624 {
3625 BufferDesc *bufHdr = NULL;
3626 CkptTsStatus *ts_stat = (CkptTsStatus *)
3628
3629 buf_id = CkptBufferIds[ts_stat->index].buf_id;
3630 Assert(buf_id != -1);
3631
3632 bufHdr = GetBufferDescriptor(buf_id);
3633
3634 num_processed++;
3635
3636 /*
3637 * We don't need to acquire the lock here, because we're only looking
3638 * at a single bit. It's possible that someone else writes the buffer
3639 * and clears the flag right after we check, but that doesn't matter
3640 * since SyncOneBuffer will then do nothing. However, there is a
3641 * further race condition: it's conceivable that between the time we
3642 * examine the bit here and the time SyncOneBuffer acquires the lock,
3643 * someone else not only wrote the buffer but replaced it with another
3644 * page and dirtied it. In that improbable case, SyncOneBuffer will
3645 * write the buffer though we didn't need to. It doesn't seem worth
3646 * guarding against this, though.
3647 */
3649 {
3650 if (SyncOneBuffer(buf_id, false, &wb_context) & BUF_WRITTEN)
3651 {
3652 TRACE_POSTGRESQL_BUFFER_SYNC_WRITTEN(buf_id);
3654 num_written++;
3655 }
3656 }
3657
3658 /*
3659 * Measure progress independent of actually having to flush the buffer
3660 * - otherwise writing become unbalanced.
3661 */
3662 ts_stat->progress += ts_stat->progress_slice;
3663 ts_stat->num_scanned++;
3664 ts_stat->index++;
3665
3666 /* Have all the buffers from the tablespace been processed? */
3667 if (ts_stat->num_scanned == ts_stat->num_to_scan)
3668 {
3669 binaryheap_remove_first(ts_heap);
3670 }
3671 else
3672 {
3673 /* update heap with the new progress */
3674 binaryheap_replace_first(ts_heap, PointerGetDatum(ts_stat));
3675 }
3676
3677 /*
3678 * Sleep to throttle our I/O rate.
3679 *
3680 * (This will check for barrier events even if it doesn't sleep.)
3681 */
3682 CheckpointWriteDelay(flags, (double) num_processed / num_to_scan);
3683 }
3684
3685 /*
3686 * Issue all pending flushes. Only checkpointer calls BufferSync(), so
3687 * IOContext will always be IOCONTEXT_NORMAL.
3688 */
3690
3691 pfree(per_ts_stat);
3692 per_ts_stat = NULL;
3693 binaryheap_free(ts_heap);
3694
3695 /*
3696 * Update checkpoint statistics. As noted above, this doesn't include
3697 * buffers written by other backends or bgwriter scan.
3698 */
3699 CheckpointStats.ckpt_bufs_written += num_written;
3700
3701 TRACE_POSTGRESQL_BUFFER_SYNC_DONE(NBuffers, num_written, num_to_scan);
3702}
3703
3704/*
3705 * BgBufferSync -- Write out some dirty buffers in the pool.
3706 *
3707 * This is called periodically by the background writer process.
3708 *
3709 * Returns true if it's appropriate for the bgwriter process to go into
3710 * low-power hibernation mode. (This happens if the strategy clock-sweep
3711 * has been "lapped" and no buffer allocations have occurred recently,
3712 * or if the bgwriter has been effectively disabled by setting
3713 * bgwriter_lru_maxpages to 0.)
3714 */
3715bool
3717{
3718 /* info obtained from freelist.c */
3719 int strategy_buf_id;
3720 uint32 strategy_passes;
3721 uint32 recent_alloc;
3722
3723 /*
3724 * Information saved between calls so we can determine the strategy
3725 * point's advance rate and avoid scanning already-cleaned buffers.
3726 */
3727 static bool saved_info_valid = false;
3728 static int prev_strategy_buf_id;
3729 static uint32 prev_strategy_passes;
3730 static int next_to_clean;
3731 static uint32 next_passes;
3732
3733 /* Moving averages of allocation rate and clean-buffer density */
3734 static float smoothed_alloc = 0;
3735 static float smoothed_density = 10.0;
3736
3737 /* Potentially these could be tunables, but for now, not */
3738 float smoothing_samples = 16;
3739 float scan_whole_pool_milliseconds = 120000.0;
3740
3741 /* Used to compute how far we scan ahead */
3742 long strategy_delta;
3743 int bufs_to_lap;
3744 int bufs_ahead;
3745 float scans_per_alloc;
3746 int reusable_buffers_est;
3747 int upcoming_alloc_est;
3748 int min_scan_buffers;
3749
3750 /* Variables for the scanning loop proper */
3751 int num_to_scan;
3752 int num_written;
3753 int reusable_buffers;
3754
3755 /* Variables for final smoothed_density update */
3756 long new_strategy_delta;
3757 uint32 new_recent_alloc;
3758
3759 /*
3760 * Find out where the clock-sweep currently is, and how many buffer
3761 * allocations have happened since our last call.
3762 */
3763 strategy_buf_id = StrategySyncStart(&strategy_passes, &recent_alloc);
3764
3765 /* Report buffer alloc counts to pgstat */
3766 PendingBgWriterStats.buf_alloc += recent_alloc;
3767
3768 /*
3769 * If we're not running the LRU scan, just stop after doing the stats
3770 * stuff. We mark the saved state invalid so that we can recover sanely
3771 * if LRU scan is turned back on later.
3772 */
3773 if (bgwriter_lru_maxpages <= 0)
3774 {
3775 saved_info_valid = false;
3776 return true;
3777 }
3778
3779 /*
3780 * Compute strategy_delta = how many buffers have been scanned by the
3781 * clock-sweep since last time. If first time through, assume none. Then
3782 * see if we are still ahead of the clock-sweep, and if so, how many
3783 * buffers we could scan before we'd catch up with it and "lap" it. Note:
3784 * weird-looking coding of xxx_passes comparisons are to avoid bogus
3785 * behavior when the passes counts wrap around.
3786 */
3787 if (saved_info_valid)
3788 {
3789 int32 passes_delta = strategy_passes - prev_strategy_passes;
3790
3791 strategy_delta = strategy_buf_id - prev_strategy_buf_id;
3792 strategy_delta += (long) passes_delta * NBuffers;
3793
3794 Assert(strategy_delta >= 0);
3795
3796 if ((int32) (next_passes - strategy_passes) > 0)
3797 {
3798 /* we're one pass ahead of the strategy point */
3799 bufs_to_lap = strategy_buf_id - next_to_clean;
3800#ifdef BGW_DEBUG
3801 elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
3802 next_passes, next_to_clean,
3803 strategy_passes, strategy_buf_id,
3804 strategy_delta, bufs_to_lap);
3805#endif
3806 }
3807 else if (next_passes == strategy_passes &&
3808 next_to_clean >= strategy_buf_id)
3809 {
3810 /* on same pass, but ahead or at least not behind */
3811 bufs_to_lap = NBuffers - (next_to_clean - strategy_buf_id);
3812#ifdef BGW_DEBUG
3813 elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
3814 next_passes, next_to_clean,
3815 strategy_passes, strategy_buf_id,
3816 strategy_delta, bufs_to_lap);
3817#endif
3818 }
3819 else
3820 {
3821 /*
3822 * We're behind, so skip forward to the strategy point and start
3823 * cleaning from there.
3824 */
3825#ifdef BGW_DEBUG
3826 elog(DEBUG2, "bgwriter behind: bgw %u-%u strategy %u-%u delta=%ld",
3827 next_passes, next_to_clean,
3828 strategy_passes, strategy_buf_id,
3829 strategy_delta);
3830#endif
3831 next_to_clean = strategy_buf_id;
3832 next_passes = strategy_passes;
3833 bufs_to_lap = NBuffers;
3834 }
3835 }
3836 else
3837 {
3838 /*
3839 * Initializing at startup or after LRU scanning had been off. Always
3840 * start at the strategy point.
3841 */
3842#ifdef BGW_DEBUG
3843 elog(DEBUG2, "bgwriter initializing: strategy %u-%u",
3844 strategy_passes, strategy_buf_id);
3845#endif
3846 strategy_delta = 0;
3847 next_to_clean = strategy_buf_id;
3848 next_passes = strategy_passes;
3849 bufs_to_lap = NBuffers;
3850 }
3851
3852 /* Update saved info for next time */
3853 prev_strategy_buf_id = strategy_buf_id;
3854 prev_strategy_passes = strategy_passes;
3855 saved_info_valid = true;
3856
3857 /*
3858 * Compute how many buffers had to be scanned for each new allocation, ie,
3859 * 1/density of reusable buffers, and track a moving average of that.
3860 *
3861 * If the strategy point didn't move, we don't update the density estimate
3862 */
3863 if (strategy_delta > 0 && recent_alloc > 0)
3864 {
3865 scans_per_alloc = (float) strategy_delta / (float) recent_alloc;
3866 smoothed_density += (scans_per_alloc - smoothed_density) /
3867 smoothing_samples;
3868 }
3869
3870 /*
3871 * Estimate how many reusable buffers there are between the current
3872 * strategy point and where we've scanned ahead to, based on the smoothed
3873 * density estimate.
3874 */
3875 bufs_ahead = NBuffers - bufs_to_lap;
3876 reusable_buffers_est = (float) bufs_ahead / smoothed_density;
3877
3878 /*
3879 * Track a moving average of recent buffer allocations. Here, rather than
3880 * a true average we want a fast-attack, slow-decline behavior: we
3881 * immediately follow any increase.
3882 */
3883 if (smoothed_alloc <= (float) recent_alloc)
3884 smoothed_alloc = recent_alloc;
3885 else
3886 smoothed_alloc += ((float) recent_alloc - smoothed_alloc) /
3887 smoothing_samples;
3888
3889 /* Scale the estimate by a GUC to allow more aggressive tuning. */
3890 upcoming_alloc_est = (int) (smoothed_alloc * bgwriter_lru_multiplier);
3891
3892 /*
3893 * If recent_alloc remains at zero for many cycles, smoothed_alloc will
3894 * eventually underflow to zero, and the underflows produce annoying
3895 * kernel warnings on some platforms. Once upcoming_alloc_est has gone to
3896 * zero, there's no point in tracking smaller and smaller values of
3897 * smoothed_alloc, so just reset it to exactly zero to avoid this
3898 * syndrome. It will pop back up as soon as recent_alloc increases.
3899 */
3900 if (upcoming_alloc_est == 0)
3901 smoothed_alloc = 0;
3902
3903 /*
3904 * Even in cases where there's been little or no buffer allocation
3905 * activity, we want to make a small amount of progress through the buffer
3906 * cache so that as many reusable buffers as possible are clean after an
3907 * idle period.
3908 *
3909 * (scan_whole_pool_milliseconds / BgWriterDelay) computes how many times
3910 * the BGW will be called during the scan_whole_pool time; slice the
3911 * buffer pool into that many sections.
3912 */
3913 min_scan_buffers = (int) (NBuffers / (scan_whole_pool_milliseconds / BgWriterDelay));
3914
3915 if (upcoming_alloc_est < (min_scan_buffers + reusable_buffers_est))
3916 {
3917#ifdef BGW_DEBUG
3918 elog(DEBUG2, "bgwriter: alloc_est=%d too small, using min=%d + reusable_est=%d",
3919 upcoming_alloc_est, min_scan_buffers, reusable_buffers_est);
3920#endif
3921 upcoming_alloc_est = min_scan_buffers + reusable_buffers_est;
3922 }
3923
3924 /*
3925 * Now write out dirty reusable buffers, working forward from the
3926 * next_to_clean point, until we have lapped the strategy scan, or cleaned
3927 * enough buffers to match our estimate of the next cycle's allocation
3928 * requirements, or hit the bgwriter_lru_maxpages limit.
3929 */
3930
3931 num_to_scan = bufs_to_lap;
3932 num_written = 0;
3933 reusable_buffers = reusable_buffers_est;
3934
3935 /* Execute the LRU scan */
3936 while (num_to_scan > 0 && reusable_buffers < upcoming_alloc_est)
3937 {
3938 int sync_state = SyncOneBuffer(next_to_clean, true,
3939 wb_context);
3940
3941 if (++next_to_clean >= NBuffers)
3942 {
3943 next_to_clean = 0;
3944 next_passes++;
3945 }
3946 num_to_scan--;
3947
3948 if (sync_state & BUF_WRITTEN)
3949 {
3950 reusable_buffers++;
3951 if (++num_written >= bgwriter_lru_maxpages)
3952 {
3954 break;
3955 }
3956 }
3957 else if (sync_state & BUF_REUSABLE)
3958 reusable_buffers++;
3959 }
3960
3962
3963#ifdef BGW_DEBUG
3964 elog(DEBUG1, "bgwriter: recent_alloc=%u smoothed=%.2f delta=%ld ahead=%d density=%.2f reusable_est=%d upcoming_est=%d scanned=%d wrote=%d reusable=%d",
3965 recent_alloc, smoothed_alloc, strategy_delta, bufs_ahead,
3966 smoothed_density, reusable_buffers_est, upcoming_alloc_est,
3967 bufs_to_lap - num_to_scan,
3968 num_written,
3969 reusable_buffers - reusable_buffers_est);
3970#endif
3971
3972 /*
3973 * Consider the above scan as being like a new allocation scan.
3974 * Characterize its density and update the smoothed one based on it. This
3975 * effectively halves the moving average period in cases where both the
3976 * strategy and the background writer are doing some useful scanning,
3977 * which is helpful because a long memory isn't as desirable on the
3978 * density estimates.
3979 */
3980 new_strategy_delta = bufs_to_lap - num_to_scan;
3981 new_recent_alloc = reusable_buffers - reusable_buffers_est;
3982 if (new_strategy_delta > 0 && new_recent_alloc > 0)
3983 {
3984 scans_per_alloc = (float) new_strategy_delta / (float) new_recent_alloc;
3985 smoothed_density += (scans_per_alloc - smoothed_density) /
3986 smoothing_samples;
3987
3988#ifdef BGW_DEBUG
3989 elog(DEBUG2, "bgwriter: cleaner density alloc=%u scan=%ld density=%.2f new smoothed=%.2f",
3990 new_recent_alloc, new_strategy_delta,
3991 scans_per_alloc, smoothed_density);
3992#endif
3993 }
3994
3995 /* Return true if OK to hibernate */
3996 return (bufs_to_lap == 0 && recent_alloc == 0);
3997}
3998
3999/*
4000 * SyncOneBuffer -- process a single buffer during syncing.
4001 *
4002 * If skip_recently_used is true, we don't write currently-pinned buffers, nor
4003 * buffers marked recently used, as these are not replacement candidates.
4004 *
4005 * Returns a bitmask containing the following flag bits:
4006 * BUF_WRITTEN: we wrote the buffer.
4007 * BUF_REUSABLE: buffer is available for replacement, ie, it has
4008 * pin count 0 and usage count 0.
4009 *
4010 * (BUF_WRITTEN could be set in error if FlushBuffer finds the buffer clean
4011 * after locking it, but we don't care all that much.)
4012 */
4013static int
4014SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *wb_context)
4015{
4016 BufferDesc *bufHdr = GetBufferDescriptor(buf_id);
4017 int result = 0;
4018 uint32 buf_state;
4019 BufferTag tag;
4020
4021 /* Make sure we can handle the pin */
4024
4025 /*
4026 * Check whether buffer needs writing.
4027 *
4028 * We can make this check without taking the buffer content lock so long
4029 * as we mark pages dirty in access methods *before* logging changes with
4030 * XLogInsert(): if someone marks the buffer dirty just after our check we
4031 * don't worry because our checkpoint.redo points before log record for
4032 * upcoming changes and so we are not required to write such dirty buffer.
4033 */
4034 buf_state = LockBufHdr(bufHdr);
4035
4036 if (BUF_STATE_GET_REFCOUNT(buf_state) == 0 &&
4037 BUF_STATE_GET_USAGECOUNT(buf_state) == 0)
4038 {
4039 result |= BUF_REUSABLE;
4040 }
4041 else if (skip_recently_used)
4042 {
4043 /* Caller told us not to write recently-used buffers */
4044 UnlockBufHdr(bufHdr);
4045 return result;
4046 }
4047
4048 if (!(buf_state & BM_VALID) || !(buf_state & BM_DIRTY))
4049 {
4050 /* It's clean, so nothing to do */
4051 UnlockBufHdr(bufHdr);
4052 return result;
4053 }
4054
4055 /*
4056 * Pin it, share-lock it, write it. (FlushBuffer will do nothing if the
4057 * buffer is clean by the time we've locked it.)
4058 */
4059 PinBuffer_Locked(bufHdr);
4060
4062
4063 tag = bufHdr->tag;
4064
4065 UnpinBuffer(bufHdr);
4066
4067 /*
4068 * SyncOneBuffer() is only called by checkpointer and bgwriter, so
4069 * IOContext will always be IOCONTEXT_NORMAL.
4070 */
4072
4073 return result | BUF_WRITTEN;
4074}
4075
4076/*
4077 * AtEOXact_Buffers - clean up at end of transaction.
4078 *
4079 * As of PostgreSQL 8.0, buffer pins should get released by the
4080 * ResourceOwner mechanism. This routine is just a debugging
4081 * cross-check that no pins remain.
4082 */
4083void
4084AtEOXact_Buffers(bool isCommit)
4085{
4087
4088 AtEOXact_LocalBuffers(isCommit);
4089
4091}
4092
4093/*
4094 * Initialize access to shared buffer pool
4095 *
4096 * This is called during backend startup (whether standalone or under the
4097 * postmaster). It sets up for this backend's access to the already-existing
4098 * buffer pool.
4099 */
4100void
4102{
4103 HASHCTL hash_ctl;
4104
4105 /*
4106 * An advisory limit on the number of pins each backend should hold, based
4107 * on shared_buffers and the maximum number of connections possible.
4108 * That's very pessimistic, but outside toy-sized shared_buffers it should
4109 * allow plenty of pins. LimitAdditionalPins() and
4110 * GetAdditionalPinLimit() can be used to check the remaining balance.
4111 */
4113
4114 memset(&PrivateRefCountArray, 0, sizeof(PrivateRefCountArray));
4116
4117 hash_ctl.keysize = sizeof(Buffer);
4118 hash_ctl.entrysize = sizeof(PrivateRefCountEntry);
4119
4120 PrivateRefCountHash = hash_create("PrivateRefCount", 100, &hash_ctl,
4122
4123 /*
4124 * AtProcExit_Buffers needs LWLock access, and thereby has to be called at
4125 * the corresponding phase of backend shutdown.
4126 */
4127 Assert(MyProc != NULL);
4129}
4130
4131/*
4132 * During backend exit, ensure that we released all shared-buffer locks and
4133 * assert that we have no remaining pins.
4134 */
4135static void
4137{
4138 UnlockBuffers();
4139
4141
4142 /* localbuf.c needs a chance too */
4144}
4145
4146/*
4147 * CheckForBufferLeaks - ensure this backend holds no buffer pins
4148 *
4149 * As of PostgreSQL 8.0, buffer pins should get released by the
4150 * ResourceOwner mechanism. This routine is just a debugging
4151 * cross-check that no pins remain.
4152 */
4153static void
4155{
4156#ifdef USE_ASSERT_CHECKING
4157 int RefCountErrors = 0;
4159 int i;
4160 char *s;
4161
4162 /* check the array */
4163 for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
4164 {
4166 {
4167 res = &PrivateRefCountArray[i];
4168
4170 elog(WARNING, "buffer refcount leak: %s", s);
4171 pfree(s);
4172
4173 RefCountErrors++;
4174 }
4175 }
4176
4177 /* if necessary search the hash */
4179 {
4180 HASH_SEQ_STATUS hstat;
4181
4183 while ((res = (PrivateRefCountEntry *) hash_seq_search(&hstat)) != NULL)
4184 {
4186 elog(WARNING, "buffer refcount leak: %s", s);
4187 pfree(s);
4188 RefCountErrors++;
4189 }
4190 }
4191
4192 Assert(RefCountErrors == 0);
4193#endif
4194}
4195
4196#ifdef USE_ASSERT_CHECKING
4197/*
4198 * Check for exclusive-locked catalog buffers. This is the core of
4199 * AssertCouldGetRelation().
4200 *
4201 * A backend would self-deadlock on LWLocks if the catalog scan read the
4202 * exclusive-locked buffer. The main threat is exclusive-locked buffers of
4203 * catalogs used in relcache, because a catcache search on any catalog may
4204 * build that catalog's relcache entry. We don't have an inventory of
4205 * catalogs relcache uses, so just check buffers of most catalogs.
4206 *
4207 * It's better to minimize waits while holding an exclusive buffer lock, so it
4208 * would be nice to broaden this check not to be catalog-specific. However,
4209 * bttextcmp() accesses pg_collation, and non-core opclasses might similarly
4210 * read tables. That is deadlock-free as long as there's no loop in the
4211 * dependency graph: modifying table A may cause an opclass to read table B,
4212 * but it must not cause a read of table A.
4213 */
4214void
4215AssertBufferLocksPermitCatalogRead(void)
4216{
4217 ForEachLWLockHeldByMe(AssertNotCatalogBufferLock, NULL);
4218}
4219
4220static void
4221AssertNotCatalogBufferLock(LWLock *lock, LWLockMode mode,
4222 void *unused_context)
4223{
4224 BufferDesc *bufHdr;
4225 BufferTag tag;
4226 Oid relid;
4227
4228 if (mode != LW_EXCLUSIVE)
4229 return;
4230
4231 if (!((BufferDescPadded *) lock > BufferDescriptors &&
4233 return; /* not a buffer lock */
4234
4235 bufHdr = (BufferDesc *)
4236 ((char *) lock - offsetof(BufferDesc, content_lock));
4237 tag = bufHdr->tag;
4238
4239 /*
4240 * This relNumber==relid assumption holds until a catalog experiences
4241 * VACUUM FULL or similar. After a command like that, relNumber will be
4242 * in the normal (non-catalog) range, and we lose the ability to detect
4243 * hazardous access to that catalog. Calling RelidByRelfilenumber() would
4244 * close that gap, but RelidByRelfilenumber() might then deadlock with a
4245 * held lock.
