| Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Rewrite memcpy_sglist from scratch
- Add on-stack AEAD request allocation
- Fix partial block processing in ahash
Algorithms:
- Remove ansi_cprng
- Remove tcrypt tests for poly1305
- Fix EINPROGRESS processing in authenc
- Fix double-free in zstd
Drivers:
- Use drbg ctr helper when reseeding xilinx-trng
- Add support for PCI device 0x115A to ccp
- Add support of paes in caam
- Add support for aes-xts in dthev2
Others:
- Use likely in rhashtable lookup
- Fix lockdep false-positive in padata by removing a helper"
* tag 'v6.19-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (71 commits)
crypto: zstd - fix double-free in per-CPU stream cleanup
crypto: ahash - Zero positive err value in ahash_update_finish
crypto: ahash - Fix crypto_ahash_import with partial block data
crypto: lib/mpi - use min() instead of min_t()
crypto: ccp - use min() instead of min_t()
hwrng: core - use min3() instead of nested min_t()
crypto: aesni - ctr_crypt() use min() instead of min_t()
crypto: drbg - Delete unused ctx from struct sdesc
crypto: testmgr - Add missing DES weak and semi-weak key tests
Revert "crypto: scatterwalk - Move skcipher walk and use it for memcpy_sglist"
crypto: scatterwalk - Fix memcpy_sglist() to always succeed
crypto: iaa - Request to add Kanchana P Sridhar to Maintainers.
crypto: tcrypt - Remove unused poly1305 support
crypto: ansi_cprng - Remove unused ansi_cprng algorithm
crypto: asymmetric_keys - fix uninitialized pointers with free attribute
KEYS: Avoid -Wflex-array-member-not-at-end warning
crypto: ccree - Correctly handle return of sg_nents_for_len
crypto: starfive - Correctly handle return of sg_nents_for_len
crypto: iaa - Fix incorrect return value in save_iaa_wq()
crypto: zstd - Remove unnecessary size_t cast
...
|
|
Remove ansi_cprng, since it's obsolete and unused, as confirmed at
https://lore.kernel.org/r/aQxpnckYMgAAOLpZ@gondor.apana.org.au/
This was originally added in 2008, apparently as a FIPS approved random
number generator. Whether this has ever belonged upstream is
questionable. Either way, ansi_cprng is no longer usable for this
purpose, since it's been superseded by the more modern algorithms in
crypto/drbg.c, and FIPS itself no longer allows it. (NIST SP 800-131A
Rev 1 (2015) says that RNGs based on ANSI X9.31 will be disallowed after
2015. NIST SP 800-131A Rev 2 (2019) confirms they are now disallowed.)
Therefore, there is no reason to keep it around.
Suggested-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Haotian Zhang <vulab@iscas.ac.cn>
Cc: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
These are no longer used, since polyval support has been removed from
the crypto_shash API.
POLYVAL remains supported via lib/crypto/, where it has a KUnit test
suite instead.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251109234726.638437-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
The "hash function" in hctr2 is fixed at POLYVAL; it can never vary.
Just use the POLYVAL library, which is much easier to use than the
crypto_shash API. It's faster, uses fixed-size structs, and never fails
(all the functions return void).
Note that this eliminates the only known user of the polyval support in
crypto_shash. A later commit will remove support for polyval from
crypto_shash, given that the library API is sufficient.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251109234726.638437-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Replace sha3_generic.c with a new file sha3.c which implements the SHA-3
crypto_shash algorithms on top of the SHA-3 library API.
Change the driver name suffix from "-generic" to "-lib" to reflect that
these algorithms now just use the (possibly arch-optimized) library.
This closely mirrors crypto/{md5,sha1,sha256,sha512,blake2b}.c.
Implement export_core and import_core, since crypto/hmac.c expects these
to be present. (Note that there is no security purpose in wrapping
SHA-3 with HMAC. HMAC was designed for older algorithms that don't
resist length extension attacks. But since someone could be using
"hmac(sha3-*)" via crypto_shash anyway, keep supporting it for now.)
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Harald Freudenberger <freude@linux.ibm.com>
Link: https://lore.kernel.org/r/20251026055032.1413733-15-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Replace blake2b_generic.c with a new file blake2b.c which implements the
BLAKE2b crypto_shash algorithms on top of the BLAKE2b library API.
Change the driver name suffix from "-generic" to "-lib" to reflect that
these algorithms now just use the (possibly arch-optimized) library.
This closely mirrors crypto/{md5,sha1,sha256,sha512}.c.
Remove include/crypto/internal/blake2b.h since it is no longer used.
Likewise, remove struct blake2b_state from include/crypto/blake2b.h.