4246 */
4247 relid = tag.relNumber;
4248
4249 if (IsCatalogTextUniqueIndexOid(relid)) /* see comments at the callee */
4250 return;
4251
4253}
4254#endif
4255
4256
4257/*
4258 * Helper routine to issue warnings when a buffer is unexpectedly pinned
4259 */
4260char *
4262{
4263 BufferDesc *buf;
4264 int32 loccount;
4265 char *result;
4266 ProcNumber backend;
4267 uint32 buf_state;
4268
4270 if (BufferIsLocal(buffer))
4271 {
4273 loccount = LocalRefCount[-buffer - 1];
4274 backend = MyProcNumber;
4275 }
4276 else
4277 {
4279 loccount = GetPrivateRefCount(buffer);
4280 backend = INVALID_PROC_NUMBER;
4281 }
4282
4283 /* theoretically we should lock the bufhdr here */
4284 buf_state = pg_atomic_read_u32(&buf->state);
4285
4286 result = psprintf("[%03d] (rel=%s, blockNum=%u, flags=0x%x, refcount=%u %d)",
4287 buffer,
4289 BufTagGetForkNum(&buf->tag)).str,
4290 buf->tag.blockNum, buf_state & BUF_FLAG_MASK,
4291 BUF_STATE_GET_REFCOUNT(buf_state), loccount);
4292 return result;
4293}
4294
4295/*
4296 * CheckPointBuffers
4297 *
4298 * Flush all dirty blocks in buffer pool to disk at checkpoint time.
4299 *
4300 * Note: temporary relations do not participate in checkpoints, so they don't
4301 * need to be flushed.
4302 */
4303void
4305{
4306 BufferSync(flags);
4307}
4308
4309/*
4310 * BufferGetBlockNumber
4311 * Returns the block number associated with a buffer.
4312 *
4313 * Note:
4314 * Assumes that the buffer is valid and pinned, else the
4315 * value may be obsolete immediately...
4316 */
4319{
4320 BufferDesc *bufHdr;
4321
4323
4324 if (BufferIsLocal(buffer))
4325 bufHdr = GetLocalBufferDescriptor(-buffer - 1);
4326 else
4327 bufHdr = GetBufferDescriptor(buffer - 1);
4328
4329 /* pinned, so OK to read tag without spinlock */
4330 return bufHdr->tag.blockNum;
4331}
4332
4333/*
4334 * BufferGetTag
4335 * Returns the relfilelocator, fork number and block number associated with
4336 * a buffer.
4337 */
4338void
4340 BlockNumber *blknum)
4341{
4342 BufferDesc *bufHdr;
4343
4344 /* Do the same checks as BufferGetBlockNumber. */
4346
4347 if (BufferIsLocal(buffer))
4348 bufHdr = GetLocalBufferDescriptor(-buffer - 1);
4349 else
4350 bufHdr = GetBufferDescriptor(buffer - 1);
4351
4352 /* pinned, so OK to read tag without spinlock */
4353 *rlocator = BufTagGetRelFileLocator(&bufHdr->tag);
4354 *forknum = BufTagGetForkNum(&bufHdr->tag);
4355 *blknum = bufHdr->tag.blockNum;
4356}
4357
4358/*
4359 * FlushBuffer
4360 * Physically write out a shared buffer.
4361 *
4362 * NOTE: this actually just passes the buffer contents to the kernel; the
4363 * real write to disk won't happen until the kernel feels like it. This
4364 * is okay from our point of view since we can redo the changes from WAL.
4365 * However, we will need to force the changes to disk via fsync before
4366 * we can checkpoint WAL.
4367 *
4368 * The caller must hold a pin on the buffer and have share-locked the
4369 * buffer contents. (Note: a share-lock does not prevent updates of
4370 * hint bits in the buffer, so the page could change while the write
4371 * is in progress, but we assume that that will not invalidate the data
4372 * written.)
4373 *
4374 * If the caller has an smgr reference for the buffer's relation, pass it
4375 * as the second parameter. If not, pass NULL.
4376 */
4377static void
4379 IOContext io_context)
4380{
4381 XLogRecPtr recptr;
4382 ErrorContextCallback errcallback;
4383 instr_time io_start;
4384 Block bufBlock;
4385 char *bufToWrite;
4386 uint32 buf_state;
4387
4388 /*
4389 * Try to start an I/O operation. If StartBufferIO returns false, then
4390 * someone else flushed the buffer before we could, so we need not do
4391 * anything.
4392 */
4393 if (!StartBufferIO(buf, false, false))
4394 return;
4395
4396 /* Setup error traceback support for ereport() */
4398 errcallback.arg = buf;
4399 errcallback.previous = error_context_stack;
4400 error_context_stack = &errcallback;
4401
4402 /* Find smgr relation for buffer */
4403 if (reln == NULL)
4405
4406 TRACE_POSTGRESQL_BUFFER_FLUSH_START(BufTagGetForkNum(&buf->tag),
4407 buf->tag.blockNum,
4411
4412 buf_state = LockBufHdr(buf);
4413
4414 /*
4415 * Run PageGetLSN while holding header lock, since we don't have the
4416 * buffer locked exclusively in all cases.
4417 */
4418 recptr = BufferGetLSN(buf);
4419
4420 /* To check if block content changes while flushing. - vadim 01/17/97 */
4421 UnlockBufHdrExt(buf, buf_state,
4422 0, BM_JUST_DIRTIED,
4423 0);
4424
4425 /*
4426 * Force XLOG flush up to buffer's LSN. This implements the basic WAL
4427 * rule that log updates must hit disk before any of the data-file changes
4428 * they describe do.
4429 *
4430 * However, this rule does not apply to unlogged relations, which will be
4431 * lost after a crash anyway. Most unlogged relation pages do not bear
4432 * LSNs since we never emit WAL records for them, and therefore flushing
4433 * up through the buffer LSN would be useless, but harmless. However,
4434 * GiST indexes use LSNs internally to track page-splits, and therefore
4435 * unlogged GiST pages bear "fake" LSNs generated by
4436 * GetFakeLSNForUnloggedRel. It is unlikely but possible that the fake
4437 * LSN counter could advance past the WAL insertion point; and if it did
4438 * happen, attempting to flush WAL through that location would fail, with
4439 * disastrous system-wide consequences. To make sure that can't happen,
4440 * skip the flush if the buffer isn't permanent.
4441 */
4442 if (buf_state & BM_PERMANENT)
4443 XLogFlush(recptr);
4444
4445 /*
4446 * Now it's safe to write the buffer to disk. Note that no one else should
4447 * have been able to write it, while we were busy with log flushing,
4448 * because we got the exclusive right to perform I/O by setting the
4449 * BM_IO_IN_PROGRESS bit.
4450 */
4451 bufBlock = BufHdrGetBlock(buf);
4452
4453 /*
4454 * Update page checksum if desired. Since we have only shared lock on the
4455 * buffer, other processes might be updating hint bits in it, so we must
4456 * copy the page to private storage if we do checksumming.
4457 */
4458 bufToWrite = PageSetChecksumCopy((Page) bufBlock, buf->tag.blockNum);
4459
4461
4462 /*
4463 * bufToWrite is either the shared buffer or a copy, as appropriate.
4464 */
4465 smgrwrite(reln,
4466 BufTagGetForkNum(&buf->tag),
4467 buf->tag.blockNum,
4468 bufToWrite,
4469 false);
4470
4471 /*
4472 * When a strategy is in use, only flushes of dirty buffers already in the
4473 * strategy ring are counted as strategy writes (IOCONTEXT
4474 * [BULKREAD|BULKWRITE|VACUUM] IOOP_WRITE) for the purpose of IO
4475 * statistics tracking.
4476 *
4477 * If a shared buffer initially added to the ring must be flushed before
4478 * being used, this is counted as an IOCONTEXT_NORMAL IOOP_WRITE.
4479 *
4480 * If a shared buffer which was added to the ring later because the
4481 * current strategy buffer is pinned or in use or because all strategy
4482 * buffers were dirty and rejected (for BAS_BULKREAD operations only)
4483 * requires flushing, this is counted as an IOCONTEXT_NORMAL IOOP_WRITE
4484 * (from_ring will be false).
4485 *
4486 * When a strategy is not in use, the write can only be a "regular" write
4487 * of a dirty shared buffer (IOCONTEXT_NORMAL IOOP_WRITE).
4488 */
4490 IOOP_WRITE, io_start, 1, BLCKSZ);
4491
4493
4494 /*
4495 * Mark the buffer as clean (unless BM_JUST_DIRTIED has become set) and
4496 * end the BM_IO_IN_PROGRESS state.
4497 */
4498 TerminateBufferIO(buf, true, 0, true, false);
4499
4500 TRACE_POSTGRESQL_BUFFER_FLUSH_DONE(BufTagGetForkNum(&buf->tag),
4501 buf->tag.blockNum,
4505
4506 /* Pop the error context stack */
4507 error_context_stack = errcallback.previous;
4508}
4509
4510/*
4511 * Convenience wrapper around FlushBuffer() that locks/unlocks the buffer
4512 * before/after calling FlushBuffer().
4513 */
4514static void
4516 IOObject io_object, IOContext io_context)
4517{
4521}
4522
4523/*
4524 * RelationGetNumberOfBlocksInFork
4525 * Determines the current number of pages in the specified relation fork.
4526 *
4527 * Note that the accuracy of the result will depend on the details of the
4528 * relation's storage. For builtin AMs it'll be accurate, but for external AMs
4529 * it might not be.
4530 */
4533{
4534 if (RELKIND_HAS_TABLE_AM(relation->rd_rel->relkind))
4535 {
4536 /*
4537 * Not every table AM uses BLCKSZ wide fixed size blocks. Therefore
4538 * tableam returns the size in bytes - but for the purpose of this
4539 * routine, we want the number of blocks. Therefore divide, rounding
4540 * up.
4541 */
4542 uint64 szbytes;
4543
4544 szbytes = table_relation_size(relation, forkNum);
4545
4546 return (szbytes + (BLCKSZ - 1)) / BLCKSZ;
4547 }
4548 else if (RELKIND_HAS_STORAGE(relation->rd_rel->relkind))
4549 {
4550 return smgrnblocks(RelationGetSmgr(relation), forkNum);
4551 }
4552 else
4553 Assert(false);
4554
4555 return 0; /* keep compiler quiet */
4556}
4557
4558/*
4559 * BufferIsPermanent
4560 * Determines whether a buffer will potentially still be around after
4561 * a crash. Caller must hold a buffer pin.
4562 */
4563bool
4565{
4566 BufferDesc *bufHdr;
4567
4568 /* Local buffers are used only for temp relations. */
4569 if (BufferIsLocal(buffer))
4570 return false;
4571
4572 /* Make sure we've got a real buffer, and that we hold a pin on it. */
4575
4576 /*
4577 * BM_PERMANENT can't be changed while we hold a pin on the buffer, so we
4578 * need not bother with the buffer header spinlock. Even if someone else
4579 * changes the buffer header state while we're doing this, the state is
4580 * changed atomically, so we'll read the old value or the new value, but
4581 * not random garbage.
4582 */
4583 bufHdr = GetBufferDescriptor(buffer - 1);
4584 return (pg_atomic_read_u32(&bufHdr->state) & BM_PERMANENT) != 0;
4585}
4586
4587/*
4588 * BufferGetLSNAtomic
4589 * Retrieves the LSN of the buffer atomically using a buffer header lock.
4590 * This is necessary for some callers who may not have an exclusive lock
4591 * on the buffer.
4592 */
4595{
4596 char *page = BufferGetPage(buffer);
4597 BufferDesc *bufHdr;
4598 XLogRecPtr lsn;
4599
4600 /*
4601 * If we don't need locking for correctness, fastpath out.
4602 */
4604 return PageGetLSN(page);
4605
4606 /* Make sure we've got a real buffer, and that we hold a pin on it. */
4609
4610 bufHdr = GetBufferDescriptor(buffer - 1);
4611 LockBufHdr(bufHdr);
4612 lsn = PageGetLSN(page);
4613 UnlockBufHdr(bufHdr);
4614
4615 return lsn;
4616}
4617
4618/* ---------------------------------------------------------------------
4619 * DropRelationBuffers
4620 *
4621 * This function removes from the buffer pool all the pages of the
4622 * specified relation forks that have block numbers >= firstDelBlock.
4623 * (In particular, with firstDelBlock = 0, all pages are removed.)
4624 * Dirty pages are simply dropped, without bothering to write them
4625 * out first. Therefore, this is NOT rollback-able, and so should be
4626 * used only with extreme caution!
4627 *
4628 * Currently, this is called only from smgr.c when the underlying file
4629 * is about to be deleted or truncated (firstDelBlock is needed for
4630 * the truncation case). The data in the affected pages would therefore
4631 * be deleted momentarily anyway, and there is no point in writing it.
4632 * It is the responsibility of higher-level code to ensure that the
4633 * deletion or truncation does not lose any data that could be needed
4634 * later. It is also the responsibility of higher-level code to ensure
4635 * that no other process could be trying to load more pages of the
4636 * relation into buffers.
4637 * --------------------------------------------------------------------
4638 */
4639void
4641 int nforks, BlockNumber *firstDelBlock)
4642{
4643 int i;
4644 int j;
4645 RelFileLocatorBackend rlocator;
4646 BlockNumber nForkBlock[MAX_FORKNUM];
4647 uint64 nBlocksToInvalidate = 0;
4648
4649 rlocator = smgr_reln->smgr_rlocator;
4650
4651 /* If it's a local relation, it's localbuf.c's problem. */
4652 if (RelFileLocatorBackendIsTemp(rlocator))
4653 {
4654 if (rlocator.backend == MyProcNumber)
4655 DropRelationLocalBuffers(rlocator.locator, forkNum, nforks,
4656 firstDelBlock);
4657
4658 return;
4659 }
4660
4661 /*
4662 * To remove all the pages of the specified relation forks from the buffer
4663 * pool, we need to scan the entire buffer pool but we can optimize it by
4664 * finding the buffers from BufMapping table provided we know the exact
4665 * size of each fork of the relation. The exact size is required to ensure
4666 * that we don't leave any buffer for the relation being dropped as
4667 * otherwise the background writer or checkpointer can lead to a PANIC
4668 * error while flushing buffers corresponding to files that don't exist.
4669 *
4670 * To know the exact size, we rely on the size cached for each fork by us
4671 * during recovery which limits the optimization to recovery and on
4672 * standbys but we can easily extend it once we have shared cache for
4673 * relation size.
4674 *
4675 * In recovery, we cache the value returned by the first lseek(SEEK_END)
4676 * and the future writes keeps the cached value up-to-date. See
4677 * smgrextend. It is possible that the value of the first lseek is smaller
4678 * than the actual number of existing blocks in the file due to buggy
4679 * Linux kernels that might not have accounted for the recent write. But
4680 * that should be fine because there must not be any buffers after that
4681 * file size.
4682 */
4683 for (i = 0; i < nforks; i++)
4684 {
4685 /* Get the number of blocks for a relation's fork */
4686 nForkBlock[i] = smgrnblocks_cached(smgr_reln, forkNum[i]);
4687
4688 if (nForkBlock[i] == InvalidBlockNumber)
4689 {
4690 nBlocksToInvalidate = InvalidBlockNumber;
4691 break;
4692 }
4693
4694 /* calculate the number of blocks to be invalidated */
4695 nBlocksToInvalidate += (nForkBlock[i] - firstDelBlock[i]);
4696 }
4697
4698 /*
4699 * We apply the optimization iff the total number of blocks to invalidate
4700 * is below the BUF_DROP_FULL_SCAN_THRESHOLD.
4701 */
4702 if (BlockNumberIsValid(nBlocksToInvalidate) &&
4703 nBlocksToInvalidate < BUF_DROP_FULL_SCAN_THRESHOLD)
4704 {
4705 for (j = 0; j < nforks; j++)
4706 FindAndDropRelationBuffers(rlocator.locator, forkNum[j],
4707 nForkBlock[j], firstDelBlock[j]);
4708 return;
4709 }
4710
4711 for (i = 0; i < NBuffers; i++)
4712 {
4713 BufferDesc *bufHdr = GetBufferDescriptor(i);
4714
4715 /*
4716 * We can make this a tad faster by prechecking the buffer tag before
4717 * we attempt to lock the buffer; this saves a lot of lock
4718 * acquisitions in typical cases. It should be safe because the
4719 * caller must have AccessExclusiveLock on the relation, or some other
4720 * reason to be certain that no one is loading new pages of the rel
4721 * into the buffer pool. (Otherwise we might well miss such pages
4722 * entirely.) Therefore, while the tag might be changing while we
4723 * look at it, it can't be changing *to* a value we care about, only
4724 * *away* from such a value. So false negatives are impossible, and
4725 * false positives are safe because we'll recheck after getting the
4726 * buffer lock.
4727 *
4728 * We could check forkNum and blockNum as well as the rlocator, but
4729 * the incremental win from doing so seems small.
4730 */
4731 if (!BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator.locator))
4732 continue;
4733
4734 LockBufHdr(bufHdr);
4735
4736 for (j = 0; j < nforks; j++)
4737 {
4738 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator.locator) &&
4739 BufTagGetForkNum(&bufHdr->tag) == forkNum[j] &&
4740 bufHdr->tag.blockNum >= firstDelBlock[j])
4741 {
4742 InvalidateBuffer(bufHdr); /* releases spinlock */
4743 break;
4744 }
4745 }
4746 if (j >= nforks)
4747 UnlockBufHdr(bufHdr);
4748 }
4749}
4750
4751/* ---------------------------------------------------------------------
4752 * DropRelationsAllBuffers
4753 *
4754 * This function removes from the buffer pool all the pages of all
4755 * forks of the specified relations. It's equivalent to calling
4756 * DropRelationBuffers once per fork per relation with firstDelBlock = 0.
4757 * --------------------------------------------------------------------
4758 */
4759void
4760DropRelationsAllBuffers(SMgrRelation *smgr_reln, int nlocators)
4761{
4762 int i;
4763 int n = 0;
4764 SMgrRelation *rels;
4765 BlockNumber (*block)[MAX_FORKNUM + 1];
4766 uint64 nBlocksToInvalidate = 0;
4767 RelFileLocator *locators;
4768 bool cached = true;
4769 bool use_bsearch;
4770
4771 if (nlocators == 0)
4772 return;
4773
4774 rels = palloc_array(SMgrRelation, nlocators); /* non-local relations */
4775
4776 /* If it's a local relation, it's localbuf.c's problem. */
4777 for (i = 0; i < nlocators; i++)
4778 {
4779 if (RelFileLocatorBackendIsTemp(smgr_reln[i]->smgr_rlocator))
4780 {
4781 if (smgr_reln[i]->smgr_rlocator.backend == MyProcNumber)
4782 DropRelationAllLocalBuffers(smgr_reln[i]->smgr_rlocator.locator);
4783 }
4784 else
4785 rels[n++] = smgr_reln[i];
4786 }
4787
4788 /*
4789 * If there are no non-local relations, then we're done. Release the
4790 * memory and return.
4791 */
4792 if (n == 0)
4793 {
4794 pfree(rels);
4795 return;
4796 }
4797
4798 /*
4799 * This is used to remember the number of blocks for all the relations
4800 * forks.
4801 */
4802 block = (BlockNumber (*)[MAX_FORKNUM + 1])
4803 palloc(sizeof(BlockNumber) * n * (MAX_FORKNUM + 1));
4804
4805 /*
4806 * We can avoid scanning the entire buffer pool if we know the exact size
4807 * of each of the given relation forks. See DropRelationBuffers.
4808 */
4809 for (i = 0; i < n && cached; i++)
4810 {
4811 for (int j = 0; j <= MAX_FORKNUM; j++)
4812 {
4813 /* Get the number of blocks for a relation's fork. */
4814 block[i][j] = smgrnblocks_cached(rels[i], j);
4815
4816 /* We need to only consider the relation forks that exists. */
4817 if (block[i][j] == InvalidBlockNumber)
4818 {
4819 if (!smgrexists(rels[i], j))
4820 continue;
4821 cached = false;
4822 break;
4823 }
4824
4825 /* calculate the total number of blocks to be invalidated */
4826 nBlocksToInvalidate += block[i][j];
4827 }
4828 }
4829
4830 /*
4831 * We apply the optimization iff the total number of blocks to invalidate
4832 * is below the BUF_DROP_FULL_SCAN_THRESHOLD.
4833 */
4834 if (cached && nBlocksToInvalidate < BUF_DROP_FULL_SCAN_THRESHOLD)
4835 {
4836 for (i = 0; i < n; i++)
4837 {
4838 for (int j = 0; j <= MAX_FORKNUM; j++)
4839 {
4840 /* ignore relation forks that doesn't exist */
4841 if (!BlockNumberIsValid(block[i][j]))
4842 continue;
4843
4844 /* drop all the buffers for a particular relation fork */
4845 FindAndDropRelationBuffers(rels[i]->smgr_rlocator.locator,
4846 j, block[i][j], 0);
4847 }
4848 }
4849
4850 pfree(block);
4851 pfree(rels);
4852 return;
4853 }
4854
4855 pfree(block);
4856 locators = palloc_array(RelFileLocator, n); /* non-local relations */
4857 for (i = 0; i < n; i++)
4858 locators[i] = rels[i]->smgr_rlocator.locator;
4859
4860 /*
4861 * For low number of relations to drop just use a simple walk through, to
4862 * save the bsearch overhead. The threshold to use is rather a guess than
4863 * an exactly determined value, as it depends on many factors (CPU and RAM
4864 * speeds, amount of shared buffers etc.).
4865 */
4866 use_bsearch = n > RELS_BSEARCH_THRESHOLD;
4867
4868 /* sort the list of rlocators if necessary */
4869 if (use_bsearch)
4870 qsort(locators, n, sizeof(RelFileLocator), rlocator_comparator);
4871
4872 for (i = 0; i < NBuffers; i++)
4873 {
4874 RelFileLocator *rlocator = NULL;
4875 BufferDesc *bufHdr = GetBufferDescriptor(i);
4876
4877 /*
4878 * As in DropRelationBuffers, an unlocked precheck should be safe and
4879 * saves some cycles.
4880 */
4881
4882 if (!use_bsearch)
4883 {
4884 int j;
4885
4886 for (j = 0; j < n; j++)
4887 {
4888 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &locators[j]))
4889 {
4890 rlocator = &locators[j];
4891 break;
4892 }
4893 }
4894 }
4895 else
4896 {
4897 RelFileLocator locator;
4898
4899 locator = BufTagGetRelFileLocator(&bufHdr->tag);
4900 rlocator = bsearch(&locator,
4901 locators, n, sizeof(RelFileLocator),
4903 }
4904
4905 /* buffer doesn't belong to any of the given relfilelocators; skip it */
4906 if (rlocator == NULL)
4907 continue;
4908
4909 LockBufHdr(bufHdr);
4910 if (BufTagMatchesRelFileLocator(&bufHdr->tag, rlocator))
4911 InvalidateBuffer(bufHdr); /* releases spinlock */
4912 else
4913 UnlockBufHdr(bufHdr);
4914 }
4915
4916 pfree(locators);
4917 pfree(rels);
4918}
4919
4920/* ---------------------------------------------------------------------
4921 * FindAndDropRelationBuffers
4922 *
4923 * This function performs look up in BufMapping table and removes from the
4924 * buffer pool all the pages of the specified relation fork that has block
4925 * number >= firstDelBlock. (In particular, with firstDelBlock = 0, all
4926 * pages are removed.)
4927 * --------------------------------------------------------------------
4928 */
4929static void
4931 BlockNumber nForkBlock,
4932 BlockNumber firstDelBlock)
4933{
4934 BlockNumber curBlock;
4935
4936 for (curBlock = firstDelBlock; curBlock < nForkBlock; curBlock++)
4937 {
4938 uint32 bufHash; /* hash value for tag */
4939 BufferTag bufTag; /* identity of requested block */
4940 LWLock *bufPartitionLock; /* buffer partition lock for it */
4941 int buf_id;
4942 BufferDesc *bufHdr;
4943
4944 /* create a tag so we can lookup the buffer */
4945 InitBufferTag(&bufTag, &rlocator, forkNum, curBlock);
4946
4947 /* determine its hash code and partition lock ID */
4948 bufHash = BufTableHashCode(&bufTag);
4949 bufPartitionLock = BufMappingPartitionLock(bufHash);
4950
4951 /* Check that it is in the buffer pool. If not, do nothing. */
4952 LWLockAcquire(bufPartitionLock, LW_SHARED);
4953 buf_id = BufTableLookup(&bufTag, bufHash);
4954 LWLockRelease(bufPartitionLock);
4955
4956 if (buf_id < 0)
4957 continue;
4958
4959 bufHdr = GetBufferDescriptor(buf_id);
4960
4961 /*
4962 * We need to lock the buffer header and recheck if the buffer is
4963 * still associated with the same block because the buffer could be
4964 * evicted by some other backend loading blocks for a different
4965 * relation after we release lock on the BufMapping table.
4966 */
4967 LockBufHdr(bufHdr);
4968
4969 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator) &&
4970 BufTagGetForkNum(&bufHdr->tag) == forkNum &&
4971 bufHdr->tag.blockNum >= firstDelBlock)
4972 InvalidateBuffer(bufHdr); /* releases spinlock */
4973 else
4974 UnlockBufHdr(bufHdr);
4975 }
4976}
4977
4978/* ---------------------------------------------------------------------
4979 * DropDatabaseBuffers
4980 *
4981 * This function removes all the buffers in the buffer cache for a
4982 * particular database. Dirty pages are simply dropped, without
4983 * bothering to write them out first. This is used when we destroy a
4984 * database, to avoid trying to flush data to disk when the directory
4985 * tree no longer exists. Implementation is pretty similar to
4986 * DropRelationBuffers() which is for destroying just one relation.
4987 * --------------------------------------------------------------------
4988 */
4989void
4991{
4992 int i;
4993
4994 /*
4995 * We needn't consider local buffers, since by assumption the target
4996 * database isn't our own.
4997 */
4998
4999 for (i = 0; i < NBuffers; i++)
5000 {
5001 BufferDesc *bufHdr = GetBufferDescriptor(i);
5002
5003 /*
5004 * As in DropRelationBuffers, an unlocked precheck should be safe and
5005 * saves some cycles.
5006 */
5007 if (bufHdr->tag.dbOid != dbid)
5008 continue;
5009
5010 LockBufHdr(bufHdr);
5011 if (bufHdr->tag.dbOid == dbid)
5012 InvalidateBuffer(bufHdr); /* releases spinlock */
5013 else
5014 UnlockBufHdr(bufHdr);
5015 }
5016}
5017
5018/* ---------------------------------------------------------------------
5019 * FlushRelationBuffers
5020 *
5021 * This function writes all dirty pages of a relation out to disk
5022 * (or more accurately, out to kernel disk buffers), ensuring that the
5023 * kernel has an up-to-date view of the relation.
5024 *
5025 * Generally, the caller should be holding AccessExclusiveLock on the
5026 * target relation to ensure that no other backend is busy dirtying
5027 * more blocks of the relation; the effects can't be expected to last
5028 * after the lock is released.
5029 *
5030 * XXX currently it sequentially searches the buffer pool, should be
5031 * changed to more clever ways of searching. This routine is not
5032 * used in any performance-critical code paths, so it's not worth
5033 * adding additional overhead to normal paths to make it go faster.
5034 * --------------------------------------------------------------------
5035 */
5036void
5038{
5039 int i;
5040 BufferDesc *bufHdr;
5041 SMgrRelation srel = RelationGetSmgr(rel);
5042
5043 if (RelationUsesLocalBuffers(rel))
5044 {
5045 for (i = 0; i < NLocBuffer; i++)
5046 {
5047 uint32 buf_state;
5048
5049 bufHdr = GetLocalBufferDescriptor(i);
5050 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator) &&
5051 ((buf_state = pg_atomic_read_u32(&bufHdr->state)) &
5052 (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
5053 {
5054 ErrorContextCallback errcallback;
5055
5056 /* Setup error traceback support for ereport() */
5058 errcallback.arg = bufHdr;
5059 errcallback.previous = error_context_stack;
5060 error_context_stack = &errcallback;
5061
5062 /* Make sure we can handle the pin */
5065
5066 /*
5067 * Pin/unpin mostly to make valgrind work, but it also seems
5068 * like the right thing to do.
5069 */
5070 PinLocalBuffer(bufHdr, false);
5071
5072
5073 FlushLocalBuffer(bufHdr, srel);
5074
5076
5077 /* Pop the error context stack */
5078 error_context_stack = errcallback.previous;
5079 }
5080 }
5081
5082 return;
5083 }
5084
5085 for (i = 0; i < NBuffers; i++)
5086 {
5087 uint32 buf_state;
5088
5089 bufHdr = GetBufferDescriptor(i);
5090
5091 /*
5092 * As in DropRelationBuffers, an unlocked precheck should be safe and
5093 * saves some cycles.
5094 */
5095 if (!BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator))
5096 continue;
5097
5098 /* Make sure we can handle the pin */
5101
5102 buf_state = LockBufHdr(bufHdr);
5103 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator) &&
5104 (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
5105 {
5106 PinBuffer_Locked(bufHdr);
5108 UnpinBuffer(bufHdr);
5109 }
5110 else
5111 UnlockBufHdr(bufHdr);
5112 }
5113}
5114
5115/* ---------------------------------------------------------------------
5116 * FlushRelationsAllBuffers
5117 *
5118 * This function flushes out of the buffer pool all the pages of all
5119 * forks of the specified smgr relations. It's equivalent to calling
5120 * FlushRelationBuffers once per relation. The relations are assumed not
5121 * to use local buffers.
5122 * --------------------------------------------------------------------
5123 */
5124void
5126{
5127 int i;
5128 SMgrSortArray *srels;
5129 bool use_bsearch;
5130
5131 if (nrels == 0)
5132 return;
5133
5134 /* fill-in array for qsort */
5135 srels = palloc_array(SMgrSortArray, nrels);
5136
5137 for (i = 0; i < nrels; i++)
5138 {
5139 Assert(!RelFileLocatorBackendIsTemp(smgrs[i]->smgr_rlocator));
5140
5141 srels[i].rlocator = smgrs[i]->smgr_rlocator.locator;
5142 srels[i].srel = smgrs[i];
5143 }
5144
5145 /*
5146 * Save the bsearch overhead for low number of relations to sync. See
5147 * DropRelationsAllBuffers for details.
5148 */
5149 use_bsearch = nrels > RELS_BSEARCH_THRESHOLD;
5150
5151 /* sort the list of SMgrRelations if necessary */
5152 if (use_bsearch)
5153 qsort(srels, nrels, sizeof(SMgrSortArray), rlocator_comparator);
5154
5155 for (i = 0; i < NBuffers; i++)
5156 {
5157 SMgrSortArray *srelent = NULL;
5158 BufferDesc *bufHdr = GetBufferDescriptor(i);
5159 uint32 buf_state;
5160
5161 /*
5162 * As in DropRelationBuffers, an unlocked precheck should be safe and
5163 * saves some cycles.
5164 */
5165
5166 if (!use_bsearch)
5167 {
5168 int j;
5169
5170 for (j = 0; j < nrels; j++)
5171 {
5172 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &srels[j].rlocator))
5173 {
5174 srelent = &srels[j];
5175 break;
5176 }
5177 }
5178 }
5179 else
5180 {
5181 RelFileLocator rlocator;
5182
5183 rlocator = BufTagGetRelFileLocator(&bufHdr->tag);
5184 srelent = bsearch(&rlocator,
5185 srels, nrels, sizeof(SMgrSortArray),
5187 }
5188
5189 /* buffer doesn't belong to any of the given relfilelocators; skip it */
5190 if (srelent == NULL)
5191 continue;
5192
5193 /* Make sure we can handle the pin */
5196
5197 buf_state = LockBufHdr(bufHdr);
5198 if (BufTagMatchesRelFileLocator(&bufHdr->tag, &srelent->rlocator) &&
5199 (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
5200 {
5201 PinBuffer_Locked(bufHdr);
5203 UnpinBuffer(bufHdr);
5204 }
5205 else
5206 UnlockBufHdr(bufHdr);
5207 }
5208
5209 pfree(srels);
5210}
5211
5212/* ---------------------------------------------------------------------
5213 * RelationCopyStorageUsingBuffer
5214 *
5215 * Copy fork's data using bufmgr. Same as RelationCopyStorage but instead
5216 * of using smgrread and smgrextend this will copy using bufmgr APIs.
5217 *
5218 * Refer comments atop CreateAndCopyRelationData() for details about
5219 * 'permanent' parameter.
5220 * --------------------------------------------------------------------
5221 */
5222static void
5224 RelFileLocator dstlocator,
5225 ForkNumber forkNum, bool permanent)
5226{
5227 Buffer srcBuf;
5228 Buffer dstBuf;
5229 Page srcPage;
5230 Page dstPage;
5231 bool use_wal;
5232 BlockNumber nblocks;
5233 BlockNumber blkno;
5235 BufferAccessStrategy bstrategy_src;
5236 BufferAccessStrategy bstrategy_dst;
5238 ReadStream *src_stream;
5239 SMgrRelation src_smgr;
5240
5241 /*
5242 * In general, we want to write WAL whenever wal_level > 'minimal', but we
5243 * can skip it when copying any fork of an unlogged relation other than
5244 * the init fork.
5245 */
5246 use_wal = XLogIsNeeded() && (permanent || forkNum == INIT_FORKNUM);
5247
5248 /* Get number of blocks in the source relation. */
5249 nblocks = smgrnblocks(smgropen(srclocator, INVALID_PROC_NUMBER),
5250 forkNum);
5251
5252 /* Nothing to copy; just return. */
5253 if (nblocks == 0)
5254 return;
5255
5256 /*
5257 * Bulk extend the destination relation of the same size as the source
5258 * relation before starting to copy block by block.
5259 */
5260 memset(buf.data, 0, BLCKSZ);
5261 smgrextend(smgropen(dstlocator, INVALID_PROC_NUMBER), forkNum, nblocks - 1,
5262 buf.data, true);
5263
5264 /* This is a bulk operation, so use buffer access strategies. */
5265 bstrategy_src = GetAccessStrategy(BAS_BULKREAD);
5266 bstrategy_dst = GetAccessStrategy(BAS_BULKWRITE);
5267
5268 /* Initialize streaming read */
5269 p.current_blocknum = 0;
5270 p.last_exclusive = nblocks;
5271 src_smgr = smgropen(srclocator, INVALID_PROC_NUMBER);
5272
5273 /*
5274 * It is safe to use batchmode as block_range_read_stream_cb takes no
5275 * locks.
5276 */
5279 bstrategy_src,
5280 src_smgr,
5281 permanent ? RELPERSISTENCE_PERMANENT : RELPERSISTENCE_UNLOGGED,
5282 forkNum,
5284 &p,
5285 0);
5286
5287 /* Iterate over each block of the source relation file. */
5288 for (blkno = 0; blkno < nblocks; blkno++)
5289 {
5291
5292 /* Read block from source relation. */
5293 srcBuf = read_stream_next_buffer(src_stream, NULL);
5295 srcPage = BufferGetPage(srcBuf);
5296
5297 dstBuf = ReadBufferWithoutRelcache(dstlocator, forkNum,
5298 BufferGetBlockNumber(srcBuf),
5299 RBM_ZERO_AND_LOCK, bstrategy_dst,
5300 permanent);
5301 dstPage = BufferGetPage(dstBuf);
5302
5304
5305 /* Copy page data from the source to the destination. */
5306 memcpy(dstPage, srcPage, BLCKSZ);
5307 MarkBufferDirty(dstBuf);
5308
5309 /* WAL-log the copied page. */
5310 if (use_wal)
5311 log_newpage_buffer(dstBuf, true);
5312
5314
5315 UnlockReleaseBuffer(dstBuf);
5316 UnlockReleaseBuffer(srcBuf);
5317 }
5318 Assert(read_stream_next_buffer(src_stream, NULL) == InvalidBuffer);
5319 read_stream_end(src_stream);
5320
5321 FreeAccessStrategy(bstrategy_src);
5322 FreeAccessStrategy(bstrategy_dst);
5323}
5324
5325/* ---------------------------------------------------------------------
5326 * CreateAndCopyRelationData
5327 *
5328 * Create destination relation storage and copy all forks from the
5329 * source relation to the destination.
5330 *
5331 * Pass permanent as true for permanent relations and false for
5332 * unlogged relations. Currently this API is not supported for
5333 * temporary relations.
5334 * --------------------------------------------------------------------
5335 */
5336void
5338 RelFileLocator dst_rlocator, bool permanent)
5339{
5340 char relpersistence;
5341 SMgrRelation src_rel;
5342 SMgrRelation dst_rel;
5343
5344 /* Set the relpersistence. */
5345 relpersistence = permanent ?
5346 RELPERSISTENCE_PERMANENT : RELPERSISTENCE_UNLOGGED;
5347
5348 src_rel = smgropen(src_rlocator, INVALID_PROC_NUMBER);
5349 dst_rel = smgropen(dst_rlocator, INVALID_PROC_NUMBER);
5350
5351 /*
5352 * Create and copy all forks of the relation. During create database we
5353 * have a separate cleanup mechanism which deletes complete database
5354 * directory. Therefore, each individual relation doesn't need to be
5355 * registered for cleanup.
5356 */
5357 RelationCreateStorage(dst_rlocator, relpersistence, false);
5358
5359 /* copy main fork. */
5360 RelationCopyStorageUsingBuffer(src_rlocator, dst_rlocator, MAIN_FORKNUM,
5361 permanent);
5362
5363 /* copy those extra forks that exist */
5364 for (ForkNumber forkNum = MAIN_FORKNUM + 1;
5365 forkNum <= MAX_FORKNUM; forkNum++)
5366 {
5367 if (smgrexists(src_rel, forkNum))
5368 {
5369 smgrcreate(dst_rel, forkNum, false);
5370
5371 /*
5372 * WAL log creation if the relation is persistent, or this is the
5373 * init fork of an unlogged relation.
5374 */
5375 if (permanent || forkNum == INIT_FORKNUM)
5376 log_smgrcreate(&dst_rlocator, forkNum);
5377
5378 /* Copy a fork's data, block by block. */
5379 RelationCopyStorageUsingBuffer(src_rlocator, dst_rlocator, forkNum,
5380 permanent);
5381 }
5382 }
5383}
5384
5385/* ---------------------------------------------------------------------
5386 * FlushDatabaseBuffers
5387 *
5388 * This function writes all dirty pages of a database out to disk
5389 * (or more accurately, out to kernel disk buffers), ensuring that the
5390 * kernel has an up-to-date view of the database.
5391 *
5392 * Generally, the caller should be holding an appropriate lock to ensure
5393 * no other backend is active in the target database; otherwise more
5394 * pages could get dirtied.
5395 *
5396 * Note we don't worry about flushing any pages of temporary relations.
5397 * It's assumed these wouldn't be interesting.
5398 * --------------------------------------------------------------------
5399 */
5400void
5402{
5403 int i;
5404 BufferDesc *bufHdr;
5405
5406 for (i = 0; i < NBuffers; i++)
5407 {
5408 uint32 buf_state;
5409
5410 bufHdr = GetBufferDescriptor(i);
5411
5412 /*
5413 * As in DropRelationBuffers, an unlocked precheck should be safe and
5414 * saves some cycles.
5415 */
5416 if (bufHdr->tag.dbOid != dbid)
5417 continue;
5418
5419 /* Make sure we can handle the pin */
5422
5423 buf_state = LockBufHdr(bufHdr);
5424 if (bufHdr->tag.dbOid == dbid &&
5425 (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
5426 {
5427 PinBuffer_Locked(bufHdr);
5429 UnpinBuffer(bufHdr);
5430 }
5431 else
5432 UnlockBufHdr(bufHdr);
5433 }
5434}
5435
5436/*
5437 * Flush a previously, shared or exclusively, locked and pinned buffer to the
5438 * OS.
5439 */
5440void
5442{
5443 BufferDesc *bufHdr;
5444
5445 /* currently not needed, but no fundamental reason not to support */
5447
5449
5450 bufHdr = GetBufferDescriptor(buffer - 1);
5451
5453
5455}
5456
5457/*
5458 * ReleaseBuffer -- release the pin on a buffer
5459 */
5460void
5462{
5463 if (!BufferIsValid(buffer))
5464 elog(ERROR, "bad buffer ID: %d", buffer);
5465
5466 if (BufferIsLocal(buffer))
5468 else
5470}
5471
5472/*
5473 * UnlockReleaseBuffer -- release the content lock and pin on a buffer
5474 *
5475 * This is just a shorthand for a common combination.
5476 */
5477void
5479{
5482}
5483
5484/*
5485 * IncrBufferRefCount
5486 * Increment the pin count on a buffer that we have *already* pinned
5487 * at least once.
5488 *
5489 * This function cannot be used on a buffer we do not have pinned,
5490 * because it doesn't change the shared buffer state.
5491 */
5492void
5494{
5497 if (BufferIsLocal(buffer))
5498 LocalRefCount[-buffer - 1]++;
5499 else
5500 {
5502
5503 ref = GetPrivateRefCountEntry(buffer, true);
5504 Assert(ref != NULL);
5505 ref->data.refcount++;
5506 }
5508}
5509
5510/*
5511 * MarkBufferDirtyHint
5512 *
5513 * Mark a buffer dirty for non-critical changes.
5514 *
5515 * This is essentially the same as MarkBufferDirty, except:
5516 *
5517 * 1. The caller does not write WAL; so if checksums are enabled, we may need
5518 * to write an XLOG_FPI_FOR_HINT WAL record to protect against torn pages.
5519 * 2. The caller might have only share-lock instead of exclusive-lock on the
5520 * buffer's content lock.
5521 * 3. This function does not guarantee that the buffer is always marked dirty
5522 * (due to a race condition), so it cannot be used for important changes.
5523 */
5524void
5526{
5527 BufferDesc *bufHdr;
5528 Page page = BufferGetPage(buffer);
5529
5530 if (!BufferIsValid(buffer))
5531 elog(ERROR, "bad buffer ID: %d", buffer);
5532
5533 if (BufferIsLocal(buffer))
5534 {
5536 return;
5537 }
5538
5539 bufHdr = GetBufferDescriptor(buffer - 1);
5540
5542 /* here, either share or exclusive lock is OK */
5544
5545 /*
5546 * This routine might get called many times on the same page, if we are
5547 * making the first scan after commit of an xact that added/deleted many
5548 * tuples. So, be as quick as we can if the buffer is already dirty. We
5549 * do this by not acquiring spinlock if it looks like the status bits are
5550 * already set. Since we make this test unlocked, there's a chance we
5551 * might fail to notice that the flags have just been cleared, and failed
5552 * to reset them, due to memory-ordering issues. But since this function
5553 * is only intended to be used in cases where failing to write out the
5554 * data would be harmless anyway, it doesn't really matter.
5555 */
5556 if ((pg_atomic_read_u32(&bufHdr->state) & (BM_DIRTY | BM_JUST_DIRTIED)) !=
5558 {
5560 bool dirtied = false;
5561 bool delayChkptFlags = false;
5562 uint32 buf_state;
5563
5564 /*
5565 * If we need to protect hint bit updates from torn writes, WAL-log a
5566 * full page image of the page. This full page image is only necessary
5567 * if the hint bit update is the first change to the page since the
5568 * last checkpoint.
5569 *
5570 * We don't check full_page_writes here because that logic is included
5571 * when we call XLogInsert() since the value changes dynamically.
5572 */
5573 if (XLogHintBitIsNeeded() &&
5575 {
5576 /*
5577 * If we must not write WAL, due to a relfilelocator-specific
5578 * condition or being in recovery, don't dirty the page. We can
5579 * set the hint, just not dirty the page as a result so the hint
5580 * is lost when we evict the page or shutdown.
5581 *
5582 * See src/backend/storage/page/README for longer discussion.
5583 */
5584 if (RecoveryInProgress() ||
5586 return;
5587
5588 /*
5589 * If the block is already dirty because we either made a change
5590 * or set a hint already, then we don't need to write a full page
5591 * image. Note that aggressive cleaning of blocks dirtied by hint
5592 * bit setting would increase the call rate. Bulk setting of hint
5593 * bits would reduce the call rate...
5594 *
5595 * We must issue the WAL record before we mark the buffer dirty.