Omit support for import_core and export_core, since there are no legacy
drivers that need these for these algorithms.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251018043106.375964-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fixes from Herbert Xu:
- Fix zstd regression
- Ensure ti driver algorithm are set as async
- Revert patch disabling SHA1 in FIPS mode
- Fix RNG set_ent null-pointer dereference
* tag 'v6.18-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: rng - Ensure set_ent is always present
Revert "crypto: testmgr - desupport SHA-1 for FIPS 140"
crypto: ti - Add CRYPTO_ALG_ASYNC flag to DTHEv2 AES algos
crypto: zstd - Fix compression bug caused by truncation
|
|
This reverts commit 9d50a25eeb05c45fef46120f4527885a14c84fb2.
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Reported-by: Jon Kohler <jon@nutanix.com>
Link: https://lore.kernel.org/all/05b7ef65-37bb-4391-9ec9-c382d51bae4d@kernel.org/
Link: https://lore.kernel.org/all/26F8FCC9-B448-4A89-81DF-6BAADA03E174@nutanix.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Curve25519 is used only via the library API, not the crypto_kpp API. In
preparation for removing the unused crypto_kpp API for Curve25519,
remove the tests for the "curve25519" kpp from crypto/testmgr.c.
Note that these tests just duplicated lib/crypto/curve25519-selftest.c,
which uses the same list of test vectors. So they didn't really provide
any additional value.
Link: https://lore.kernel.org/r/20250906213523.84915-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
For the "chacha20", "xchacha20", and "xchacha12" skcipher algorithms,
instead of registering "*-generic" drivers as well as conditionally
registering "*-$(ARCH)" drivers, instead just register "*-lib" drivers.
These just use the regular library functions, so they just do the right
thing and are fully accelerated when supported by the CPU.
This eliminates the need for the ChaCha library to support
chacha_crypt_generic() and hchacha_block_generic() as part of its
external interface. A later commit will make chacha_crypt_generic() a
static function.
Since this commit removes several "*-generic" driver names which
crypto/testmgr.c expects to exist, update testmgr.c accordingly.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250827151131.27733-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Reimplement crypto/md5.c on top of the new MD5 library functions. Also
add support for HMAC-MD5, again just wrapping the library functions.
This closely mirrors crypto/sha1.c.
Link: https://lore.kernel.org/r/20250805222855.10362-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
"API:
- Allow hash drivers without fallbacks (e.g., hardware key)
Algorithms:
- Add hmac hardware key support (phmac) on s390
- Re-enable sha384 in FIPS mode
- Disable sha1 in FIPS mode
- Convert zstd to acomp
Drivers:
- Lower priority of qat skcipher and aead
- Convert aspeed to partial block API
- Add iMX8QXP support in caam
- Add rate limiting support for GEN6 devices in qat
- Enable telemetry for GEN6 devices in qat
- Implement full backlog mode for hisilicon/sec2"
* tag 'v6.17-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (116 commits)
crypto: keembay - Use min() to simplify ocs_create_linked_list_from_sg()
crypto: hisilicon/hpre - fix dma unmap sequence
crypto: qat - make adf_dev_autoreset() static
crypto: ccp - reduce stack usage in ccp_run_aes_gcm_cmd
crypto: qat - refactor ring-related debug functions
crypto: qat - fix seq_file position update in adf_ring_next()
crypto: qat - fix DMA direction for compression on GEN2 devices
crypto: jitter - replace ARRAY_SIZE definition with header include
crypto: engine - remove {prepare,unprepare}_crypt_hardware callbacks
crypto: engine - remove request batching support
crypto: qat - flush misc workqueue during device shutdown
crypto: qat - enable rate limiting feature for GEN6 devices
crypto: qat - add compression slice count for rate limiting
crypto: qat - add get_svc_slice_cnt() in device data structure
crypto: qat - add adf_rl_get_num_svc_aes() in rate limiting
crypto: qat - relocate service related functions
crypto: qat - consolidate service enums
crypto: qat - add decompression service for rate limiting
crypto: qat - validate service in rate limiting sysfs api
crypto: hisilicon/sec2 - implement full backlog mode for sec
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux
Pull crypto library updates from Eric Biggers:
"This is the main crypto library pull request for 6.17. The main focus
this cycle is on reorganizing the SHA-1 and SHA-2 code, providing
high-quality library APIs for SHA-1 and SHA-2 including HMAC support,
and establishing conventions for lib/crypto/ going forward:
- Migrate the SHA-1 and SHA-512 code (and also SHA-384 which shares
most of the SHA-512 code) into lib/crypto/. This includes both the
generic and architecture-optimized code. Greatly simplify how the
architecture-optimized code is integrated. Add an easy-to-use
library API for each SHA variant, including HMAC support. Finally,
reimplement the crypto_shash support on top of the library API.