5596 * Otherwise we might write the page before we write the WAL. That
5597 * causes a race condition, since a checkpoint might occur between
5598 * writing the WAL record and marking the buffer dirty. We solve
5599 * that with a kluge, but one that is already in use during
5600 * transaction commit to prevent race conditions. Basically, we
5601 * simply prevent the checkpoint WAL record from being written
5602 * until we have marked the buffer dirty. We don't start the
5603 * checkpoint flush until we have marked dirty, so our checkpoint
5604 * must flush the change to disk successfully or the checkpoint
5605 * never gets written, so crash recovery will fix.
5606 *
5607 * It's possible we may enter here without an xid, so it is
5608 * essential that CreateCheckPoint waits for virtual transactions
5609 * rather than full transactionids.
5610 */
5613 delayChkptFlags = true;
5614 lsn = XLogSaveBufferForHint(buffer, buffer_std);
5615 }
5616
5617 buf_state = LockBufHdr(bufHdr);
5618
5619 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
5620
5621 if (!(buf_state & BM_DIRTY))
5622 {
5623 dirtied = true; /* Means "will be dirtied by this action" */
5624
5625 /*
5626 * Set the page LSN if we wrote a backup block. We aren't supposed
5627 * to set this when only holding a share lock but as long as we
5628 * serialise it somehow we're OK. We choose to set LSN while
5629 * holding the buffer header lock, which causes any reader of an
5630 * LSN who holds only a share lock to also obtain a buffer header
5631 * lock before using PageGetLSN(), which is enforced in
5632 * BufferGetLSNAtomic().
5633 *
5634 * If checksums are enabled, you might think we should reset the
5635 * checksum here. That will happen when the page is written
5636 * sometime later in this checkpoint cycle.
5637 */
5638 if (XLogRecPtrIsValid(lsn))
5639 PageSetLSN(page, lsn);
5640 }
5641
5642 UnlockBufHdrExt(bufHdr, buf_state,
5644 0, 0);
5645
5646 if (delayChkptFlags)
5647 MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
5648
5649 if (dirtied)
5650 {
5652 if (VacuumCostActive)
5654 }
5655 }
5656}
5657
5658/*
5659 * Release buffer content locks for shared buffers.
5660 *
5661 * Used to clean up after errors.
5662 *
5663 * Currently, we can expect that lwlock.c's LWLockReleaseAll() took care
5664 * of releasing buffer content locks per se; the only thing we need to deal
5665 * with here is clearing any PIN_COUNT request that was in progress.
5666 */
5667void
5669{
5671
5672 if (buf)
5673 {
5674 uint32 buf_state;
5675 uint32 unset_bits = 0;
5676
5677 buf_state = LockBufHdr(buf);
5678
5679 /*
5680 * Don't complain if flag bit not set; it could have been reset but we
5681 * got a cancel/die interrupt before getting the signal.
5682 */
5683 if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
5684 buf->wait_backend_pgprocno == MyProcNumber)
5685 unset_bits = BM_PIN_COUNT_WAITER;
5686
5687 UnlockBufHdrExt(buf, buf_state,
5688 0, unset_bits,
5689 0);
5690
5691 PinCountWaitBuf = NULL;
5692 }
5693}
5694
5695/*
5696 * Acquire or release the content_lock for the buffer.
5697 */
5698void
5700{
5701 BufferDesc *buf;
5702
5704 if (BufferIsLocal(buffer))
5705 return; /* local buffers need no lock */
5706
5708
5709 if (mode == BUFFER_LOCK_UNLOCK)
5711 else if (mode == BUFFER_LOCK_SHARE)
5713 else if (mode == BUFFER_LOCK_EXCLUSIVE)
5715 else
5716 elog(ERROR, "unrecognized buffer lock mode: %d", mode);
5717}
5718
5719/*
5720 * Acquire the content_lock for the buffer, but only if we don't have to wait.
5721 *
5722 * This assumes the caller wants BUFFER_LOCK_EXCLUSIVE mode.
5723 */
5724bool
5726{
5727 BufferDesc *buf;
5728
5730 if (BufferIsLocal(buffer))
5731 return true; /* act as though we got it */
5732
5734
5736 LW_EXCLUSIVE);
5737}
5738
5739/*
5740 * Verify that this backend is pinning the buffer exactly once.
5741 *
5742 * NOTE: Like in BufferIsPinned(), what we check here is that *this* backend
5743 * holds a pin on the buffer. We do not care whether some other backend does.
5744 */
5745void
5747{
5748 if (BufferIsLocal(buffer))
5749 {
5750 if (LocalRefCount[-buffer - 1] != 1)
5751 elog(ERROR, "incorrect local pin count: %d",
5752 LocalRefCount[-buffer - 1]);
5753 }
5754 else
5755 {
5756 if (GetPrivateRefCount(buffer) != 1)
5757 elog(ERROR, "incorrect local pin count: %d",
5759 }
5760}
5761
5762/*
5763 * LockBufferForCleanup - lock a buffer in preparation for deleting items
5764 *
5765 * Items may be deleted from a disk page only when the caller (a) holds an
5766 * exclusive lock on the buffer and (b) has observed that no other backend
5767 * holds a pin on the buffer. If there is a pin, then the other backend
5768 * might have a pointer into the buffer (for example, a heapscan reference
5769 * to an item --- see README for more details). It's OK if a pin is added
5770 * after the cleanup starts, however; the newly-arrived backend will be
5771 * unable to look at the page until we release the exclusive lock.
5772 *
5773 * To implement this protocol, a would-be deleter must pin the buffer and
5774 * then call LockBufferForCleanup(). LockBufferForCleanup() is similar to
5775 * LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE), except that it loops until
5776 * it has successfully observed pin count = 1.
5777 */
5778void
5780{
5781 BufferDesc *bufHdr;
5782 TimestampTz waitStart = 0;
5783 bool waiting = false;
5784 bool logged_recovery_conflict = false;
5785
5787 Assert(PinCountWaitBuf == NULL);
5788
5790
5791 /*
5792 * We do not yet need to be worried about in-progress AIOs holding a pin,
5793 * as we, so far, only support doing reads via AIO and this function can
5794 * only be called once the buffer is valid (i.e. no read can be in
5795 * flight).
5796 */
5797
5798 /* Nobody else to wait for */
5799 if (BufferIsLocal(buffer))
5800 return;
5801
5802 bufHdr = GetBufferDescriptor(buffer - 1);
5803
5804 for (;;)
5805 {
5806 uint32 buf_state;
5807 uint32 unset_bits = 0;
5808
5809 /* Try to acquire lock */
5811 buf_state = LockBufHdr(bufHdr);
5812
5813 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
5814 if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
5815 {
5816 /* Successfully acquired exclusive lock with pincount 1 */
5817 UnlockBufHdr(bufHdr);
5818
5819 /*
5820 * Emit the log message if recovery conflict on buffer pin was
5821 * resolved but the startup process waited longer than
5822 * deadlock_timeout for it.
5823 */
5824 if (logged_recovery_conflict)
5826 waitStart, GetCurrentTimestamp(),
5827 NULL, false);
5828
5829 if (waiting)
5830 {
5831 /* reset ps display to remove the suffix if we added one */
5833 waiting = false;
5834 }
5835 return;
5836 }
5837 /* Failed, so mark myself as waiting for pincount 1 */
5838 if (buf_state & BM_PIN_COUNT_WAITER)
5839 {
5840 UnlockBufHdr(bufHdr);
5842 elog(ERROR, "multiple backends attempting to wait for pincount 1");
5843 }
5845 PinCountWaitBuf = bufHdr;
5846 UnlockBufHdrExt(bufHdr, buf_state,
5848 0);
5850
5851 /* Wait to be signaled by UnpinBuffer() */
5852 if (InHotStandby)
5853 {
5854 if (!waiting)
5855 {
5856 /* adjust the process title to indicate that it's waiting */
5857 set_ps_display_suffix("waiting");
5858 waiting = true;
5859 }
5860
5861 /*
5862 * Emit the log message if the startup process is waiting longer
5863 * than deadlock_timeout for recovery conflict on buffer pin.
5864 *
5865 * Skip this if first time through because the startup process has
5866 * not started waiting yet in this case. So, the wait start
5867 * timestamp is set after this logic.
5868 */
5869 if (waitStart != 0 && !logged_recovery_conflict)
5870 {
5872
5873 if (TimestampDifferenceExceeds(waitStart, now,
5875 {
5877 waitStart, now, NULL, true);
5878 logged_recovery_conflict = true;
5879 }
5880 }
5881
5882 /*
5883 * Set the wait start timestamp if logging is enabled and first
5884 * time through.
5885 */
5886 if (log_recovery_conflict_waits && waitStart == 0)
5887 waitStart = GetCurrentTimestamp();
5888
5889 /* Publish the bufid that Startup process waits on */
5891 /* Set alarm and then wait to be signaled by UnpinBuffer() */
5893 /* Reset the published bufid */
5895 }
5896 else
5897 ProcWaitForSignal(WAIT_EVENT_BUFFER_CLEANUP);
5898
5899 /*
5900 * Remove flag marking us as waiter. Normally this will not be set
5901 * anymore, but ProcWaitForSignal() can return for other signals as
5902 * well. We take care to only reset the flag if we're the waiter, as
5903 * theoretically another backend could have started waiting. That's
5904 * impossible with the current usages due to table level locking, but
5905 * better be safe.
5906 */
5907 buf_state = LockBufHdr(bufHdr);
5908 if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
5910 unset_bits |= BM_PIN_COUNT_WAITER;
5911
5912 UnlockBufHdrExt(bufHdr, buf_state,
5913 0, unset_bits,
5914 0);
5915
5916 PinCountWaitBuf = NULL;
5917 /* Loop back and try again */
5918 }
5919}
5920
5921/*
5922 * Check called from ProcessRecoveryConflictInterrupts() when Startup process
5923 * requests cancellation of all pin holders that are blocking it.
5924 */
5925bool
5927{
5928 int bufid = GetStartupBufferPinWaitBufId();
5929
5930 /*
5931 * If we get woken slowly then it's possible that the Startup process was
5932 * already woken by other backends before we got here. Also possible that
5933 * we get here by multiple interrupts or interrupts at inappropriate
5934 * times, so make sure we do nothing if the bufid is not set.
5935 */
5936 if (bufid < 0)
5937 return false;
5938
5939 if (GetPrivateRefCount(bufid + 1) > 0)
5940 return true;
5941
5942 return false;
5943}
5944
5945/*
5946 * ConditionalLockBufferForCleanup - as above, but don't wait to get the lock
5947 *
5948 * We won't loop, but just check once to see if the pin count is OK. If
5949 * not, return false with no lock held.
5950 */
5951bool
5953{
5954 BufferDesc *bufHdr;
5955 uint32 buf_state,
5956 refcount;
5957
5959
5960 /* see AIO related comment in LockBufferForCleanup() */
5961
5962 if (BufferIsLocal(buffer))
5963 {
5964 refcount = LocalRefCount[-buffer - 1];
5965 /* There should be exactly one pin */
5966 Assert(refcount > 0);
5967 if (refcount != 1)
5968 return false;
5969 /* Nobody else to wait for */
5970 return true;
5971 }
5972
5973 /* There should be exactly one local pin */
5974 refcount = GetPrivateRefCount(buffer);
5975 Assert(refcount);
5976 if (refcount != 1)
5977 return false;
5978
5979 /* Try to acquire lock */
5981 return false;
5982
5983 bufHdr = GetBufferDescriptor(buffer - 1);
5984 buf_state = LockBufHdr(bufHdr);
5985 refcount = BUF_STATE_GET_REFCOUNT(buf_state);
5986
5987 Assert(refcount > 0);
5988 if (refcount == 1)
5989 {
5990 /* Successfully acquired exclusive lock with pincount 1 */
5991 UnlockBufHdr(bufHdr);
5992 return true;
5993 }
5994
5995 /* Failed, so release the lock */
5996 UnlockBufHdr(bufHdr);
5998 return false;
5999}
6000
6001/*
6002 * IsBufferCleanupOK - as above, but we already have the lock
6003 *
6004 * Check whether it's OK to perform cleanup on a buffer we've already
6005 * locked. If we observe that the pin count is 1, our exclusive lock
6006 * happens to be a cleanup lock, and we can proceed with anything that
6007 * would have been allowable had we sought a cleanup lock originally.
6008 */
6009bool
6011{
6012 BufferDesc *bufHdr;
6013 uint32 buf_state;
6014
6016
6017 /* see AIO related comment in LockBufferForCleanup() */
6018
6019 if (BufferIsLocal(buffer))
6020 {
6021 /* There should be exactly one pin */
6022 if (LocalRefCount[-buffer - 1] != 1)
6023 return false;
6024 /* Nobody else to wait for */
6025 return true;
6026 }
6027
6028 /* There should be exactly one local pin */
6029 if (GetPrivateRefCount(buffer) != 1)
6030 return false;
6031
6032 bufHdr = GetBufferDescriptor(buffer - 1);
6033
6034 /* caller must hold exclusive lock on buffer */
6036
6037 buf_state = LockBufHdr(bufHdr);
6038
6039 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
6040 if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
6041 {
6042 /* pincount is OK. */
6043 UnlockBufHdr(bufHdr);
6044 return true;
6045 }
6046
6047 UnlockBufHdr(bufHdr);
6048 return false;
6049}
6050
6051
6052/*
6053 * Functions for buffer I/O handling
6054 *
6055 * Also note that these are used only for shared buffers, not local ones.
6056 */
6057
6058/*
6059 * WaitIO -- Block until the IO_IN_PROGRESS flag on 'buf' is cleared.
6060 */
6061static void
6063{
6065
6067 for (;;)
6068 {
6069 uint32 buf_state;
6070 PgAioWaitRef iow;
6071
6072 /*
6073 * It may not be necessary to acquire the spinlock to check the flag
6074 * here, but since this test is essential for correctness, we'd better
6075 * play it safe.
6076 */
6077 buf_state = LockBufHdr(buf);
6078
6079 /*
6080 * Copy the wait reference while holding the spinlock. This protects
6081 * against a concurrent TerminateBufferIO() in another backend from
6082 * clearing the wref while it's being read.
6083 */
6084 iow = buf->io_wref;
6086
6087 /* no IO in progress, we don't need to wait */
6088 if (!(buf_state & BM_IO_IN_PROGRESS))
6089 break;
6090
6091 /*
6092 * The buffer has asynchronous IO in progress, wait for it to
6093 * complete.
6094 */
6095 if (pgaio_wref_valid(&iow))
6096 {
6097 pgaio_wref_wait(&iow);
6098
6099 /*
6100 * The AIO subsystem internally uses condition variables and thus
6101 * might remove this backend from the BufferDesc's CV. While that
6102 * wouldn't cause a correctness issue (the first CV sleep just
6103 * immediately returns if not already registered), it seems worth
6104 * avoiding unnecessary loop iterations, given that we take care
6105 * to do so at the start of the function.
6106 */
6108 continue;
6109 }
6110
6111 /* wait on BufferDesc->cv, e.g. for concurrent synchronous IO */
6112 ConditionVariableSleep(cv, WAIT_EVENT_BUFFER_IO);
6113 }
6115}
6116
6117/*
6118 * StartBufferIO: begin I/O on this buffer
6119 * (Assumptions)
6120 * My process is executing no IO on this buffer
6121 * The buffer is Pinned
6122 *
6123 * In some scenarios multiple backends could attempt the same I/O operation
6124 * concurrently. If someone else has already started I/O on this buffer then
6125 * we will wait for completion of the IO using WaitIO().
6126 *
6127 * Input operations are only attempted on buffers that are not BM_VALID,
6128 * and output operations only on buffers that are BM_VALID and BM_DIRTY,
6129 * so we can always tell if the work is already done.
6130 *
6131 * Returns true if we successfully marked the buffer as I/O busy,
6132 * false if someone else already did the work.
6133 *
6134 * If nowait is true, then we don't wait for an I/O to be finished by another
6135 * backend. In that case, false indicates either that the I/O was already
6136 * finished, or is still in progress. This is useful for callers that want to
6137 * find out if they can perform the I/O as part of a larger operation, without
6138 * waiting for the answer or distinguishing the reasons why not.
6139 */
6140bool
6141StartBufferIO(BufferDesc *buf, bool forInput, bool nowait)
6142{
6143 uint32 buf_state;
6144
6146
6147 for (;;)
6148 {
6149 buf_state = LockBufHdr(buf);
6150
6151 if (!(buf_state & BM_IO_IN_PROGRESS))
6152 break;
6154 if (nowait)
6155 return false;
6156 WaitIO(buf);
6157 }
6158
6159 /* Once we get here, there is definitely no I/O active on this buffer */
6160
6161 /* Check if someone else already did the I/O */
6162 if (forInput ? (buf_state & BM_VALID) : !(buf_state & BM_DIRTY))
6163 {
6165 return false;
6166 }
6167
6168 UnlockBufHdrExt(buf, buf_state,
6170 0);
6171
6174
6175 return true;
6176}
6177
6178/*
6179 * TerminateBufferIO: release a buffer we were doing I/O on
6180 * (Assumptions)
6181 * My process is executing IO for the buffer
6182 * BM_IO_IN_PROGRESS bit is set for the buffer
6183 * The buffer is Pinned
6184 *
6185 * If clear_dirty is true and BM_JUST_DIRTIED is not set, we clear the
6186 * buffer's BM_DIRTY flag. This is appropriate when terminating a
6187 * successful write. The check on BM_JUST_DIRTIED is necessary to avoid
6188 * marking the buffer clean if it was re-dirtied while we were writing.
6189 *
6190 * set_flag_bits gets ORed into the buffer's flags. It must include
6191 * BM_IO_ERROR in a failure case. For successful completion it could
6192 * be 0, or BM_VALID if we just finished reading in the page.
6193 *
6194 * If forget_owner is true, we release the buffer I/O from the current
6195 * resource owner. (forget_owner=false is used when the resource owner itself
6196 * is being released)
6197 */
6198void
6199TerminateBufferIO(BufferDesc *buf, bool clear_dirty, uint32 set_flag_bits,
6200 bool forget_owner, bool release_aio)
6201{
6202 uint32 buf_state;
6203 uint32 unset_flag_bits = 0;
6204 int refcount_change = 0;
6205
6206 buf_state = LockBufHdr(buf);
6207
6208 Assert(buf_state & BM_IO_IN_PROGRESS);
6209 unset_flag_bits |= BM_IO_IN_PROGRESS;
6210
6211 /* Clear earlier errors, if this IO failed, it'll be marked again */
6212 unset_flag_bits |= BM_IO_ERROR;
6213
6214 if (clear_dirty && !(buf_state & BM_JUST_DIRTIED))
6215 unset_flag_bits |= BM_DIRTY | BM_CHECKPOINT_NEEDED;
6216
6217 if (release_aio)
6218 {
6219 /* release ownership by the AIO subsystem */
6220 Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
6221 refcount_change = -1;
6222 pgaio_wref_clear(&buf->io_wref);
6223 }
6224
6225 buf_state = UnlockBufHdrExt(buf, buf_state,
6226 set_flag_bits, unset_flag_bits,
6227 refcount_change);
6228
6229 if (forget_owner)
6232
6234
6235 /*
6236 * Support LockBufferForCleanup()
6237 *
6238 * We may have just released the last pin other than the waiter's. In most
6239 * cases, this backend holds another pin on the buffer. But, if, for
6240 * example, this backend is completing an IO issued by another backend, it
6241 * may be time to wake the waiter.
6242 */
6243 if (release_aio && (buf_state & BM_PIN_COUNT_WAITER))
6245}
6246
6247/*
6248 * AbortBufferIO: Clean up active buffer I/O after an error.
6249 *
6250 * All LWLocks we might have held have been released,
6251 * but we haven't yet released buffer pins, so the buffer is still pinned.
6252 *
6253 * If I/O was in progress, we always set BM_IO_ERROR, even though it's
6254 * possible the error condition wasn't related to the I/O.
6255 *
6256 * Note: this does not remove the buffer I/O from the resource owner.
6257 * That's correct when we're releasing the whole resource owner, but
6258 * beware if you use this in other contexts.
6259 */
6260static void
6262{
6263 BufferDesc *buf_hdr = GetBufferDescriptor(buffer - 1);
6264 uint32 buf_state;
6265
6266 buf_state = LockBufHdr(buf_hdr);
6267 Assert(buf_state & (BM_IO_IN_PROGRESS | BM_TAG_VALID));
6268
6269 if (!(buf_state & BM_VALID))
6270 {
6271 Assert(!(buf_state & BM_DIRTY));
6272 UnlockBufHdr(buf_hdr);
6273 }
6274 else
6275 {
6276 Assert(buf_state & BM_DIRTY);
6277 UnlockBufHdr(buf_hdr);
6278
6279 /* Issue notice if this is not the first failure... */
6280 if (buf_state & BM_IO_ERROR)
6281 {
6282 /* Buffer is pinned, so we can read tag without spinlock */
6284 (errcode(ERRCODE_IO_ERROR),
6285 errmsg("could not write block %u of %s",
6286 buf_hdr->tag.blockNum,
6288 BufTagGetForkNum(&buf_hdr->tag)).str),
6289 errdetail("Multiple failures --- write error might be permanent.")));
6290 }
6291 }
6292
6293 TerminateBufferIO(buf_hdr, false, BM_IO_ERROR, false, false);
6294}
6295
6296/*
6297 * Error context callback for errors occurring during shared buffer writes.
6298 */
6299static void
6301{
6302 BufferDesc *bufHdr = (BufferDesc *) arg;
6303
6304 /* Buffer is pinned, so we can read the tag without locking the spinlock */
6305 if (bufHdr != NULL)
6306 errcontext("writing block %u of relation \"%s\"",
6307 bufHdr->tag.blockNum,
6309 BufTagGetForkNum(&bufHdr->tag)).str);
6310}
6311
6312/*
6313 * Error context callback for errors occurring during local buffer writes.
6314 */
6315static void
6317{
6318 BufferDesc *bufHdr = (BufferDesc *) arg;
6319
6320 if (bufHdr != NULL)
6321 errcontext("writing block %u of relation \"%s\"",
6322 bufHdr->tag.blockNum,
6325 BufTagGetForkNum(&bufHdr->tag)).str);
6326}
6327
6328/*
6329 * RelFileLocator qsort/bsearch comparator; see RelFileLocatorEquals.
6330 */
6331static int
6332rlocator_comparator(const void *p1, const void *p2)
6333{
6334 RelFileLocator n1 = *(const RelFileLocator *) p1;
6335 RelFileLocator n2 = *(const RelFileLocator *) p2;
6336
6337 if (n1.relNumber < n2.relNumber)
6338 return -1;
6339 else if (n1.relNumber > n2.relNumber)
6340 return 1;
6341
6342 if (n1.dbOid < n2.dbOid)
6343 return -1;
6344 else if (n1.dbOid > n2.dbOid)
6345 return 1;
6346
6347 if (n1.spcOid < n2.spcOid)
6348 return -1;
6349 else if (n1.spcOid > n2.spcOid)
6350 return 1;
6351 else
6352 return 0;
6353}
6354
6355/*
6356 * Lock buffer header - set BM_LOCKED in buffer state.
6357 */
6358uint32
6360{
6361 SpinDelayStatus delayStatus;
6362 uint32 old_buf_state;
6363
6365
6366 init_local_spin_delay(&delayStatus);
6367
6368 while (true)
6369 {
6370 /* set BM_LOCKED flag */
6371 old_buf_state = pg_atomic_fetch_or_u32(&desc->state, BM_LOCKED);
6372 /* if it wasn't set before we're OK */
6373 if (!(old_buf_state & BM_LOCKED))
6374 break;
6375 perform_spin_delay(&delayStatus);
6376 }
6377 finish_spin_delay(&delayStatus);
6378 return old_buf_state | BM_LOCKED;
6379}
6380
6381/*
6382 * Wait until the BM_LOCKED flag isn't set anymore and return the buffer's
6383 * state at that point.
6384 *
6385 * Obviously the buffer could be locked by the time the value is returned, so
6386 * this is primarily useful in CAS style loops.
6387 */
6390{
6391 SpinDelayStatus delayStatus;
6392 uint32 buf_state;
6393
6394 init_local_spin_delay(&delayStatus);
6395
6396 buf_state = pg_atomic_read_u32(&buf->state);
6397
6398 while (buf_state & BM_LOCKED)
6399 {
6400 perform_spin_delay(&delayStatus);
6401 buf_state = pg_atomic_read_u32(&buf->state);
6402 }
6403
6404 finish_spin_delay(&delayStatus);
6405
6406 return buf_state;
6407}
6408
6409/*
6410 * BufferTag comparator.
6411 */
6412static inline int
6414{
6415 int ret;
6416 RelFileLocator rlocatora;
6417 RelFileLocator rlocatorb;
6418
6419 rlocatora = BufTagGetRelFileLocator(ba);
6420 rlocatorb = BufTagGetRelFileLocator(bb);
6421
6422 ret = rlocator_comparator(&rlocatora, &rlocatorb);
6423
6424 if (ret != 0)
6425 return ret;
6426
6427 if (BufTagGetForkNum(ba) < BufTagGetForkNum(bb))
6428 return -1;
6429 if (BufTagGetForkNum(ba) > BufTagGetForkNum(bb))
6430 return 1;
6431
6432 if (ba->blockNum < bb->blockNum)
6433 return -1;
6434 if (ba->blockNum > bb->blockNum)
6435 return 1;
6436
6437 return 0;
6438}
6439
6440/*
6441 * Comparator determining the writeout order in a checkpoint.
6442 *
6443 * It is important that tablespaces are compared first, the logic balancing
6444 * writes between tablespaces relies on it.
6445 */
6446static inline int
6448{
6449 /* compare tablespace */
6450 if (a->tsId < b->tsId)
6451 return -1;
6452 else if (a->tsId > b->tsId)
6453 return 1;
6454 /* compare relation */
6455 if (a->relNumber < b->relNumber)
6456 return -1;
6457 else if (a->relNumber > b->relNumber)
6458 return 1;
6459 /* compare fork */
6460 else if (a->forkNum < b->forkNum)
6461 return -1;
6462 else if (a->forkNum > b->forkNum)
6463 return 1;
6464 /* compare block number */
6465 else if (a->blockNum < b->blockNum)
6466 return -1;
6467 else if (a->blockNum > b->blockNum)
6468 return 1;
6469 /* equal page IDs are unlikely, but not impossible */
6470 return 0;
6471}
6472
6473/*
6474 * Comparator for a Min-Heap over the per-tablespace checkpoint completion
6475 * progress.
6476 */
6477static int
6479{
6482
6483 /* we want a min-heap, so return 1 for the a < b */
6484 if (sa->progress < sb->progress)
6485 return 1;
6486 else if (sa->progress == sb->progress)
6487 return 0;
6488 else
6489 return -1;
6490}
6491
6492/*
6493 * Initialize a writeback context, discarding potential previous state.
6494 *
6495 * *max_pending is a pointer instead of an immediate value, so the coalesce
6496 * limits can easily changed by the GUC mechanism, and so calling code does
6497 * not have to check the current configuration. A value of 0 means that no
6498 * writeback control will be performed.
6499 */
6500void
6501WritebackContextInit(WritebackContext *context, int *max_pending)
6502{
6503 Assert(*max_pending <= WRITEBACK_MAX_PENDING_FLUSHES);
6504
6505 context->max_pending = max_pending;
6506 context->nr_pending = 0;
6507}
6508
6509/*
6510 * Add buffer to list of pending writeback requests.
6511 */
6512void
6514 BufferTag *tag)
6515{
6516 PendingWriteback *pending;
6517
6518 /*
6519 * As pg_flush_data() doesn't do anything with fsync disabled, there's no
6520 * point in tracking in that case.
6521 */
6523 !enableFsync)
6524 return;
6525
6526 /*
6527 * Add buffer to the pending writeback array, unless writeback control is
6528 * disabled.
6529 */
6530 if (*wb_context->max_pending > 0)
6531 {
6533
6534 pending = &wb_context->pending_writebacks[wb_context->nr_pending++];
6535
6536 pending->tag = *tag;
6537 }
6538
6539 /*
6540 * Perform pending flushes if the writeback limit is exceeded. This
6541 * includes the case where previously an item has been added, but control
6542 * is now disabled.
6543 */
6544 if (wb_context->nr_pending >= *wb_context->max_pending)
6545 IssuePendingWritebacks(wb_context, io_context);
6546}
6547
6548#define ST_SORT sort_pending_writebacks
6549#define ST_ELEMENT_TYPE PendingWriteback
6550#define ST_COMPARE(a, b) buffertag_comparator(&a->tag, &b->tag)
6551#define ST_SCOPE static
6552#define ST_DEFINE
6553#include "lib/sort_template.h"
6554
6555/*
6556 * Issue all pending writeback requests, previously scheduled with
6557 * ScheduleBufferTagForWriteback, to the OS.
6558 *
6559 * Because this is only used to improve the OSs IO scheduling we try to never
6560 * error out - it's just a hint.
6561 */
6562void
6564{
6565 instr_time io_start;
6566 int i;
6567
6568 if (wb_context->nr_pending == 0)
6569 return;
6570
6571 /*
6572 * Executing the writes in-order can make them a lot faster, and allows to
6573 * merge writeback requests to consecutive blocks into larger writebacks.
6574 */
6575 sort_pending_writebacks(wb_context->pending_writebacks,
6576 wb_context->nr_pending);
6577
6579
6580 /*
6581 * Coalesce neighbouring writes, but nothing else. For that we iterate
6582 * through the, now sorted, array of pending flushes, and look forward to
6583 * find all neighbouring (or identical) writes.
6584 */
6585 for (i = 0; i < wb_context->nr_pending; i++)
6586 {
6589 SMgrRelation reln;
6590 int ahead;
6591 BufferTag tag;
6592 RelFileLocator currlocator;
6593 Size nblocks = 1;
6594
6595 cur = &wb_context->pending_writebacks[i];
6596 tag = cur->tag;
6597 currlocator = BufTagGetRelFileLocator(&tag);
6598
6599 /*
6600 * Peek ahead, into following writeback requests, to see if they can
6601 * be combined with the current one.
6602 */
6603 for (ahead = 0; i + ahead + 1 < wb_context->nr_pending; ahead++)
6604 {
6605
6606 next = &wb_context->pending_writebacks[i + ahead + 1];
6607
6608 /* different file, stop */
6609 if (!RelFileLocatorEquals(currlocator,
6610 BufTagGetRelFileLocator(&next->tag)) ||
6611 BufTagGetForkNum(&cur->tag) != BufTagGetForkNum(&next->tag))
6612 break;
6613
6614 /* ok, block queued twice, skip */
6615 if (cur->tag.blockNum == next->tag.blockNum)
6616 continue;
6617
6618 /* only merge consecutive writes */
6619 if (cur->tag.blockNum + 1 != next->tag.blockNum)
6620 break;
6621
6622 nblocks++;
6623 cur = next;
6624 }
6625
6626 i += ahead;
6627
6628 /* and finally tell the kernel to write the data to storage */
6629 reln = smgropen(currlocator, INVALID_PROC_NUMBER);
6630 smgrwriteback(reln, BufTagGetForkNum(&tag), tag.blockNum, nblocks);
6631 }
6632
6633 /*
6634 * Assume that writeback requests are only issued for buffers containing
6635 * blocks of permanent relations.
6636 */
6638 IOOP_WRITEBACK, io_start, wb_context->nr_pending, 0);
6639
6640 wb_context->nr_pending = 0;
6641}
6642
6643/* ResourceOwner callbacks */
6644
6645static void
6647{
6649
6651}
6652
6653static char *
6655{
6657
6658 return psprintf("lost track of buffer IO on buffer %d", buffer);
6659}
6660
6661static void
6663{
6665
6666 /* Like ReleaseBuffer, but don't call ResourceOwnerForgetBuffer */
6667 if (!BufferIsValid(buffer))
6668 elog(ERROR, "bad buffer ID: %d", buffer);
6669
6670 if (BufferIsLocal(buffer))
6672 else
6674}
6675
6676static char *
6678{
6680}
6681
6682/*
6683 * Helper function to evict unpinned buffer whose buffer header lock is
6684 * already acquired.
6685 */
6686static bool
6687EvictUnpinnedBufferInternal(BufferDesc *desc, bool *buffer_flushed)
6688{
6689 uint32 buf_state;
6690 bool result;
6691
6692 *buffer_flushed = false;
6693
6694 buf_state = pg_atomic_read_u32(&(desc->state));
6695 Assert(buf_state & BM_LOCKED);
6696
6697 if ((buf_state & BM_VALID) == 0)
6698 {
6699 UnlockBufHdr(desc);
6700 return false;
6701 }
6702
6703 /* Check that it's not pinned already. */
6704 if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
6705 {
6706 UnlockBufHdr(desc);
6707 return false;
6708 }
6709
6710 PinBuffer_Locked(desc); /* releases spinlock */
6711
6712 /* If it was dirty, try to clean it once. */
6713 if (buf_state & BM_DIRTY)
6714 {
6716 *buffer_flushed = true;
6717 }
6718
6719 /* This will return false if it becomes dirty or someone else pins it. */
6720 result = InvalidateVictimBuffer(desc);
6721
6722 UnpinBuffer(desc);
6723
6724 return result;
6725}
6726
6727/*
6728 * Try to evict the current block in a shared buffer.
6729 *
6730 * This function is intended for testing/development use only!
6731 *
6732 * To succeed, the buffer must not be pinned on entry, so if the caller had a
6733 * particular block in mind, it might already have been replaced by some other
6734 * block by the time this function runs. It's also unpinned on return, so the
6735 * buffer might be occupied again by the time control is returned, potentially
6736 * even by the same block. This inherent raciness without other interlocking
6737 * makes the function unsuitable for non-testing usage.
6738 *
6739 * *buffer_flushed is set to true if the buffer was dirty and has been
6740 * flushed, false otherwise. However, *buffer_flushed=true does not
6741 * necessarily mean that we flushed the buffer, it could have been flushed by
6742 * someone else.
6743 *
6744 * Returns true if the buffer was valid and it has now been made invalid.
6745 * Returns false if it wasn't valid, if it couldn't be evicted due to a pin,
6746 * or if the buffer becomes dirty again while we're trying to write it out.
6747 */
6748bool
6749EvictUnpinnedBuffer(Buffer buf, bool *buffer_flushed)
6750{
6751 BufferDesc *desc;
6752
6754
6755 /* Make sure we can pin the buffer. */
6758
6759 desc = GetBufferDescriptor(buf - 1);
6760 LockBufHdr(desc);
6761
6762 return EvictUnpinnedBufferInternal(desc, buffer_flushed);
6763}
6764
6765/*
6766 * Try to evict all the shared buffers.
6767 *
6768 * This function is intended for testing/development use only! See
6769 * EvictUnpinnedBuffer().
6770 *
6771 * The buffers_* parameters are mandatory and indicate the total count of
6772 * buffers that:
6773 * - buffers_evicted - were evicted
6774 * - buffers_flushed - were flushed
6775 * - buffers_skipped - could not be evicted
6776 */
6777void
6778EvictAllUnpinnedBuffers(int32 *buffers_evicted, int32 *buffers_flushed,
6779 int32 *buffers_skipped)
6780{
6781 *buffers_evicted = 0;
6782 *buffers_skipped = 0;
6783 *buffers_flushed = 0;
6784
6785 for (int buf = 1; buf <= NBuffers; buf++)
6786 {
6787 BufferDesc *desc = GetBufferDescriptor(buf - 1);
6788 uint32 buf_state;
6789 bool buffer_flushed;
6790
6792
6793 buf_state = pg_atomic_read_u32(&desc->state);
6794 if (!(buf_state & BM_VALID))
6795 continue;
6796
6799
6800 LockBufHdr(desc);
6801
6802 if (EvictUnpinnedBufferInternal(desc, &buffer_flushed))
6803 (*buffers_evicted)++;
6804 else
6805 (*buffers_skipped)++;
6806
6807 if (buffer_flushed)
6808 (*buffers_flushed)++;
6809 }
6810}
6811
6812/*
6813 * Try to evict all the shared buffers containing provided relation's pages.
6814 *
6815 * This function is intended for testing/development use only! See
6816 * EvictUnpinnedBuffer().
6817 *
6818 * The caller must hold at least AccessShareLock on the relation to prevent
6819 * the relation from being dropped.
6820 *
6821 * The buffers_* parameters are mandatory and indicate the total count of
6822 * buffers that:
6823 * - buffers_evicted - were evicted
6824 * - buffers_flushed - were flushed
6825 * - buffers_skipped - could not be evicted
6826 */
6827void
6829 int32 *buffers_flushed, int32 *buffers_skipped)
6830{
6832
6833 *buffers_skipped = 0;
6834 *buffers_evicted = 0;
6835 *buffers_flushed = 0;
6836
6837 for (int buf = 1; buf <= NBuffers; buf++)
6838 {
6839 BufferDesc *desc = GetBufferDescriptor(buf - 1);
6840 uint32 buf_state = pg_atomic_read_u32(&(desc->state));
6841 bool buffer_flushed;
6842
6844
6845 /* An unlocked precheck should be safe and saves some cycles. */
6846 if ((buf_state & BM_VALID) == 0 ||
6848 continue;
6849
6850 /* Make sure we can pin the buffer. */
6853
6854 buf_state = LockBufHdr(desc);
6855
6856 /* recheck, could have changed without the lock */
6857 if ((buf_state & BM_VALID) == 0 ||
6859 {
6860 UnlockBufHdr(desc);
6861 continue;
6862 }
6863
6864 if (EvictUnpinnedBufferInternal(desc, &buffer_flushed))
6865 (*buffers_evicted)++;
6866 else
6867 (*buffers_skipped)++;
6868
6869 if (buffer_flushed)
6870 (*buffers_flushed)++;
6871 }
6872}
6873
6874/*
6875 * Helper function to mark unpinned buffer dirty whose buffer header lock is
6876 * already acquired.
6877 */
6878static bool
6880 bool *buffer_already_dirty)
6881{
6882 uint32 buf_state;
6883 bool result = false;
6884
6885 *buffer_already_dirty = false;
6886
6887 buf_state = pg_atomic_read_u32(&(desc->state));
6888 Assert(buf_state & BM_LOCKED);
6889
6890 if ((buf_state & BM_VALID) == 0)
6891 {
6892 UnlockBufHdr(desc);
6893 return false;
6894 }
6895
6896 /* Check that it's not pinned already. */
6897 if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
6898 {
6899 UnlockBufHdr(desc);
6900 return false;
6901 }
6902
6903 /* Pin the buffer and then release the buffer spinlock */
6904 PinBuffer_Locked(desc);
6905
6906 /* If it was not already dirty, mark it as dirty. */
6907 if (!(buf_state & BM_DIRTY))
6908 {
6911 result = true;
6913 }
6914 else
6915 *buffer_already_dirty = true;
6916
6917 UnpinBuffer(desc);
6918
6919 return result;
6920}
6921
6922/*
6923 * Try to mark the provided shared buffer as dirty.
6924 *
6925 * This function is intended for testing/development use only!
6926 *
6927 * Same as EvictUnpinnedBuffer() but with MarkBufferDirty() call inside.
6928 *
6929 * The buffer_already_dirty parameter is mandatory and indicate if the buffer
6930 * could not be dirtied because it is already dirty.
6931 *
6932 * Returns true if the buffer has successfully been marked as dirty.
6933 */
6934bool
6935MarkDirtyUnpinnedBuffer(Buffer buf, bool *buffer_already_dirty)
6936{
6937 BufferDesc *desc;
6938 bool buffer_dirtied = false;
6939
6941
6942 /* Make sure we can pin the buffer. */
6945
6946 desc = GetBufferDescriptor(buf - 1);
6947 LockBufHdr(desc);
6948
6949 buffer_dirtied = MarkDirtyUnpinnedBufferInternal(buf, desc, buffer_already_dirty);
6950 /* Both can not be true at the same time */
6951 Assert(!(buffer_dirtied && *buffer_already_dirty));
6952
6953 return buffer_dirtied;
6954}
6955
6956/*
6957 * Try to mark all the shared buffers containing provided relation's pages as
6958 * dirty.
6959 *
6960 * This function is intended for testing/development use only! See
6961 * MarkDirtyUnpinnedBuffer().
6962 *
6963 * The buffers_* parameters are mandatory and indicate the total count of
6964 * buffers that:
6965 * - buffers_dirtied - were dirtied
6966 * - buffers_already_dirty - were already dirty
6967 * - buffers_skipped - could not be dirtied because of a reason different
6968 * than a buffer being already dirty.
6969 */
6970void
6972 int32 *buffers_dirtied,
6973 int32 *buffers_already_dirty,
6974 int32 *buffers_skipped)
6975{
6977
6978 *buffers_dirtied = 0;
6979 *buffers_already_dirty = 0;
6980 *buffers_skipped = 0;
6981
6982 for (int buf = 1; buf <= NBuffers; buf++)
6983 {
6984 BufferDesc *desc = GetBufferDescriptor(buf - 1);
6985 uint32 buf_state = pg_atomic_read_u32(&(desc->state));
6986 bool buffer_already_dirty;
6987
6989
6990 /* An unlocked precheck should be safe and saves some cycles. */
6991 if ((buf_state & BM_VALID) == 0 ||
6993 continue;
6994
6995 /* Make sure we can pin the buffer. */
6998
6999 buf_state = LockBufHdr(desc);
7000
7001 /* recheck, could have changed without the lock */
7002 if ((buf_state & BM_VALID) == 0 ||
7004 {
7005 UnlockBufHdr(desc);
7006 continue;
7007 }
7008
7009 if (MarkDirtyUnpinnedBufferInternal(buf, desc, &buffer_already_dirty))
7010 (*buffers_dirtied)++;
7011 else if (buffer_already_dirty)
7012 (*buffers_already_dirty)++;
7013 else
7014 (*buffers_skipped)++;
7015 }
7016}
7017
7018/*
7019 * Try to mark all the shared buffers as dirty.
7020 *
7021 * This function is intended for testing/development use only! See
7022 * MarkDirtyUnpinnedBuffer().
7023 *
7024 * See MarkDirtyRelUnpinnedBuffers() above for details about the buffers_*
7025 * parameters.
7026 */
7027void
7029 int32 *buffers_already_dirty,
7030 int32 *buffers_skipped)
7031{
7032 *buffers_dirtied = 0;
7033 *buffers_already_dirty = 0;
7034 *buffers_skipped = 0;
7035
7036 for (int buf = 1; buf <= NBuffers; buf++)
7037 {
7038 BufferDesc *desc = GetBufferDescriptor(buf - 1);
7039 uint32 buf_state;
7040 bool buffer_already_dirty;
7041
7043
7044 buf_state = pg_atomic_read_u32(&desc->state);
7045 if (!(buf_state & BM_VALID))
7046 continue;
7047
7050
7051 LockBufHdr(desc);
7052
7053 if (MarkDirtyUnpinnedBufferInternal(buf, desc, &buffer_already_dirty))
7054 (*buffers_dirtied)++;
7055 else if (buffer_already_dirty)
7056 (*buffers_already_dirty)++;
7057 else
7058 (*buffers_skipped)++;
7059 }
7060}
7061
7062/*
7063 * Generic implementation of the AIO handle staging callback for readv/writev
7064 * on local/shared buffers.
7065 *
7066 * Each readv/writev can target multiple buffers. The buffers have already
7067 * been registered with the IO handle.
7068 *
7069 * To make the IO ready for execution ("staging"), we need to ensure that the
7070 * targeted buffers are in an appropriate state while the IO is ongoing. For
7071 * that the AIO subsystem needs to have its own buffer pin, otherwise an error
7072 * in this backend could lead to this backend's buffer pin being released as
7073 * part of error handling, which in turn could lead to the buffer being
7074 * replaced while IO is ongoing.
7075 */
7077buffer_stage_common(PgAioHandle *ioh, bool is_write, bool is_temp)
7078{
7079 uint64 *io_data;
7080 uint8 handle_data_len;
7081 PgAioWaitRef io_ref;
7083
7084 io_data = pgaio_io_get_handle_data(ioh, &handle_data_len);
7085
7086 pgaio_io_get_wref(ioh, &io_ref);
7087
7088 /* iterate over all buffers affected by the vectored readv/writev */
7089 for (int i = 0; i < handle_data_len; i++)
7090 {
7091 Buffer buffer = (Buffer) io_data[i];
7092 BufferDesc *buf_hdr = is_temp ?
7095 uint32 buf_state;
7096
7097 /*
7098 * Check that all the buffers are actually ones that could conceivably
7099 * be done in one IO, i.e. are sequential. This is the last
7100 * buffer-aware code before IO is actually executed and confusion
7101 * about which buffers are targeted by IO can be hard to debug, making
7102 * it worth doing extra-paranoid checks.