- Apply the same reorganization to the SHA-256 code (and also SHA-224
which shares most of the SHA-256 code). This is a somewhat smaller
change, due to my earlier work on SHA-256. But this brings in all
the same additional improvements that I made for SHA-1 and SHA-512.
There are also some smaller changes:
- Move the architecture-optimized ChaCha, Poly1305, and BLAKE2s code
from arch/$(SRCARCH)/lib/crypto/ to lib/crypto/$(SRCARCH)/. For
these algorithms it's just a move, not a full reorganization yet.
- Fix the MIPS chacha-core.S to build with the clang assembler.
- Fix the Poly1305 functions to work in all contexts.
- Fix a performance regression in the x86_64 Poly1305 code.
- Clean up the x86_64 SHA-NI optimized SHA-1 assembly code.
Note that since the new organization of the SHA code is much simpler,
the diffstat of this pull request is negative, despite the addition of
new fully-documented library APIs for multiple SHA and HMAC-SHA
variants.
These APIs will allow further simplifications across the kernel as
users start using them instead of the old-school crypto API. (I've
already written a lot of such conversion patches, removing over 1000
more lines of code. But most of those will target 6.18 or later)"
* tag 'libcrypto-updates-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux: (67 commits)
lib/crypto: arm64/sha512-ce: Drop compatibility macros for older binutils
lib/crypto: x86/sha1-ni: Convert to use rounds macros
lib/crypto: x86/sha1-ni: Minor optimizations and cleanup
crypto: sha1 - Remove sha1_base.h
lib/crypto: x86/sha1: Migrate optimized code into library
lib/crypto: sparc/sha1: Migrate optimized code into library
lib/crypto: s390/sha1: Migrate optimized code into library
lib/crypto: powerpc/sha1: Migrate optimized code into library
lib/crypto: mips/sha1: Migrate optimized code into library
lib/crypto: arm64/sha1: Migrate optimized code into library
lib/crypto: arm/sha1: Migrate optimized code into library
crypto: sha1 - Use same state format as legacy drivers
crypto: sha1 - Wrap library and add HMAC support
lib/crypto: sha1: Add HMAC support
lib/crypto: sha1: Add SHA-1 library functions
lib/crypto: sha1: Rename sha1_init() to sha1_init_raw()
crypto: x86/sha1 - Rename conflicting symbol
lib/crypto: sha2: Add hmac_sha*_init_usingrawkey()
lib/crypto: arm/poly1305: Remove unneeded empty weak function
lib/crypto: x86/poly1305: Fix performance regression on short messages
...
|
|
Like I did for crypto/sha512.c, rework crypto/sha1_generic.c (renamed to
crypto/sha1.c) to simply wrap the normal library functions instead of
accessing the low-level block function directly. Also add support for
HMAC-SHA1, again just wrapping the library functions.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them driver names
ending with "-lib" rather than "-generic". Update crypto/testmgr.c and
an odd driver to take this change in driver name into account.
Note: to see the diff from crypto/sha1_generic.c to crypto/sha1.c, view
this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Like I did for crypto/sha512.c, rework crypto/sha256.c to simply wrap
the normal library functions instead of accessing the low-level arch-
optimized and generic block functions directly. Also add support for
HMAC-SHA224 and HMAC-SHA256, again just wrapping the library functions.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them driver names
ending with "-lib" rather than "-generic". Update crypto/testmgr.c and
a couple odd drivers to take this change in driver name into account.
Besides the above cases which are accounted for, there are no known
cases where the driver names were being depended on. There is
potential for confusion for people manually checking /proc/crypto (e.g.
https://lore.kernel.org/r/9e33c893-2466-4d4e-afb1-966334e451a2@linux.ibm.com/),
but really people just need to get used to the driver name not being
meaningful for the software algorithms. Historically, the optimized
code was disabled by default, so there was some purpose to checking
whether it was enabled or not. However, this is now fixed for all SHA-2
algorithms, and the library code just always does the right thing. E.g.
if the CPU supports SHA-256 instructions, they are used.
This change does also mean that the generic partial block handling code
in crypto/shash.c, which got added in 6.16, no longer gets used. But
that's fine; the library has to implement the partial block handling
anyway, and it's better to do it in the library since the block size and
other properties of the algorithm are all fixed at compile time there,
resulting in more streamlined code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
For the "crc32" and "crc32c" shash algorithms, instead of registering
"*-generic" drivers as well as conditionally registering "*-$(ARCH)"
drivers, instead just register "*-lib" drivers. These just use the
regular library functions crc32_le() and crc32c(), so they just do the
right thing and are fully accelerated when supported by the CPU.