7103 */
7104 if (i == 0)
7105 first = buf_hdr->tag;
7106 else
7107 {
7108 Assert(buf_hdr->tag.relNumber == first.relNumber);
7109 Assert(buf_hdr->tag.blockNum == first.blockNum + i);
7110 }
7111
7112 if (is_temp)
7113 buf_state = pg_atomic_read_u32(&buf_hdr->state);
7114 else
7115 buf_state = LockBufHdr(buf_hdr);
7116
7117 /* verify the buffer is in the expected state */
7118 Assert(buf_state & BM_TAG_VALID);
7119 if (is_write)
7120 {
7121 Assert(buf_state & BM_VALID);
7122 Assert(buf_state & BM_DIRTY);
7123 }
7124 else
7125 {
7126 Assert(!(buf_state & BM_VALID));
7127 Assert(!(buf_state & BM_DIRTY));
7128 }
7129
7130 /* temp buffers don't use BM_IO_IN_PROGRESS */
7131 if (!is_temp)
7132 Assert(buf_state & BM_IO_IN_PROGRESS);
7133
7134 Assert(BUF_STATE_GET_REFCOUNT(buf_state) >= 1);
7135
7136 /*
7137 * Reflect that the buffer is now owned by the AIO subsystem.
7138 *
7139 * For local buffers: This can't be done just via LocalRefCount, as
7140 * one might initially think, as this backend could error out while
7141 * AIO is still in progress, releasing all the pins by the backend
7142 * itself.
7143 *
7144 * This pin is released again in TerminateBufferIO().
7145 */
7146 buf_hdr->io_wref = io_ref;
7147
7148 if (is_temp)
7149 {
7150 buf_state += BUF_REFCOUNT_ONE;
7151 pg_atomic_unlocked_write_u32(&buf_hdr->state, buf_state);
7152 }
7153 else
7154 UnlockBufHdrExt(buf_hdr, buf_state, 0, 0, 1);
7155
7156 /*
7157 * Ensure the content lock that prevents buffer modifications while
7158 * the buffer is being written out is not released early due to an
7159 * error.
7160 */
7161 if (is_write && !is_temp)
7162 {
7163 LWLock *content_lock;
7164
7165 content_lock = BufferDescriptorGetContentLock(buf_hdr);
7166
7167 Assert(LWLockHeldByMe(content_lock));
7168
7169 /*
7170 * Lock is now owned by AIO subsystem.
7171 */
7172 LWLockDisown(content_lock);
7173 }
7174
7175 /*
7176 * Stop tracking this buffer via the resowner - the AIO system now
7177 * keeps track.
7178 */
7179 if (!is_temp)
7181 }
7182}
7183
7184/*
7185 * Decode readv errors as encoded by buffer_readv_encode_error().
7186 */
7187static inline void
7189 bool *zeroed_any,
7190 bool *ignored_any,
7191 uint8 *zeroed_or_error_count,
7192 uint8 *checkfail_count,
7193 uint8 *first_off)
7194{
7195 uint32 rem_error = result.error_data;
7196
7197 /* see static asserts in buffer_readv_encode_error */
7198#define READV_COUNT_BITS 7
7199#define READV_COUNT_MASK ((1 << READV_COUNT_BITS) - 1)
7200
7201 *zeroed_any = rem_error & 1;
7202 rem_error >>= 1;
7203
7204 *ignored_any = rem_error & 1;
7205 rem_error >>= 1;
7206
7207 *zeroed_or_error_count = rem_error & READV_COUNT_MASK;
7208 rem_error >>= READV_COUNT_BITS;
7209
7210 *checkfail_count = rem_error & READV_COUNT_MASK;
7211 rem_error >>= READV_COUNT_BITS;
7212
7213 *first_off = rem_error & READV_COUNT_MASK;
7214 rem_error >>= READV_COUNT_BITS;
7215}
7216
7217/*
7218 * Helper to encode errors for buffer_readv_complete()
7219 *
7220 * Errors are encoded as follows:
7221 * - bit 0 indicates whether any page was zeroed (1) or not (0)
7222 * - bit 1 indicates whether any checksum failure was ignored (1) or not (0)
7223 * - next READV_COUNT_BITS bits indicate the number of errored or zeroed pages
7224 * - next READV_COUNT_BITS bits indicate the number of checksum failures
7225 * - next READV_COUNT_BITS bits indicate the first offset of the first page
7226 * that was errored or zeroed or, if no errors/zeroes, the first ignored
7227 * checksum
7228 */
7229static inline void
7231 bool is_temp,
7232 bool zeroed_any,
7233 bool ignored_any,
7234 uint8 error_count,
7235 uint8 zeroed_count,
7236 uint8 checkfail_count,
7237 uint8 first_error_off,
7238 uint8 first_zeroed_off,
7239 uint8 first_ignored_off)
7240{
7241
7242 uint8 shift = 0;
7243 uint8 zeroed_or_error_count =
7244 error_count > 0 ? error_count : zeroed_count;
7245 uint8 first_off;
7246
7248 "PG_IOV_MAX is bigger than reserved space for error data");
7250 "PGAIO_RESULT_ERROR_BITS is insufficient for buffer_readv");
7251
7252 /*
7253 * We only have space to encode one offset - but luckily that's good
7254 * enough. If there is an error, the error is the interesting offset, same
7255 * with a zeroed buffer vs an ignored buffer.
7256 */
7257 if (error_count > 0)
7258 first_off = first_error_off;
7259 else if (zeroed_count > 0)
7260 first_off = first_zeroed_off;
7261 else
7262 first_off = first_ignored_off;
7263
7264 Assert(!zeroed_any || error_count == 0);
7265
7266 result->error_data = 0;
7267
7268 result->error_data |= zeroed_any << shift;
7269 shift += 1;
7270
7271 result->error_data |= ignored_any << shift;
7272 shift += 1;
7273
7274 result->error_data |= ((uint32) zeroed_or_error_count) << shift;
7275 shift += READV_COUNT_BITS;
7276
7277 result->error_data |= ((uint32) checkfail_count) << shift;
7278 shift += READV_COUNT_BITS;
7279
7280 result->error_data |= ((uint32) first_off) << shift;
7281 shift += READV_COUNT_BITS;
7282
7283 result->id = is_temp ? PGAIO_HCB_LOCAL_BUFFER_READV :
7285
7286 if (error_count > 0)
7287 result->status = PGAIO_RS_ERROR;
7288 else
7289 result->status = PGAIO_RS_WARNING;
7290
7291 /*
7292 * The encoding is complicated enough to warrant cross-checking it against
7293 * the decode function.
7294 */
7295#ifdef USE_ASSERT_CHECKING
7296 {
7297 bool zeroed_any_2,
7298 ignored_any_2;
7299 uint8 zeroed_or_error_count_2,
7300 checkfail_count_2,
7301 first_off_2;
7302
7304 &zeroed_any_2, &ignored_any_2,
7305 &zeroed_or_error_count_2,
7306 &checkfail_count_2,
7307 &first_off_2);
7308 Assert(zeroed_any == zeroed_any_2);
7309 Assert(ignored_any == ignored_any_2);
7310 Assert(zeroed_or_error_count == zeroed_or_error_count_2);
7311 Assert(checkfail_count == checkfail_count_2);
7312 Assert(first_off == first_off_2);
7313 }
7314#endif
7315
7316#undef READV_COUNT_BITS
7317#undef READV_COUNT_MASK
7318}
7319
7320/*
7321 * Helper for AIO readv completion callbacks, supporting both shared and temp
7322 * buffers. Gets called once for each buffer in a multi-page read.
7323 */
7326 uint8 flags, bool failed, bool is_temp,
7327 bool *buffer_invalid,
7328 bool *failed_checksum,
7329 bool *ignored_checksum,
7330 bool *zeroed_buffer)
7331{
7332 BufferDesc *buf_hdr = is_temp ?
7335 BufferTag tag = buf_hdr->tag;
7336 char *bufdata = BufferGetBlock(buffer);
7337 uint32 set_flag_bits;
7338 int piv_flags;
7339
7340 /* check that the buffer is in the expected state for a read */
7341#ifdef USE_ASSERT_CHECKING
7342 {
7343 uint32 buf_state = pg_atomic_read_u32(&buf_hdr->state);
7344
7345 Assert(buf_state & BM_TAG_VALID);
7346 Assert(!(buf_state & BM_VALID));
7347 /* temp buffers don't use BM_IO_IN_PROGRESS */
7348 if (!is_temp)
7349 Assert(buf_state & BM_IO_IN_PROGRESS);
7350 Assert(!(buf_state & BM_DIRTY));
7351 }
7352#endif
7353
7354 *buffer_invalid = false;
7355 *failed_checksum = false;
7356 *ignored_checksum = false;
7357 *zeroed_buffer = false;
7358
7359 /*
7360 * We ask PageIsVerified() to only log the message about checksum errors,
7361 * as the completion might be run in any backend (or IO workers). We will
7362 * report checksum errors in buffer_readv_report().
7363 */
7364 piv_flags = PIV_LOG_LOG;
7365
7366 /* the local zero_damaged_pages may differ from the definer's */
7368 piv_flags |= PIV_IGNORE_CHECKSUM_FAILURE;
7369
7370 /* Check for garbage data. */
7371 if (!failed)
7372 {
7373 /*
7374 * If the buffer is not currently pinned by this backend, e.g. because
7375 * we're completing this IO after an error, the buffer data will have
7376 * been marked as inaccessible when the buffer was unpinned. The AIO
7377 * subsystem holds a pin, but that doesn't prevent the buffer from
7378 * having been marked as inaccessible. The completion might also be
7379 * executed in a different process.
7380 */
7381#ifdef USE_VALGRIND
7382 if (!BufferIsPinned(buffer))
7383 VALGRIND_MAKE_MEM_DEFINED(bufdata, BLCKSZ);
7384#endif
7385
7386 if (!PageIsVerified((Page) bufdata, tag.blockNum, piv_flags,
7387 failed_checksum))
7388 {
7389 if (flags & READ_BUFFERS_ZERO_ON_ERROR)
7390 {
7391 memset(bufdata, 0, BLCKSZ);
7392 *zeroed_buffer = true;
7393 }
7394 else
7395 {
7396 *buffer_invalid = true;
7397 /* mark buffer as having failed */
7398 failed = true;
7399 }
7400 }
7401 else if (*failed_checksum)
7402 *ignored_checksum = true;
7403
7404 /* undo what we did above */
7405#ifdef USE_VALGRIND
7406 if (!BufferIsPinned(buffer))
7407 VALGRIND_MAKE_MEM_NOACCESS(bufdata, BLCKSZ);
7408#endif
7409
7410 /*
7411 * Immediately log a message about the invalid page, but only to the
7412 * server log. The reason to do so immediately is that this may be
7413 * executed in a different backend than the one that originated the
7414 * request. The reason to do so immediately is that the originator
7415 * might not process the query result immediately (because it is busy
7416 * doing another part of query processing) or at all (e.g. if it was
7417 * cancelled or errored out due to another IO also failing). The
7418 * definer of the IO will emit an ERROR or WARNING when processing the
7419 * IO's results
7420 *
7421 * To avoid duplicating the code to emit these log messages, we reuse
7422 * buffer_readv_report().
7423 */
7424 if (*buffer_invalid || *failed_checksum || *zeroed_buffer)
7425 {
7426 PgAioResult result_one = {0};
7427
7428 buffer_readv_encode_error(&result_one, is_temp,
7429 *zeroed_buffer,
7430 *ignored_checksum,
7431 *buffer_invalid,
7432 *zeroed_buffer ? 1 : 0,
7433 *failed_checksum ? 1 : 0,
7434 buf_off, buf_off, buf_off);
7435 pgaio_result_report(result_one, td, LOG_SERVER_ONLY);
7436 }
7437 }
7438
7439 /* Terminate I/O and set BM_VALID. */
7440 set_flag_bits = failed ? BM_IO_ERROR : BM_VALID;
7441 if (is_temp)
7442 TerminateLocalBufferIO(buf_hdr, false, set_flag_bits, true);
7443 else
7444 TerminateBufferIO(buf_hdr, false, set_flag_bits, false, true);
7445
7446 /*
7447 * Call the BUFFER_READ_DONE tracepoint in the callback, even though the
7448 * callback may not be executed in the same backend that called
7449 * BUFFER_READ_START. The alternative would be to defer calling the
7450 * tracepoint to a later point (e.g. the local completion callback for
7451 * shared buffer reads), which seems even less helpful.
7452 */
7453 TRACE_POSTGRESQL_BUFFER_READ_DONE(tag.forkNum,
7454 tag.blockNum,
7455 tag.spcOid,
7456 tag.dbOid,
7457 tag.relNumber,
7459 false);
7460}
7461
7462/*
7463 * Perform completion handling of a single AIO read. This read may cover
7464 * multiple blocks / buffers.
7465 *
7466 * Shared between shared and local buffers, to reduce code duplication.
7467 */
7470 uint8 cb_data, bool is_temp)
7471{
7472 PgAioResult result = prior_result;
7474 uint8 first_error_off = 0;
7475 uint8 first_zeroed_off = 0;
7476 uint8 first_ignored_off = 0;
7477 uint8 error_count = 0;
7478 uint8 zeroed_count = 0;
7479 uint8 ignored_count = 0;
7480 uint8 checkfail_count = 0;
7481 uint64 *io_data;
7482 uint8 handle_data_len;
7483
7484 if (is_temp)
7485 {
7486 Assert(td->smgr.is_temp);
7488 }
7489 else
7490 Assert(!td->smgr.is_temp);
7491
7492 /*
7493 * Iterate over all the buffers affected by this IO and call the
7494 * per-buffer completion function for each buffer.
7495 */
7496 io_data = pgaio_io_get_handle_data(ioh, &handle_data_len);
7497 for (uint8 buf_off = 0; buf_off < handle_data_len; buf_off++)
7498 {
7499 Buffer buf = io_data[buf_off];
7500 bool failed;
7501 bool failed_verification = false;
7502 bool failed_checksum = false;
7503 bool zeroed_buffer = false;
7504 bool ignored_checksum = false;
7505
7507
7508 /*
7509 * If the entire I/O failed on a lower-level, each buffer needs to be
7510 * marked as failed. In case of a partial read, the first few buffers
7511 * may be ok.
7512 */
7513 failed =
7514 prior_result.status == PGAIO_RS_ERROR
7515 || prior_result.result <= buf_off;
7516
7517 buffer_readv_complete_one(td, buf_off, buf, cb_data, failed, is_temp,
7518 &failed_verification,
7519 &failed_checksum,
7520 &ignored_checksum,
7521 &zeroed_buffer);
7522
7523 /*
7524 * Track information about the number of different kinds of error
7525 * conditions across all pages, as there can be multiple pages failing
7526 * verification as part of one IO.
7527 */
7528 if (failed_verification && !zeroed_buffer && error_count++ == 0)
7529 first_error_off = buf_off;
7530 if (zeroed_buffer && zeroed_count++ == 0)
7531 first_zeroed_off = buf_off;
7532 if (ignored_checksum && ignored_count++ == 0)
7533 first_ignored_off = buf_off;
7534 if (failed_checksum)
7535 checkfail_count++;
7536 }
7537
7538 /*
7539 * If the smgr read succeeded [partially] and page verification failed for
7540 * some of the pages, adjust the IO's result state appropriately.
7541 */
7542 if (prior_result.status != PGAIO_RS_ERROR &&
7543 (error_count > 0 || ignored_count > 0 || zeroed_count > 0))
7544 {
7545 buffer_readv_encode_error(&result, is_temp,
7546 zeroed_count > 0, ignored_count > 0,
7547 error_count, zeroed_count, checkfail_count,
7548 first_error_off, first_zeroed_off,
7549 first_ignored_off);
7550 pgaio_result_report(result, td, DEBUG1);
7551 }
7552
7553 /*
7554 * For shared relations this reporting is done in
7555 * shared_buffer_readv_complete_local().
7556 */
7557 if (is_temp && checkfail_count > 0)
7559 checkfail_count);
7560
7561 return result;
7562}
7563
7564/*
7565 * AIO error reporting callback for aio_shared_buffer_readv_cb and
7566 * aio_local_buffer_readv_cb.
7567 *
7568 * The error is encoded / decoded in buffer_readv_encode_error() /
7569 * buffer_readv_decode_error().
7570 */
7571static void
7573 int elevel)
7574{
7575 int nblocks = td->smgr.nblocks;
7576 BlockNumber first = td->smgr.blockNum;
7577 BlockNumber last = first + nblocks - 1;
7578 ProcNumber errProc =
7580 RelPathStr rpath =
7581 relpathbackend(td->smgr.rlocator, errProc, td->smgr.forkNum);
7582 bool zeroed_any,
7583 ignored_any;
7584 uint8 zeroed_or_error_count,
7585 checkfail_count,
7586 first_off;
7587 uint8 affected_count;
7588 const char *msg_one,
7589 *msg_mult,
7590 *det_mult,
7591 *hint_mult;
7592
7593 buffer_readv_decode_error(result, &zeroed_any, &ignored_any,
7594 &zeroed_or_error_count,
7595 &checkfail_count,
7596 &first_off);
7597
7598 /*
7599 * Treat a read that had both zeroed buffers *and* ignored checksums as a
7600 * special case, it's too irregular to be emitted the same way as the
7601 * other cases.
7602 */
7603 if (zeroed_any && ignored_any)
7604 {
7605 Assert(zeroed_any && ignored_any);
7606 Assert(nblocks > 1); /* same block can't be both zeroed and ignored */
7607 Assert(result.status != PGAIO_RS_ERROR);
7608 affected_count = zeroed_or_error_count;
7609
7610 ereport(elevel,
7612 errmsg("zeroing %u page(s) and ignoring %u checksum failure(s) among blocks %u..%u of relation \"%s\"",
7613 affected_count, checkfail_count, first, last, rpath.str),
7614 affected_count > 1 ?
7615 errdetail("Block %u held the first zeroed page.",
7616 first + first_off) : 0,
7617 errhint_plural("See server log for details about the other %d invalid block.",
7618 "See server log for details about the other %d invalid blocks.",
7619 affected_count + checkfail_count - 1,
7620 affected_count + checkfail_count - 1));
7621 return;
7622 }
7623
7624 /*
7625 * The other messages are highly repetitive. To avoid duplicating a long
7626 * and complicated ereport(), gather the translated format strings
7627 * separately and then do one common ereport.
7628 */
7629 if (result.status == PGAIO_RS_ERROR)
7630 {
7631 Assert(!zeroed_any); /* can't have invalid pages when zeroing them */
7632 affected_count = zeroed_or_error_count;
7633 msg_one = _("invalid page in block %u of relation \"%s\"");
7634 msg_mult = _("%u invalid pages among blocks %u..%u of relation \"%s\"");
7635 det_mult = _("Block %u held the first invalid page.");
7636 hint_mult = _("See server log for the other %u invalid block(s).");
7637 }
7638 else if (zeroed_any && !ignored_any)
7639 {
7640 affected_count = zeroed_or_error_count;
7641 msg_one = _("invalid page in block %u of relation \"%s\"; zeroing out page");
7642 msg_mult = _("zeroing out %u invalid pages among blocks %u..%u of relation \"%s\"");
7643 det_mult = _("Block %u held the first zeroed page.");
7644 hint_mult = _("See server log for the other %u zeroed block(s).");
7645 }
7646 else if (!zeroed_any && ignored_any)
7647 {
7648 affected_count = checkfail_count;
7649 msg_one = _("ignoring checksum failure in block %u of relation \"%s\"");
7650 msg_mult = _("ignoring %u checksum failures among blocks %u..%u of relation \"%s\"");
7651 det_mult = _("Block %u held the first ignored page.");
7652 hint_mult = _("See server log for the other %u ignored block(s).");
7653 }
7654 else
7656
7657 ereport(elevel,
7659 affected_count == 1 ?
7660 errmsg_internal(msg_one, first + first_off, rpath.str) :
7661 errmsg_internal(msg_mult, affected_count, first, last, rpath.str),
7662 affected_count > 1 ? errdetail_internal(det_mult, first + first_off) : 0,
7663 affected_count > 1 ? errhint_internal(hint_mult, affected_count - 1) : 0);
7664}
7665
7666static void
7668{
7669 buffer_stage_common(ioh, false, false);
7670}
7671
7672static PgAioResult
7674 uint8 cb_data)
7675{
7676 return buffer_readv_complete(ioh, prior_result, cb_data, false);
7677}
7678
7679/*
7680 * We need a backend-local completion callback for shared buffers, to be able
7681 * to report checksum errors correctly. Unfortunately that can only safely
7682 * happen if the reporting backend has previously called
7683 * pgstat_prepare_report_checksum_failure(), which we can only guarantee in
7684 * the backend that started the IO. Hence this callback.
7685 */
7686static PgAioResult
7688 uint8 cb_data)
7689{
7690 bool zeroed_any,
7691 ignored_any;
7692 uint8 zeroed_or_error_count,
7693 checkfail_count,
7694 first_off;
7695
7696 if (prior_result.status == PGAIO_RS_OK)
7697 return prior_result;
7698
7699 buffer_readv_decode_error(prior_result,
7700 &zeroed_any,
7701 &ignored_any,
7702 &zeroed_or_error_count,
7703 &checkfail_count,
7704 &first_off);
7705
7706 if (checkfail_count)
7707 {
7709
7711 checkfail_count);
7712 }
7713
7714 return prior_result;
7715}
7716
7717static void
7719{
7720 buffer_stage_common(ioh, false, true);
7721}
7722
7723static PgAioResult
7725 uint8 cb_data)
7726{
7727 return buffer_readv_complete(ioh, prior_result, cb_data, true);
7728}
7729
7730/* readv callback is passed READ_BUFFERS_* flags as callback data */
7733 .complete_shared = shared_buffer_readv_complete,
7734 /* need a local callback to report checksum failures */
7735 .complete_local = shared_buffer_readv_complete_local,
7736 .report = buffer_readv_report,
7737};
7738
7739/* readv callback is passed READ_BUFFERS_* flags as callback data */
7742
7743 /*
7744 * Note that this, in contrast to the shared_buffers case, uses
7745 * complete_local, as only the issuing backend has access to the required
7746 * datastructures. This is important in case the IO completion may be
7747 * consumed incidentally by another backend.
7748 */
7749 .complete_local = local_buffer_readv_complete,
7750 .report = buffer_readv_report,
7751};
int io_method
Definition: aio.c:74
bool pgaio_wref_valid(PgAioWaitRef *iow)
Definition: aio.c:971
PgAioHandle * pgaio_io_acquire(struct ResourceOwnerData *resowner, PgAioReturn *ret)
Definition: aio.c:162
void pgaio_wref_clear(PgAioWaitRef *iow)
Definition: aio.c:964
void pgaio_io_get_wref(PgAioHandle *ioh, PgAioWaitRef *iow)
Definition: aio.c:366
void pgaio_io_set_flag(PgAioHandle *ioh, PgAioHandleFlags flag)
Definition: aio.c:330
bool pgaio_have_staged(void)
Definition: aio.c:1107
bool pgaio_wref_check_done(PgAioWaitRef *iow)
Definition: aio.c:1005
ProcNumber pgaio_io_get_owner(PgAioHandle *ioh)
Definition: aio.c:355
void pgaio_submit_staged(void)
Definition: aio.c:1123
void pgaio_wref_wait(PgAioWaitRef *iow)
Definition: aio.c:991
void pgaio_io_release(PgAioHandle *ioh)
Definition: aio.c:240
PgAioHandle * pgaio_io_acquire_nb(struct ResourceOwnerData *resowner, PgAioReturn *ret)
Definition: aio.c:188
@ PGAIO_HCB_LOCAL_BUFFER_READV
Definition: aio.h:200
@ PGAIO_HCB_SHARED_BUFFER_READV
Definition: aio.h:198
@ IOMETHOD_SYNC
Definition: aio.h:34
@ PGAIO_HF_SYNCHRONOUS
Definition: aio.h:70
@ PGAIO_HF_REFERENCES_LOCAL
Definition: aio.h:60
void pgaio_io_set_handle_data_32(PgAioHandle *ioh, uint32 *data, uint8 len)
Definition: aio_callback.c:140
void pgaio_io_register_callbacks(PgAioHandle *ioh, PgAioHandleCallbackID cb_id, uint8 cb_data)
Definition: aio_callback.c:86
uint64 * pgaio_io_get_handle_data(PgAioHandle *ioh, uint8 *len)
Definition: aio_callback.c:156
void pgaio_result_report(PgAioResult result, const PgAioTargetData *target_data, int elevel)
Definition: aio_callback.c:173
PgAioTargetData * pgaio_io_get_target_data(PgAioHandle *ioh)
Definition: aio_target.c:73
#define PGAIO_RESULT_ERROR_BITS
Definition: aio_types.h:98
PgAioResultStatus
Definition: aio_types.h:79
@ PGAIO_RS_OK
Definition: aio_types.h:81
@ PGAIO_RS_UNKNOWN
Definition: aio_types.h:80
@ PGAIO_RS_PARTIAL
Definition: aio_types.h:82
@ PGAIO_RS_ERROR
Definition: aio_types.h:84
@ PGAIO_RS_WARNING
Definition: aio_types.h:83
static uint32 pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
Definition: atomics.h:396
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:349
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:410
static uint32 pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:381
static void pg_atomic_unlocked_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:295
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:237
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1609
int BgWriterDelay
Definition: bgwriter.c:58
void binaryheap_build(binaryheap *heap)
Definition: binaryheap.c:138
void binaryheap_replace_first(binaryheap *heap, bh_node_type d)
Definition: binaryheap.c:255
bh_node_type binaryheap_first(binaryheap *heap)
Definition: binaryheap.c:177
bh_node_type binaryheap_remove_first(binaryheap *heap)
Definition: binaryheap.c:192
void binaryheap_free(binaryheap *heap)
Definition: binaryheap.c:75
void binaryheap_add_unordered(binaryheap *heap, bh_node_type d)
Definition: binaryheap.c:116
binaryheap * binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
Definition: binaryheap.c:39
#define binaryheap_empty(h)
Definition: binaryheap.h:65
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
#define MaxBlockNumber
Definition: block.h:35
static int32 next
Definition: blutils.c:224
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
#define BufferIsLocal(buffer)
Definition: buf.h:37
CkptSortItem * CkptBufferIds
Definition: buf_init.c:25
WritebackContext BackendWritebackContext
Definition: buf_init.c:24
BufferDescPadded * BufferDescriptors
Definition: buf_init.c:21
#define BM_MAX_USAGE_COUNT
Definition: buf_internals.h:86
static void InitBufferTag(BufferTag *tag, const RelFileLocator *rlocator, ForkNumber forkNum, BlockNumber blockNum)
#define BM_TAG_VALID
Definition: buf_internals.h:71
#define BM_PERMANENT
Definition: buf_internals.h:77
#define BUF_USAGECOUNT_MASK
Definition: buf_internals.h:53
static ForkNumber BufTagGetForkNum(const BufferTag *tag)
#define BUF_REFCOUNT_ONE
Definition: buf_internals.h:51
static ConditionVariable * BufferDescriptorGetIOCV(const BufferDesc *bdesc)
static bool BufferTagsEqual(const BufferTag *tag1, const BufferTag *tag2)
static RelFileNumber BufTagGetRelNumber(const BufferTag *tag)
static LWLock * BufferDescriptorGetContentLock(const BufferDesc *bdesc)
static void UnlockBufHdr(BufferDesc *desc)
static bool BufTagMatchesRelFileLocator(const BufferTag *tag, const RelFileLocator *rlocator)
#define BUF_FLAG_MASK
Definition: buf_internals.h:56
#define BM_PIN_COUNT_WAITER
Definition: buf_internals.h:75
#define BM_DIRTY
Definition: buf_internals.h:69
static uint32 UnlockBufHdrExt(BufferDesc *desc, uint32 old_buf_state, uint32 set_bits, uint32 unset_bits, int refcount_change)
static void ResourceOwnerRememberBufferIO(ResourceOwner owner, Buffer buffer)
#define BM_LOCKED
Definition: buf_internals.h:68
#define BM_JUST_DIRTIED
Definition: buf_internals.h:74
#define BUF_STATE_GET_USAGECOUNT(state)
Definition: buf_internals.h:60
static void ResourceOwnerForgetBufferIO(ResourceOwner owner, Buffer buffer)
#define BM_IO_IN_PROGRESS
Definition: buf_internals.h:72
static void ClearBufferTag(BufferTag *tag)
static void ResourceOwnerRememberBuffer(ResourceOwner owner, Buffer buffer)
static void ResourceOwnerForgetBuffer(ResourceOwner owner, Buffer buffer)
#define BUF_USAGECOUNT_ONE
Definition: buf_internals.h:54
#define BUF_STATE_GET_REFCOUNT(state)
Definition: buf_internals.h:59
static LWLock * BufMappingPartitionLock(uint32 hashcode)
static RelFileLocator BufTagGetRelFileLocator(const BufferTag *tag)
#define BM_VALID
Definition: buf_internals.h:70
#define BM_IO_ERROR
Definition: buf_internals.h:73
static BufferDesc * GetLocalBufferDescriptor(uint32 id)
static BufferDesc * GetBufferDescriptor(uint32 id)
static Buffer BufferDescriptorGetBuffer(const BufferDesc *bdesc)
#define BM_CHECKPOINT_NEEDED
Definition: buf_internals.h:76
void BufTableDelete(BufferTag *tagPtr, uint32 hashcode)
Definition: buf_table.c:148
int BufTableLookup(BufferTag *tagPtr, uint32 hashcode)
Definition: buf_table.c:90
uint32 BufTableHashCode(BufferTag *tagPtr)
Definition: buf_table.c:78
int BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id)
Definition: buf_table.c:118
bool track_io_timing
Definition: bufmgr.c:169
void CheckBufferIsPinnedOnce(Buffer buffer)
Definition: bufmgr.c:5746
void FlushRelationsAllBuffers(SMgrRelation *smgrs, int nrels)
Definition: bufmgr.c:5125
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:5493
void DropDatabaseBuffers(Oid dbid)
Definition: bufmgr.c:4990
static int ckpt_buforder_comparator(const CkptSortItem *a, const CkptSortItem *b)
Definition: bufmgr.c:6447
static pg_attribute_always_inline PgAioResult buffer_readv_complete(PgAioHandle *ioh, PgAioResult prior_result, uint8 cb_data, bool is_temp)
Definition: bufmgr.c:7469
const ResourceOwnerDesc buffer_pin_resowner_desc
Definition: bufmgr.c:269
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:4318
static PrivateRefCountEntry * NewPrivateRefCountEntry(Buffer buffer)
Definition: bufmgr.c:363
static Buffer PrivateRefCountArrayKeys[REFCOUNT_ARRAY_ENTRIES]
Definition: bufmgr.c:238
static bool ReadBuffersCanStartIO(Buffer buffer, bool nowait)
Definition: bufmgr.c:1639
void DropRelationBuffers(SMgrRelation smgr_reln, ForkNumber *forkNum, int nforks, BlockNumber *firstDelBlock)
Definition: bufmgr.c:4640
Buffer ReleaseAndReadBuffer(Buffer buffer, Relation relation, BlockNumber blockNum)
Definition: bufmgr.c:3102
static int ReservedRefCountSlot
Definition: bufmgr.c:243
static PgAioResult shared_buffer_readv_complete_local(PgAioHandle *ioh, PgAioResult prior_result, uint8 cb_data)
Definition: bufmgr.c:7687
static pg_attribute_always_inline bool StartReadBuffersImpl(ReadBuffersOperation *operation, Buffer *buffers, BlockNumber blockNum, int *nblocks, int flags, bool allow_forwarding)
Definition: bufmgr.c:1337
static void CheckReadBuffersOperation(ReadBuffersOperation *operation, bool is_complete)
Definition: bufmgr.c:1602
PrefetchBufferResult PrefetchBuffer(Relation reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:747
static uint32 PrivateRefCountClock
Definition: bufmgr.c:242
static void FlushBuffer(BufferDesc *buf, SMgrRelation reln, IOObject io_object, IOContext io_context)
Definition: bufmgr.c:4378
static void ResOwnerReleaseBufferIO(Datum res)
Definition: bufmgr.c:6646
static PgAioResult local_buffer_readv_complete(PgAioHandle *ioh, PgAioResult prior_result, uint8 cb_data)
Definition: bufmgr.c:7724
bool StartReadBuffers(ReadBuffersOperation *operation, Buffer *buffers, BlockNumber blockNum, int *nblocks, int flags)
Definition: bufmgr.c:1564
void EvictAllUnpinnedBuffers(int32 *buffers_evicted, int32 *buffers_flushed, int32 *buffers_skipped)
Definition: bufmgr.c:6778
int io_max_combine_limit
Definition: bufmgr.c:194
static void FlushUnlockedBuffer(BufferDesc *buf, SMgrRelation reln, IOObject io_object, IOContext io_context)
Definition: bufmgr.c:4515
const ResourceOwnerDesc buffer_io_resowner_desc
Definition: bufmgr.c:260
bool zero_damaged_pages
Definition: bufmgr.c:166
#define BUF_DROP_FULL_SCAN_THRESHOLD
Definition: bufmgr.c:91
void LockBuffer(Buffer buffer, BufferLockMode mode)
Definition: bufmgr.c:5699
static void PinBuffer_Locked(BufferDesc *buf)
Definition: bufmgr.c:3273
void EvictRelUnpinnedBuffers(Relation rel, int32 *buffers_evicted, int32 *buffers_flushed, int32 *buffers_skipped)
Definition: bufmgr.c:6828
static pg_attribute_always_inline void buffer_readv_complete_one(PgAioTargetData *td, uint8 buf_off, Buffer buffer, uint8 flags, bool failed, bool is_temp, bool *buffer_invalid, bool *failed_checksum, bool *ignored_checksum, bool *zeroed_buffer)
Definition: bufmgr.c:7325
static int buffertag_comparator(const BufferTag *ba, const BufferTag *bb)
Definition: bufmgr.c:6413
bool IsBufferCleanupOK(Buffer buffer)
Definition: bufmgr.c:6010
#define BufferGetLSN(bufHdr)
Definition: bufmgr.c:73
static char * ResOwnerPrintBufferIO(Datum res)
Definition: bufmgr.c:6654
bool BufferIsLockedByMeInMode(Buffer buffer, BufferLockMode mode)
Definition: bufmgr.c:2963
Buffer ExtendBufferedRel(BufferManagerRelation bmr, ForkNumber forkNum, BufferAccessStrategy strategy, uint32 flags)
Definition: bufmgr.c:939
void AtEOXact_Buffers(bool isCommit)
Definition: bufmgr.c:4084
static void AbortBufferIO(Buffer buffer)
Definition: bufmgr.c:6261
const PgAioHandleCallbacks aio_shared_buffer_readv_cb
Definition: bufmgr.c:7731
BlockNumber ExtendBufferedRelBy(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:971
static Buffer ReadBuffer_common(Relation rel, SMgrRelation smgr, char smgr_persistence, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:1268
struct PrivateRefCountData PrivateRefCountData
static void ProcessReadBuffersResult(ReadBuffersOperation *operation)
Definition: bufmgr.c:1668
static void ZeroAndLockBuffer(Buffer buffer, ReadBufferMode mode, bool already_valid)
Definition: bufmgr.c:1106
static BufferDesc * BufferAlloc(SMgrRelation smgr, char relpersistence, ForkNumber forkNum, BlockNumber blockNum, BufferAccessStrategy strategy, bool *foundPtr, IOContext io_context)
Definition: bufmgr.c:2075
static void CheckForBufferLeaks(void)
Definition: bufmgr.c:4154
static bool ReadBuffersCanStartIOOnce(Buffer buffer, bool nowait)
Definition: bufmgr.c:1626
void CreateAndCopyRelationData(RelFileLocator src_rlocator, RelFileLocator dst_rlocator, bool permanent)
Definition: bufmgr.c:5337
void DropRelationsAllBuffers(SMgrRelation *smgr_reln, int nlocators)
Definition: bufmgr.c:4760
static int rlocator_comparator(const void *p1, const void *p2)
Definition: bufmgr.c:6332
Buffer ExtendBufferedRelTo(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, BlockNumber extend_to, ReadBufferMode mode)
Definition: bufmgr.c:1000
struct SMgrSortArray SMgrSortArray
const PgAioHandleCallbacks aio_local_buffer_readv_cb
Definition: bufmgr.c:7740
static bool InvalidateVictimBuffer(BufferDesc *buf_hdr)
Definition: bufmgr.c:2343
static void AtProcExit_Buffers(int code, Datum arg)
Definition: bufmgr.c:4136
int io_combine_limit_guc
Definition: bufmgr.c:193
static int ts_ckpt_progress_comparator(Datum a, Datum b, void *arg)
Definition: bufmgr.c:6478
void BufferGetTag(Buffer buffer, RelFileLocator *rlocator, ForkNumber *forknum, BlockNumber *blknum)
Definition: bufmgr.c:4339
#define BufHdrGetBlock(bufHdr)
Definition: bufmgr.c:72
static pg_attribute_always_inline void buffer_stage_common(PgAioHandle *ioh, bool is_write, bool is_temp)
Definition: bufmgr.c:7077
#define BUF_REUSABLE
Definition: bufmgr.c:81
static void local_buffer_write_error_callback(void *arg)
Definition: bufmgr.c:6316
static void BufferSync(int flags)
Definition: bufmgr.c:3437
static bool AsyncReadBuffers(ReadBuffersOperation *operation, int *nblocks_progress)
Definition: bufmgr.c:1839
static void local_buffer_readv_stage(PgAioHandle *ioh, uint8 cb_data)
Definition: bufmgr.c:7718
char * DebugPrintBufferRefcount(Buffer buffer)
Definition: bufmgr.c:4261
static char * ResOwnerPrintBufferPin(Datum res)
Definition: bufmgr.c:6677
void CheckPointBuffers(int flags)
Definition: bufmgr.c:4304
bool BufferIsDirty(Buffer buffer)
Definition: bufmgr.c:3005
static uint32 MaxProportionalPins
Definition: bufmgr.c:246
static BlockNumber ExtendBufferedRelShared(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:2669
bool BgBufferSync(WritebackContext *wb_context)
Definition: bufmgr.c:3716
static void WakePinCountWaiter(BufferDesc *buf)
Definition: bufmgr.c:3305
bool BufferIsPermanent(Buffer buffer)
Definition: bufmgr.c:4564
void MarkDirtyAllUnpinnedBuffers(int32 *buffers_dirtied, int32 *buffers_already_dirty, int32 *buffers_skipped)
Definition: bufmgr.c:7028
#define REFCOUNT_ARRAY_ENTRIES
Definition: bufmgr.c:122
static void shared_buffer_readv_stage(PgAioHandle *ioh, uint8 cb_data)
Definition: bufmgr.c:7667
void UnlockBuffers(void)
Definition: bufmgr.c:5668
PrefetchBufferResult PrefetchSharedBuffer(SMgrRelation smgr_reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:657
static PgAioResult shared_buffer_readv_complete(PgAioHandle *ioh, PgAioResult prior_result, uint8 cb_data)
Definition: bufmgr.c:7673
static Buffer GetVictimBuffer(BufferAccessStrategy strategy, IOContext io_context)
Definition: bufmgr.c:2414
bool ConditionalLockBuffer(Buffer buffer)
Definition: bufmgr.c:5725
BlockNumber RelationGetNumberOfBlocksInFork(Relation relation, ForkNumber forkNum)
Definition: bufmgr.c:4532
int bgwriter_flush_after
Definition: bufmgr.c:201
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5461
pg_noinline uint32 WaitBufHdrUnlocked(BufferDesc *buf)
Definition: bufmgr.c:6389
bool BufferIsLockedByMe(Buffer buffer)
Definition: bufmgr.c:2937
static bool PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy, bool skip_if_not_valid)
Definition: bufmgr.c:3162
static void FindAndDropRelationBuffers(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber nForkBlock, BlockNumber firstDelBlock)
Definition: bufmgr.c:4930
XLogRecPtr BufferGetLSNAtomic(Buffer buffer)
Definition: bufmgr.c:4594
bool HoldingBufferPinThatDelaysRecovery(void)
Definition: bufmgr.c:5926
bool MarkDirtyUnpinnedBuffer(Buffer buf, bool *buffer_already_dirty)
Definition: bufmgr.c:6935
int checkpoint_flush_after
Definition: bufmgr.c:200
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5478
static pg_attribute_always_inline Buffer PinBufferForBlock(Relation rel, SMgrRelation smgr, char persistence, ForkNumber forkNum, BlockNumber blockNum, BufferAccessStrategy strategy, bool *foundPtr)
Definition: bufmgr.c:1185
void TerminateBufferIO(BufferDesc *buf, bool clear_dirty, uint32 set_flag_bits, bool forget_owner, bool release_aio)
Definition: bufmgr.c:6199
static void UnpinBufferNoOwner(BufferDesc *buf)
Definition: bufmgr.c:3350
static void shared_buffer_write_error_callback(void *arg)
Definition: bufmgr.c:6300
void ScheduleBufferTagForWriteback(WritebackContext *wb_context, IOContext io_context, BufferTag *tag)
Definition: bufmgr.c:6513
void WaitReadBuffers(ReadBuffersOperation *operation)
Definition: bufmgr.c:1707
void WritebackContextInit(WritebackContext *context, int *max_pending)
Definition: bufmgr.c:6501
void MarkBufferDirty(Buffer buffer)
Definition: bufmgr.c:3037
#define BufferIsPinned(bufnum)
Definition: bufmgr.c:577
double bgwriter_lru_multiplier
Definition: bufmgr.c:168
static bool EvictUnpinnedBufferInternal(BufferDesc *desc, bool *buffer_flushed)
Definition: bufmgr.c:6687
int backend_flush_after
Definition: bufmgr.c:202
void LimitAdditionalPins(uint32 *additional_pins)
Definition: bufmgr.c:2607
static void buffer_readv_report(PgAioResult result, const PgAioTargetData *td, int elevel)
Definition: bufmgr.c:7572
static void ReservePrivateRefCountEntry(void)
Definition: bufmgr.c:284
static BufferDesc * PinCountWaitBuf
Definition: bufmgr.c:205
static pg_noinline PrivateRefCountEntry * GetPrivateRefCountEntrySlow(Buffer buffer, bool do_move)
Definition: bufmgr.c:393
static int32 GetPrivateRefCount(Buffer buffer)
Definition: bufmgr.c:517
static BlockNumber ExtendBufferedRelCommon(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:2625
void LockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5779
void MarkBufferDirtyHint(Buffer buffer, bool buffer_std)
Definition: bufmgr.c:5525
void FlushRelationBuffers(Relation rel)
Definition: bufmgr.c:5037
#define READV_COUNT_BITS
void IssuePendingWritebacks(WritebackContext *wb_context, IOContext io_context)
Definition: bufmgr.c:6563
static void ForgetPrivateRefCountEntry(PrivateRefCountEntry *ref)
Definition: bufmgr.c:540
bool EvictUnpinnedBuffer(Buffer buf, bool *buffer_flushed)
Definition: bufmgr.c:6749
Buffer ReadBufferWithoutRelcache(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy, bool permanent)
Definition: bufmgr.c:923
bool ReadRecentBuffer(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber blockNum, Buffer recent_buffer)
Definition: bufmgr.c:778
#define RELS_BSEARCH_THRESHOLD
Definition: bufmgr.c:83
int maintenance_io_concurrency
Definition: bufmgr.c:184
static void UnpinBuffer(BufferDesc *buf)
Definition: bufmgr.c:3341
void FlushDatabaseBuffers(Oid dbid)
Definition: bufmgr.c:5401
static void InvalidateBuffer(BufferDesc *buf)
Definition: bufmgr.c:2248
static void RelationCopyStorageUsingBuffer(RelFileLocator srclocator, RelFileLocator dstlocator, ForkNumber forkNum, bool permanent)
Definition: bufmgr.c:5223
int effective_io_concurrency
Definition: bufmgr.c:177
static PrivateRefCountEntry * GetPrivateRefCountEntry(Buffer buffer, bool do_move)
Definition: bufmgr.c:482
bool StartBufferIO(BufferDesc *buf, bool forInput, bool nowait)
Definition: bufmgr.c:6141
struct PrivateRefCountEntry PrivateRefCountEntry
void MarkDirtyRelUnpinnedBuffers(Relation rel, int32 *buffers_dirtied, int32 *buffers_already_dirty, int32 *buffers_skipped)
Definition: bufmgr.c:6971
struct CkptTsStatus CkptTsStatus
bool StartReadBuffer(ReadBuffersOperation *operation, Buffer *buffer, BlockNumber blocknum, int flags)
Definition: bufmgr.c:1583
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:886
static bool MarkDirtyUnpinnedBufferInternal(Buffer buf, BufferDesc *desc, bool *buffer_already_dirty)
Definition: bufmgr.c:6879
uint32 LockBufHdr(BufferDesc *desc)
Definition: bufmgr.c:6359
static void ResOwnerReleaseBufferPin(Datum res)