This eliminates the need for the CRC library to export crc32_le_base()
and crc32c_base(). Separate commits make those static functions.
Since this commit removes the "crc32-generic" and "crc32c-generic"
driver names which crypto/testmgr.c expects to exist, update testmgr.c
accordingly. This does mean that testmgr.c will no longer fuzz-test the
"generic" implementation against the "arch" implementation for crc32 and
crc32c, but this was redundant with crc_kunit anyway.
Besides the above, and btrfs_init_csum_hash() which the previous commit
fixed, no code appears to have been relying on the "crc32-generic" or
"crc32c-generic" driver names specifically.
btrfs does export the checksum name and checksum driver name in
/sys/fs/btrfs/$uuid/checksum. This commit makes the driver name portion
of that file contain "crc32c-lib" instead of "crc32c-generic" or
"crc32c-$(ARCH)". This should be fine, since in practice the purpose of
the driver name portion of this file seems to have been just to allow
users to manually check whether they needed to enable the optimized
CRC32C code. This was needed only because of the bug in old kernels
where the optimized CRC32C code defaulted to off and even needed to be
explicitly added to the ramdisk to be used. Now that it just works in
Linux 6.14 and later, there's no need for users to take any action and
the driver name portion of this is basically obsolete. (Also, note that
the crc32c driver name already changed in 6.14.)
Acked-by: David Sterba <dsterba@suse.com>
Link: https://lore.kernel.org/r/20250613183753.31864-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
This is no longer needed now that the code that used to directly access
the descriptor context of "crc32c" (libcrc32c and ext4) now just calls
crc32c(). Keep just the generic hash test.
Link: https://lore.kernel.org/r/20250531205937.63008-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Delete crypto/sha512_generic.c, which provided "generic" SHA-384 and
SHA-512 crypto_shash algorithms. Replace it with crypto/sha512.c which
provides SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 crypto_shash
algorithms using the corresponding library functions.
This is a prerequisite for migrating all the arch-optimized SHA-512 code
(which is almost 3000 lines) to lib/crypto/ rather than duplicating it.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them
cra_driver_names ending with "-lib" rather than "-generic". Update
crypto/testmgr.c and one odd driver to take this change in driver name
into account. Besides these cases which are accounted for, there are no
known cases where the cra_driver_name was being depended on.
This change does mean that the abstract partial block handling code in
crypto/shash.c, which got added in 6.16, no longer gets used. But
that's fine; the library has to implement the partial block handling
anyway, and it's better to do it in the library since the block size and
other properties of the algorithm are all fixed at compile time there,
resulting in more streamlined code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Add phmac selftest invocation to the crypto testmanager.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Set .fips_allowed in the following drbg alg_test_desc structs.
drbg_nopr_hmac_sha384
drbg_nopr_sha384
drbg_pr_hmac_sha384
drbg_pr_sha384
The sha384 and hmac_sha384 DRBGs with and without prediction resistance
were disallowed in an early version of the FIPS 140-3 Implementation
Guidance document. Hence, the fips_allowed flag in struct alg_test_desc
pertaining to the affected DRBGs was unset. The IG has been withdrawn
and they are allowed again.
Furthermore, when the DRBGs are configured, /proc/crypto shows that
drbg_*pr_sha384 and drbg_*pr_hmac_sha384 are fips-approved ("fips: yes")
but because their self-tests are not run (a consequence of unsetting
the fips_allowed flag), the drbgs won't load successfully with the seeming
contradictory "fips: yes" in /proc/crypto.
This series contains a single patch that sets the fips_allowed flag in
the sha384-impacted DRBGs, which restores the ability to load them in
FIPS mode.
Link: https://lore.kernel.org/linux-crypto/979f4f6f-bb74-4b93-8cbf-6ed653604f0e@jvdsn.com/
Link: https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
To: Herbert Xu <herbert@gondor.apana.org.au>
To: David S. Miller <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jeff Barnes <jeffbarnes@linux.microsoft.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The sunset period of SHA-1 is approaching [1] and FIPS 140 certificates
have a validity of 5 years. Any distros starting FIPS certification for
their kernels now would therefore most likely end up on the NIST
Cryptographic Module Validation Program "historical" list before their
certification expires.
While SHA-1 is technically still allowed until Dec. 31, 2030, it is
heavily discouraged by NIST and it makes sense to set .fips_allowed to
0 now for any crypto algorithms that reference it in order to avoid any
costly surprises down the line.
[1]: https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm
Acked-by: Stephan Mueller <smueller@chronox.de>
Cc: Marcus Meissner <meissner@suse.de>
Cc: Jarod Wilson <jarod@redhat.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: John Haxby <john.haxby@oracle.com>
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Commit 698de822780f ("crypto: testmgr - make it easier to enable the
full set of tests") removed support for building kernels that run only
the "fast" set of crypto self-tests by default. This assumed that
nearly everyone actually wanted the full set of tests, *if* they had
already chosen to enable the tests at all.
Unfortunately, it turns out that both Debian and Fedora intentionally
have the crypto self-tests enabled in their production kernels. And for
production kernels we do need to keep the testing time down, which
implies just running the "fast" tests, not the full set of tests.
For Fedora, a reason for enabling the tests in production is that they
are being (mis)used to meet the FIPS 140-3 pre-operational testing
requirement.
However, the other reason for enabling the tests in production, which
applies to both distros, is that they provide some value in protecting
users from buggy drivers. Unfortunately, the crypto/ subsystem has many
buggy and untested drivers for off-CPU hardware accelerators on rare
platforms. These broken drivers get shipped to users, and there have
been multiple examples of the tests preventing these buggy drivers from
being used. So effectively, the tests are being relied on in production
kernels. I think this is kind of crazy (untested drivers should just
not be enabled at all), but that seems to be how things work currently.
Thus, reintroduce a kconfig option that controls the level of testing.
Call it CRYPTO_SELFTESTS_FULL instead of the original name
CRYPTO_MANAGER_EXTRA_TESTS, which was slightly misleading.
Moreover, given the "production kernel" use case, make CRYPTO_SELFTESTS
depend on EXPERT instead of DEBUG_KERNEL.
I also haven't reinstated all the #ifdefs in crypto/testmgr.c. Instead,
just rely on the compiler to optimize out unused code.
Fixes: 40b9969796bf ("crypto: testmgr - replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS")
Fixes: 698de822780f ("crypto: testmgr - make it easier to enable the full set of tests")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This reverts commit 18c438b228558e05ede7dccf947a6547516fc0c7.
The s390 hmac and sha3 algorithms are failing the test. Revert
the change until they have been fixed.
Reported-by: Ingo Franzki <ifranzki@linux.ibm.com>
Link: https://lore.kernel.org/all/623a7fcb-b4cb-48e6-9833-57ad2b32a252@linux.ibm.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Ensure that the hash state can be exported to and imported from
the generic algorithm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As shash is being phased out, use ahash for the generic tfm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Soon hmac will support ahash. For compatibility hmac still supports
shash so it is possible for two hmac algorithms to be registered at
the same time. The shash algorithm will have the driver name
"hmac-shash(XXX-driver)". Due to a quirk in the API, there is no way
to locate the shash algorithm using the name "hmac(XXX-driver)". It
has to be addressed as either "hmac(XXX)" or "hmac-shash(XXX-driver)".
Looking it up with "hmac(XXX-driver)" will simply trigger the creation
of another instance, and on the second instantiation this will fail
with EEXIST.
Catch the error EEXIST along with ENOENT since it is expected.
If a real shash algorithm came this way, it would be addressed using
the proper name "hmac-shash(XXX-driver)".
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Rename the noextratests module parameter to noslowtests, and replace
other remaining mentions of "extra" in the code with "slow". This
addresses confusion regarding the word "extra" like that seen at
https://lore.kernel.org/r/6cecf2de-9aa0-f6ea-0c2d-8e974a1a820b@huawei.com/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently the full set of crypto self-tests requires
CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y. This is problematic in two ways.
First, developers regularly overlook this option. Second, the
description of the tests as "extra" sometimes gives the impression that
it is not required that all algorithms pass these tests.
Given that the main use case for the crypto self-tests is for
developers, make enabling CONFIG_CRYPTO_SELFTESTS=y just enable the full
set of crypto self-tests by default.
The slow tests can still be disabled by adding the command-line
parameter cryptomgr.noextratests=1, soon to be renamed to
cryptomgr.noslowtests=1. The only known use case for doing this is for
people trying to use the crypto self-tests to satisfy the FIPS 140-3
pre-operational self-testing requirements when the kernel is being
validated as a FIPS 140-3 cryptographic module.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The negative-sense of CRYPTO_MANAGER_DISABLE_TESTS is a longstanding
mistake that regularly causes confusion. Especially bad is that you can
have CRYPTO=n && CRYPTO_MANAGER_DISABLE_TESTS=n, which is ambiguous.
Replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS which has the
expected behavior.