Definition: bufmgr.c:6662
static struct PrivateRefCountEntry PrivateRefCountArray[REFCOUNT_ARRAY_ENTRIES]
Definition: bufmgr.c:239
static void buffer_readv_decode_error(PgAioResult result, bool *zeroed_any, bool *ignored_any, uint8 *zeroed_or_error_count, uint8 *checkfail_count, uint8 *first_off)
Definition: bufmgr.c:7188
#define READV_COUNT_MASK
static int PrivateRefCountEntryLast
Definition: bufmgr.c:244
int io_combine_limit
Definition: bufmgr.c:192
void InitBufferManagerAccess(void)
Definition: bufmgr.c:4101
static void buffer_readv_encode_error(PgAioResult *result, bool is_temp, bool zeroed_any, bool ignored_any, uint8 error_count, uint8 zeroed_count, uint8 checkfail_count, uint8 first_error_off, uint8 first_zeroed_off, uint8 first_ignored_off)
Definition: bufmgr.c:7230
static int SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *wb_context)
Definition: bufmgr.c:4014
uint32 GetAdditionalPinLimit(void)
Definition: bufmgr.c:2581
Buffer ReadBuffer(Relation reln, BlockNumber blockNum)
Definition: bufmgr.c:839
void TrackNewBufferPin(Buffer buf)
Definition: bufmgr.c:3397
static HTAB * PrivateRefCountHash
Definition: bufmgr.c:240
static int32 PrivateRefCountOverflowed
Definition: bufmgr.c:241
bool ConditionalLockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5952
int bgwriter_lru_maxpages
Definition: bufmgr.c:167
uint32 GetPinLimit(void)
Definition: bufmgr.c:2569
static void WaitIO(BufferDesc *buf)
Definition: bufmgr.c:6062
#define BUF_WRITTEN
Definition: bufmgr.c:80
void FlushOneBuffer(Buffer buffer)
Definition: bufmgr.c:5441
@ BAS_BULKREAD
Definition: bufmgr.h:37
@ BAS_BULKWRITE
Definition: bufmgr.h:39
#define P_NEW
Definition: bufmgr.h:198
#define READ_BUFFERS_ZERO_ON_ERROR
Definition: bufmgr.h:122
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:436
#define DEFAULT_IO_COMBINE_LIMIT
Definition: bufmgr.h:174
static Block BufferGetBlock(Buffer buffer)
Definition: bufmgr.h:403
#define READ_BUFFERS_ISSUE_ADVICE
Definition: bufmgr.h:124
BufferLockMode
Definition: bufmgr.h:204
@ BUFFER_LOCK_SHARE
Definition: bufmgr.h:206
@ BUFFER_LOCK_EXCLUSIVE
Definition: bufmgr.h:207
@ BUFFER_LOCK_UNLOCK
Definition: bufmgr.h:205
#define MAX_IO_COMBINE_LIMIT
Definition: bufmgr.h:173
#define DEFAULT_EFFECTIVE_IO_CONCURRENCY
Definition: bufmgr.h:168
#define READ_BUFFERS_IGNORE_CHECKSUM_FAILURES
Definition: bufmgr.h:126
#define DEFAULT_MAINTENANCE_IO_CONCURRENCY
Definition: bufmgr.h:169
void * Block
Definition: bufmgr.h:26
#define BMR_GET_SMGR(bmr)
Definition: bufmgr.h:118
@ EB_LOCK_TARGET
Definition: bufmgr.h:93
@ EB_CLEAR_SIZE_CACHE
Definition: bufmgr.h:90
@ EB_PERFORMING_RECOVERY
Definition: bufmgr.h:78
@ EB_CREATE_FORK_IF_NEEDED
Definition: bufmgr.h:84
@ EB_SKIP_EXTENSION_LOCK
Definition: bufmgr.h:75
@ EB_LOCK_FIRST
Definition: bufmgr.h:87
#define READ_BUFFERS_SYNCHRONOUSLY
Definition: bufmgr.h:128
ReadBufferMode
Definition: bufmgr.h:45
@ RBM_ZERO_ON_ERROR
Definition: bufmgr.h:51
@ RBM_ZERO_AND_CLEANUP_LOCK
Definition: bufmgr.h:49
@ RBM_ZERO_AND_LOCK
Definition: bufmgr.h:47
@ RBM_NORMAL
Definition: bufmgr.h:46
#define BMR_REL(p_rel)
Definition: bufmgr.h:114
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:387
bool ignore_checksum_failure
Definition: bufpage.c:27
char * PageSetChecksumCopy(Page page, BlockNumber blkno)
Definition: bufpage.c:1509
bool PageIsVerified(PageData *page, BlockNumber blkno, int flags, bool *checksum_failure_p)
Definition: bufpage.c:94
#define PIV_LOG_LOG
Definition: bufpage.h:468
static bool PageIsNew(const PageData *page)
Definition: bufpage.h:233
static void PageSetLSN(Page page, XLogRecPtr lsn)
Definition: bufpage.h:390
PageData * Page
Definition: bufpage.h:81
static XLogRecPtr PageGetLSN(const PageData *page)
Definition: bufpage.h:385
#define PIV_IGNORE_CHECKSUM_FAILURE
Definition: bufpage.h:469
#define pg_noinline
Definition: c.h:301
#define likely(x)
Definition: c.h:417
uint8_t uint8
Definition: c.h:550
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:229
#define Max(x, y)
Definition: c.h:989
double float8
Definition: c.h:649
#define pg_attribute_always_inline
Definition: c.h:285
int16_t int16
Definition: c.h:547
int32_t int32
Definition: c.h:548
uint64_t uint64
Definition: c.h:553
#define pg_unreachable()
Definition: c.h:347
#define unlikely(x)
Definition: c.h:418
uint32_t uint32
Definition: c.h:552
#define lengthof(array)
Definition: c.h:801
#define MemSet(start, val, len)
Definition: c.h:1011
#define StaticAssertDecl(condition, errmessage)
Definition: c.h:940
size_t Size
Definition: c.h:624
bool IsCatalogRelationOid(Oid relid)
Definition: catalog.c:121
bool IsCatalogTextUniqueIndexOid(Oid relid)
Definition: catalog.c:156
void CheckpointWriteDelay(int flags, double progress)
Definition: checkpointer.c:785
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
int64 TimestampTz
Definition: timestamp.h:39
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1415
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1380
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errdetail(const char *fmt,...)
Definition: elog.c:1216
ErrorContextCallback * error_context_stack
Definition: elog.c:95
int errhint_internal(const char *fmt,...)
Definition: elog.c:1352
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
int errhint_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1373
#define _(x)
Definition: elog.c:91
#define errcontext
Definition: elog.h:198
#define DEBUG3
Definition: elog.h:28
#define LOG_SERVER_ONLY
Definition: elog.h:32
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
int io_direct_flags
Definition: fd.c:168
#define IO_DIRECT_DATA
Definition: fd.h:54
#define palloc_array(type, count)
Definition: fe_memutils.h:76
int StrategySyncStart(uint32 *complete_passes, uint32 *num_buf_alloc)
Definition: freelist.c:321
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:461
void FreeAccessStrategy(BufferAccessStrategy strategy)
Definition: freelist.c:643
IOContext IOContextForStrategy(BufferAccessStrategy strategy)
Definition: freelist.c:747
BufferDesc * StrategyGetBuffer(BufferAccessStrategy strategy, uint32 *buf_state, bool *from_ring)
Definition: freelist.c:174
bool StrategyRejectBuffer(BufferAccessStrategy strategy, BufferDesc *buf, bool from_ring)
Definition: freelist.c:787
volatile sig_atomic_t ProcSignalBarrierPending
Definition: globals.c:40
int NBuffers
Definition: globals.c:142
bool enableFsync
Definition: globals.c:129
ProcNumber MyProcNumber
Definition: globals.c:90
int VacuumCostPageMiss
Definition: globals.c:152
bool VacuumCostActive
Definition: globals.c:158
int VacuumCostBalance
Definition: globals.c:157
int MaxBackends
Definition: globals.c:146
int VacuumCostPageDirty
Definition: globals.c:153
int VacuumCostPageHit
Definition: globals.c:151
Assert(PointerIsAligned(start, uint64))
const char * str
#define free(a)
Definition: header.h:65
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
BufferUsage pgBufferUsage
Definition: instrument.c:20
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
void LockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:424
void UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:474
int32 * LocalRefCount
Definition: localbuf.c:49
void FlushLocalBuffer(BufferDesc *bufHdr, SMgrRelation reln)
Definition: localbuf.c:183
void UnpinLocalBuffer(Buffer buffer)
Definition: localbuf.c:841
bool StartLocalBufferIO(BufferDesc *bufHdr, bool forInput, bool nowait)
Definition: localbuf.c:523
void AtEOXact_LocalBuffers(bool isCommit)
Definition: localbuf.c:1003
void AtProcExit_LocalBuffers(void)
Definition: localbuf.c:1014
bool PinLocalBuffer(BufferDesc *buf_hdr, bool adjust_usagecount)
Definition: localbuf.c:805
void MarkLocalBufferDirty(Buffer buffer)
Definition: localbuf.c:491
void DropRelationAllLocalBuffers(RelFileLocator rlocator)
Definition: localbuf.c:702
void TerminateLocalBufferIO(BufferDesc *bufHdr, bool clear_dirty, uint32 set_flag_bits, bool release_aio)
Definition: localbuf.c:562
int NLocBuffer
Definition: localbuf.c:45
PrefetchBufferResult PrefetchLocalBuffer(SMgrRelation smgr, ForkNumber forkNum, BlockNumber blockNum)
Definition: localbuf.c:72
BlockNumber ExtendBufferedRelLocal(BufferManagerRelation bmr, ForkNumber fork, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: localbuf.c:346
void UnpinLocalBufferNoOwner(Buffer buffer)
Definition: localbuf.c:848
void DropRelationLocalBuffers(RelFileLocator rlocator, ForkNumber *forkNum, int nforks, BlockNumber *firstDelBlock)
Definition: localbuf.c:665
BufferDesc * LocalBufferAlloc(SMgrRelation smgr, ForkNumber forkNum, BlockNumber blockNum, bool *foundPtr)
Definition: localbuf.c:119
#define ExclusiveLock
Definition: lockdefs.h:42
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1977
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockDisown(LWLock *lock)
Definition: lwlock.c:1883
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2021
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1345
void ForEachLWLockHeldByMe(void(*callback)(LWLock *, LWLockMode, void *), void *context)
Definition: lwlock.c:1962
LWLockMode
Definition: lwlock.h:111
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1610
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
#define VALGRIND_MAKE_MEM_DEFINED(addr, size)
Definition: memdebug.h:26
#define VALGRIND_MAKE_MEM_NOACCESS(addr, size)
Definition: memdebug.h:27
#define START_CRIT_SECTION()
Definition: miscadmin.h:150
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
#define END_CRIT_SECTION()
Definition: miscadmin.h:152
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
static PgChecksumMode mode
Definition: pg_checksums.c:56
static int64 current_size
Definition: pg_checksums.c:64
#define WRITEBACK_MAX_PENDING_FLUSHES
#define DEFAULT_BACKEND_FLUSH_AFTER
#define DEFAULT_CHECKPOINT_FLUSH_AFTER
#define DEFAULT_BGWRITER_FLUSH_AFTER
#define PG_IOV_MAX
Definition: pg_iovec.h:47
static char buf[DEFAULT_XLOG_SEG_SIZE]
Definition: pg_test_fsync.c:71
IOObject
Definition: pgstat.h:276
@ IOOBJECT_RELATION
Definition: pgstat.h:277
@ IOOBJECT_TEMP_RELATION
Definition: pgstat.h:278
#define pgstat_count_buffer_read(rel)
Definition: pgstat.h:715
IOContext
Definition: pgstat.h:285
@ IOCONTEXT_NORMAL
Definition: pgstat.h:289
@ IOOP_EXTEND
Definition: pgstat.h:314
@ IOOP_READ
Definition: pgstat.h:315
@ IOOP_WRITEBACK
Definition: pgstat.h:311
@ IOOP_HIT
Definition: pgstat.h:309
@ IOOP_EVICT
Definition: pgstat.h:307
@ IOOP_REUSE
Definition: pgstat.h:310
@ IOOP_WRITE
Definition: pgstat.h:316
#define pgstat_count_buffer_hit(rel)
Definition: pgstat.h:720
PgStat_BgWriterStats PendingBgWriterStats
PgStat_CheckpointerStats PendingCheckpointerStats
void pgstat_prepare_report_checksum_failure(Oid dboid)
void pgstat_report_checksum_failures_in_db(Oid dboid, int failurecount)
instr_time pgstat_prepare_io_time(bool track_io_guc)
Definition: pgstat_io.c:91
void pgstat_count_io_op(IOObject io_object, IOContext io_context, IOOp io_op, uint32 cnt, uint64 bytes)
Definition: pgstat_io.c:68
void pgstat_count_io_op_time(IOObject io_object, IOContext io_context, IOOp io_op, instr_time start_time, uint32 cnt, uint64 bytes)
Definition: pgstat_io.c:122
#define qsort(a, b, c, d)
Definition: port.h:499
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
#define NUM_AUXILIARY_PROCS
Definition: proc.h:463
#define DELAY_CHKPT_START
Definition: proc.h:135
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
void ProcessProcSignalBarrier(void)
Definition: procsignal.c:499
@ PROCSIG_RECOVERY_CONFLICT_BUFFERPIN
Definition: procsignal.h:47
void set_ps_display_remove_suffix(void)
Definition: ps_status.c:439
void set_ps_display_suffix(const char *suffix)
Definition: ps_status.c:387
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
ReadStream * read_stream_begin_smgr_relation(int flags, BufferAccessStrategy strategy, SMgrRelation smgr, char smgr_persistence, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:761
Buffer read_stream_next_buffer(ReadStream *stream, void **per_buffer_data)
Definition: read_stream.c:791
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
BlockNumber block_range_read_stream_cb(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: read_stream.c:162
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
#define READ_STREAM_FULL
Definition: read_stream.h:43
static unsigned hash(unsigned *uv, int n)
Definition: rege_dfa.c:715
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:577
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:647
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:668
#define RelationIsValid(relation)
Definition: rel.h:490
#define RelFileLocatorBackendIsTemp(rlocator)
#define RelFileLocatorEquals(locator1, locator2)
ForkNumber
Definition: relpath.h:56
@ MAIN_FORKNUM
Definition: relpath.h:58
@ INIT_FORKNUM
Definition: relpath.h:61
#define MAX_FORKNUM
Definition: relpath.h:70
#define relpath(rlocator, forknum)
Definition: relpath.h:150
#define relpathbackend(rlocator, backend, forknum)
Definition: relpath.h:141
#define relpathperm(rlocator, forknum)
Definition: relpath.h:146
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
void ResourceOwnerEnlarge(ResourceOwner owner)
Definition: resowner.c:449
#define RELEASE_PRIO_BUFFER_IOS
Definition: resowner.h:62
@ RESOURCE_RELEASE_BEFORE_LOCKS
Definition: resowner.h:54
#define RELEASE_PRIO_BUFFER_PINS
Definition: resowner.h:63
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:126
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:186
#define init_local_spin_delay(status)
Definition: s_lock.h:733
BlockNumber smgrnblocks(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:819
void smgrstartreadv(PgAioHandle *ioh, SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, void **buffers, BlockNumber nblocks)
Definition: smgr.c:753
void smgrwriteback(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, BlockNumber nblocks)
Definition: smgr.c:805
SMgrRelation smgropen(RelFileLocator rlocator, ProcNumber backend)
Definition: smgr.c:240
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:481
BlockNumber smgrnblocks_cached(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:847
uint32 smgrmaxcombine(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum)
Definition: smgr.c:697
void smgrzeroextend(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, int nblocks, bool skipFsync)
Definition: smgr.c:649
void smgrextend(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, const void *buffer, bool skipFsync)
Definition: smgr.c:620
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:462
bool smgrprefetch(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, int nblocks)
Definition: smgr.c:678
static void smgrwrite(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, const void *buffer, bool skipFsync)
Definition: smgr.h:131
void ProcSendSignal(ProcNumber procNumber)
Definition: proc.c:1996
PGPROC * MyProc
Definition: proc.c:67
int GetStartupBufferPinWaitBufId(void)
Definition: proc.c:771
int DeadlockTimeout
Definition: proc.c:58
void SetStartupBufferPinWaitBufId(int bufid)
Definition: proc.c:759
void ProcWaitForSignal(uint32 wait_event_info)
Definition: proc.c:1984
void ResolveRecoveryConflictWithBufferPin(void)
Definition: standby.c:793
bool log_recovery_conflict_waits
Definition: standby.c:42
void LogRecoveryConflict(ProcSignalReason reason, TimestampTz wait_start, TimestampTz now, VirtualTransactionId *wait_list, bool still_waiting)
Definition: standby.c:274
bool RelFileLocatorSkippingWAL(RelFileLocator rlocator)
Definition: storage.c:573
SMgrRelation RelationCreateStorage(RelFileLocator rlocator, char relpersistence, bool register_delete)
Definition: storage.c:122
void log_smgrcreate(const RelFileLocator *rlocator, ForkNumber forkNum)
Definition: storage.c:187
int wait_backend_pgprocno
BufferTag tag
pg_atomic_uint32 state
PgAioWaitRef io_wref
SMgrRelation smgr
Definition: bufmgr.h:110
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 shared_blks_read
Definition: instrument.h:27
int64 shared_blks_written
Definition: instrument.h:29
int64 local_blks_read
Definition: instrument.h:31
int64 shared_blks_hit
Definition: instrument.h:26
int ckpt_bufs_written
Definition: xlog.h:167
ForkNumber forkNum
RelFileNumber relNumber
BlockNumber blockNum
float8 progress_slice
Definition: bufmgr.c:141
int index
Definition: bufmgr.c:149
int num_scanned
Definition: bufmgr.c:146
float8 progress
Definition: bufmgr.c:140
int num_to_scan
Definition: bufmgr.c:144
Oid tsId
Definition: bufmgr.c:131
struct ErrorContextCallback * previous
Definition: elog.h:297
void(* callback)(void *arg)
Definition: elog.h:298
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
Definition: dynahash.c:222
Definition: lwlock.h:42
int delayChkptFlags
Definition: proc.h:257
PgAioHandleCallbackStage stage
Definition: aio.h:219
uint32 status
Definition: aio_types.h:108
uint32 error_data
Definition: aio_types.h:111
int32 result
Definition: aio_types.h:113
uint32 id
Definition: aio_types.h:105
PgAioResult result
Definition: aio_types.h:132
PgAioTargetData target_data
Definition: aio_types.h:133
PgStat_Counter buf_written_clean
Definition: pgstat.h:242
PgStat_Counter maxwritten_clean
Definition: pgstat.h:243
PgStat_Counter buf_alloc
Definition: pgstat.h:244
PgStat_Counter buffers_written
Definition: pgstat.h:266
Buffer recent_buffer
Definition: bufmgr.h:61
PrivateRefCountData data
Definition: bufmgr.c:118
ForkNumber forknum
Definition: bufmgr.h:137
PgAioWaitRef io_wref
Definition: bufmgr.h:150
Buffer * buffers
Definition: bufmgr.h:145
SMgrRelation smgr
Definition: bufmgr.h:135
BufferAccessStrategy strategy
Definition: bufmgr.h:138
BlockNumber blocknum
Definition: bufmgr.h:146
PgAioReturn io_return
Definition: bufmgr.h:151
RelFileLocator locator
RelFileNumber relNumber
char str[REL_PATH_STR_MAXLEN+1]
Definition: relpath.h:123
RelFileLocator rd_locator
Definition: rel.h:57
Form_pg_class rd_rel
Definition: rel.h:111
const char * name
Definition: resowner.h:93
RelFileLocatorBackend smgr_rlocator
Definition: smgr.h:38
SMgrRelation srel
Definition: bufmgr.c:162
RelFileLocator rlocator
Definition: bufmgr.c:161
PendingWriteback pending_writebacks[WRITEBACK_MAX_PENDING_FLUSHES]
BlockNumber blockNum
RelFileNumber relNumber
ForkNumber forkNum
Oid spcOid
static uint64 table_relation_size(Relation rel, ForkNumber forkNumber)
Definition: tableam.h:1847
BlockNumber blockNum
Definition: aio_types.h:66
RelFileLocator rlocator
Definition: aio_types.h:65
struct PgAioTargetData::@125 smgr
BlockNumber nblocks
Definition: aio_types.h:67
ForkNumber forkNum
Definition: aio_types.h:68
static volatile sig_atomic_t waiting
Definition: waiteventset.c:171
bool RecoveryInProgress(void)
Definition: xlog.c:6404
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3129
CheckpointStatsData CheckpointStats
Definition: xlog.c:211
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2783
#define CHECKPOINT_FLUSH_UNLOGGED
Definition: xlog.h:143
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:140
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:139
#define XLogIsNeeded()
Definition: xlog.h:109
#define XLogHintBitIsNeeded()
Definition: xlog.h:120
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
XLogRecPtr XLogSaveBufferForHint(Buffer buffer, bool buffer_std)
Definition: xloginsert.c:1087
XLogRecPtr log_newpage_buffer(Buffer buffer, bool page_std)
Definition: xloginsert.c:1259
#define InHotStandby
Definition: xlogutils.h:60