The tests continue to be disabled by default.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The cryptomgr.panic_on_fail=1 kernel command-line parameter is not very
useful now that the tests have been fixed to WARN on failure, since
developers can just use panic_on_warn=1 instead. There's no need for a
special option just for the crypto self-tests. Remove it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As poly1305 no longer has any in-kernel users, remove its tests.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This reverts commit 99585c2192cb1ce212876e82ef01d1c98c7f4699.
Remove the acomp multibuffer tests so that the interface can be
redesigned.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
- revert the multibuffer hash testing as it is buggy
* tag 'v6.15-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
Revert "crypto: testmgr - Add multibuffer hash testing"
|
|
This reverts commit 8b54e6a8f4156ed43627f40300b0711dc977fbc1.
The multibuffer tests has a number of bugs. For example, the SG
lists for the filler requests weren't initialised properly, and
it fails to take data-keyed algorithms such as poly1305 into account.
More importantly, the chaining interface itself is under review.
Revert this until the interface is fully settled.
Reported-by: Manorit Chawdhry <m-chawdhry@ti.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202503281658.7a078821-lkp@intel.com
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Remove legacy compression interface
- Improve scatterwalk API
- Add request chaining to ahash and acomp
- Add virtual address support to ahash and acomp
- Add folio support to acomp
- Remove NULL dst support from acomp
Algorithms:
- Library options are fuly hidden (selected by kernel users only)
- Add Kerberos5 algorithms
- Add VAES-based ctr(aes) on x86
- Ensure LZO respects output buffer length on compression
- Remove obsolete SIMD fallback code path from arm/ghash-ce
Drivers:
- Add support for PCI device 0x1134 in ccp
- Add support for rk3588's standalone TRNG in rockchip
- Add Inside Secure SafeXcel EIP-93 crypto engine support in eip93
- Fix bugs in tegra uncovered by multi-threaded self-test
- Fix corner cases in hisilicon/sec2
Others:
- Add SG_MITER_LOCAL to sg miter
- Convert ubifs, hibernate and xfrm_ipcomp from legacy API to acomp"
* tag 'v6.15-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (187 commits)
crypto: testmgr - Add multibuffer acomp testing
crypto: acomp - Fix synchronous acomp chaining fallback
crypto: testmgr - Add multibuffer hash testing
crypto: hash - Fix synchronous ahash chaining fallback
crypto: arm/ghash-ce - Remove SIMD fallback code path
crypto: essiv - Replace memcpy() + NUL-termination with strscpy()
crypto: api - Call crypto_alg_put in crypto_unregister_alg
crypto: scompress - Fix incorrect stream freeing
crypto: lib/chacha - remove unused arch-specific init support
crypto: remove obsolete 'comp' compression API
crypto: compress_null - drop obsolete 'comp' implementation
crypto: cavium/zip - drop obsolete 'comp' implementation
crypto: zstd - drop obsolete 'comp' implementation
crypto: lzo - drop obsolete 'comp' implementation
crypto: lzo-rle - drop obsolete 'comp' implementation
crypto: lz4hc - drop obsolete 'comp' implementation
crypto: lz4 - drop obsolete 'comp' implementation
crypto: deflate - drop obsolete 'comp' implementation
crypto: 842 - drop obsolete 'comp' implementation
crypto: nx - Migrate to scomp API
...
|
|
Add rudimentary multibuffer acomp testing. Testing coverage is
extended to compression vectors only. However, as the compression
vectors are compressed and then decompressed, this covers both
compression and decompression.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This is based on a patch by Eric Biggers <ebiggers@google.com>.
Add limited self-test for multibuffer hash code path. This tests
only a single request in chain of a random length. The other
requests are either all of the same length as the one being tested,
or random lengths between 0 and PAGE_SIZE * 2 * XBUFSIZE.
Potential extension include testing all requests rather than just
the single one.
Link: https://lore.kernel.org/all/20241001153718.111665-3-ebiggers@kernel.org/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The 'comp' compression API has been superseded by the acomp API, which
is a bit more cumbersome to use, but ultimately more flexible when it
comes to hardware implementations.
Now that all the users and implementations have been removed, let's
remove the core plumbing of the 'comp' API as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The 'comp' API is obsolete and will be removed, so remove this comp
implementation.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for the partial removal of NULL dst acomp support,
remove the tests for them.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add Kerberos crypto tests to the test manager database. This covers:
camellia128-cts-cmac samples from RFC6803
camellia256-cts-cmac samples from RFC6803
aes128-cts-hmac-sha256-128 samples from RFC8009
aes256-cts-hmac-sha384-192 samples from RFC8009
but not:
aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha1-96
as the test samples in RFC3962 don't seem to be suitable.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
The callers of crypto_sig_sign() assume that the signature size is
always equivalent to the key size.
This happens to be true for RSA, which is currently the only algorithm
implementing the ->sign() callback. But it is false e.g. for X9.62
encoded ECDSA signatures because they have variable length.
Prepare for addition of a ->sign() callback to such algorithms by
letting the callback return the signature size (or a negative integer
on error). When testing the ->sign() callback in test_sig_one(),
use crypto_sig_maxsize() instead of crypto_sig_keysize() to verify that
the test vector's signature does not exceed an algorithm's maximum
signature size.
There has been a relatively recent effort to upstream ECDSA signature
generation support which may benefit from this change:
https://lore.kernel.org/linux-crypto/20220908200036.2034-1-ignat@cloudflare.com/
However the main motivation for this commit is to reduce the number of
crypto_sig_keysize() callers: This function is about to be changed to
return the size in bits instead of bytes and that will require amending
most callers to divide the return value by 8.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Cc: Ignat Korchagin <ignat@cloudflare.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove the "crct10dif" shash algorithm from the crypto API. It has no
known user now that the lib is no longer built on top of it. It has no
remaining references in kernel code. The only other potential users
would be the usual components that allow specifying arbitrary hash
algorithms by name, namely AF_ALG and dm-integrity. However there are
no indications that "crct10dif" is being used with these components.
Debian Code Search and web searches don't find anything relevant, and
explicitly grepping the source code of the usual suspects (cryptsetup,
libell, iwd) finds no matches either. "crc32" and "crc32c" are used in
a few more places, but that doesn't seem to be the case for "crct10dif".
crc_t10dif_update() is also tested by crc_kunit now, so the test
coverage provided via the crypto self-tests is no longer needed.
Also note that the "crct10dif" shash algorithm was inconsistent with the
rest of the shash API in that it wrote the digest in CPU endianness,
making the resulting byte array differ on little endian vs. big endian
platforms. This means it was effectively just built for use by the lib
functions, and it was not actually correct to treat it as "just another
hash function" that could be dropped in via the shash API.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20250206173857.39794-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
|
|
Remove crc64-rocksoft from the crypto API. It has no known user now
that the lib is no longer built on top of it. It was also added much
more recently than the longstanding crc32 and crc32c. Unlike crc32 and
crc32c, crc64-rocksoft is also not mentioned in the dm-integrity
documentation and there are no references to it in anywhere in the
cryptsetup git repo, so it is unlikely to have any user there either.
Also, this CRC variant is named incorrectly; it has nothing to do with
Rocksoft and should be called crc64-nvme. That is yet another reason to
remove it from the crypto API; we would not want anyone to start
depending on the current incorrect algorithm name of crc64-rocksoft.
Note that this change temporarily makes this CRC variant not be covered
by any tests, as previously it was relying on the crypto self-tests.
This will be fixed by adding this CRC variant to crc_kunit.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Acked-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20250130035130.180676-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
|
|
The keywrap (kw) algorithm has no in-tree user. It has never had an
in-tree user, and the patch that added it provided no justification for
its inclusion. Even use of it via AF_ALG is impossible, as it uses a
weird calling convention where part of the ciphertext is returned via
the IV buffer, which is not returned to userspace in AF_ALG.
It's also unclear whether any new code in the kernel that does key
wrapping would actually use this algorithm. It is controversial in the
cryptographic community due to having no clearly stated security goal,
no security proof, poor performance, and only a 64-bit auth tag. Later
work (https://eprint.iacr.org/2006/221) suggested that the goal is
deterministic authenticated encryption. But there are now more modern
algorithms for this, and this is not the same as key wrapping, for which
a regular AEAD such as AES-GCM usually can be (and is) used instead.
Therefore, remove this unused code.
There were several special cases for this algorithm in the self-tests,
due to its weird calling convention. Remove those too.
Cc: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove the vmac64 template, as it has no known users. It also continues
to have longstanding bugs such as alignment violations (see
https://lore.kernel.org/r/20241226134847.6690-1-evepolonium@gmail.com/).
This code was added in 2009 by commit f1939f7c5645 ("crypto: vmac - New
hash algorithm for intel_txt support"). Based on the mention of
intel_txt support in the commit title, it seems it was added as a
prerequisite for the contemporaneous patch
"intel_txt: add s3 userspace memory integrity verification"
(https://lore.kernel.org/r/4ABF2B50.6070106@intel.com/). In the design
proposed by that patch, when an Intel Trusted Execution Technology (TXT)
enabled system resumed from suspend, the "tboot" trusted executable
launched the Linux kernel without verifying userspace memory, and then
the Linux kernel used VMAC to verify userspace memory.
However, that patch was never merged, as reviewers had objected to the
design. It was later reworked into commit 4bd96a7a8185 ("x86, tboot:
Add support for S3 memory integrity protection") which made tboot verify
the memory instead. Thus the VMAC support in Linux was never used.
No in-tree user has appeared since then, other than potentially the
usual components that allow specifying arbitrary hash algorithms by
name, namely AF_ALG and dm-integrity. However there are no indications
that VMAC is being used with these components. Debian Code Search and
web searches for "vmac64" (the actual algorithm name) do not return any
results other than the kernel itself, suggesting that it does not appear
in any other code or documentation. Explicitly grepping the source code
of the usual suspects (libell, iwd, cryptsetup) finds no matches either.
Before 2018, the vmac code was also completely broken due to using a
hardcoded nonce and the wrong endianness for the MAC. It was then fixed
by commit ed331adab35b ("crypto: vmac - add nonced version with big
endian digest") and commit 0917b873127c ("crypto: vmac - remove insecure
version with hardcoded nonce"). These were intentionally breaking
changes that changed all the computed MAC values as well as the
algorithm name ("vmac" to "vmac64"). No complaints were ever received
about these breaking changes, strongly suggesting the absence of users.
The reason I had put some effort into fixing this code in 2018 is
because it was used by an out-of-tree driver. But if it is still needed
in that particular out-of-tree driver, the code can be carried in that
driver instead. There is no need to carry it upstream.
Cc: Atharva Tiwari <evepolonium@gmail.com>
Cc: Shane Wang <shane.wang@intel.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Clean up the existing export namespace code along the same lines of
commit 33def8498fdd ("treewide: Convert macro and uses of __section(foo)
to __section("foo")") and for the same reason, it is not desired for the
namespace argument to be a macro expansion itself.
Scripted using
git grep -l -e MODULE_IMPORT_NS -e EXPORT_SYMBOL_NS | while read file;
do
awk -i inplace '
/^#define EXPORT_SYMBOL_NS/ {
gsub(/__stringify\(ns\)/, "ns");
print;
next;
}
/^#define MODULE_IMPORT_NS/ {
gsub(/__stringify\(ns\)/, "ns");
print;
next;
}
/MODULE_IMPORT_NS/ {
$0 = gensub(/MODULE_IMPORT_NS\(([^)]*)\)/, "MODULE_IMPORT_NS(\"\\1\")", "g");
}
/EXPORT_SYMBOL_NS/ {
if ($0 ~ /(EXPORT_SYMBOL_NS[^(]*)\(([^,]+),/) {
if ($0 !~ /(EXPORT_SYMBOL_NS[^(]*)\(([^,]+), ([^)]+)\)/ &&
$0 !~ /(EXPORT_SYMBOL_NS[^(]*)\(\)/ &&
$0 !~ /^my/) {
getline line;
gsub(/[[:space:]]*\\$/, "");
gsub(/[[:space:]]/, "", line);
$0 = $0 " " line;
}
$0 = gensub(/(EXPORT_SYMBOL_NS[^(]*)\(([^,]+), ([^)]+)\)/,
"\\1(\\2, \"\\3\")", "g");
}
}
{ print }' $file;
done
Requested-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://mail.google.com/mail/u/2/#inbox/FMfcgzQXKWgMmjdFwwdsfgxzKpVHWPlc
Acked-by: Greg KH <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"This contains a single series from Uros to replace uses of
<linux/random.h> with prandom.h or other more specific headers
as needed, in order to avoid a circular header issue.
Uros' goal is to be able to use percpu.h from prandom.h, which
will then allow him to define __percpu in percpu.h rather than
in compiler_types.h"
* tag 'random-6.13-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
prandom: Include <linux/percpu.h> in <linux/prandom.h>
random: Do not include <linux/prandom.h> in <linux/random.h>
netem: Include <linux/prandom.h> in sch_netem.c
lib/test_scanf: Include <linux/prandom.h> instead of <linux/random.h>
lib/test_parman: Include <linux/prandom.h> instead of <linux/random.h>
bpf/tests: Include <linux/prandom.h> instead of <linux/random.h>
lib/rbtree-test: Include <linux/prandom.h> instead of <linux/random.h>
random32: Include <linux/prandom.h> instead of <linux/random.h>
kunit: string-stream-test: Include <linux/prandom.h>
lib/interval_tree_test.c: Include <linux/prandom.h> instead of <linux/random.h>
bpf: Include <linux/prandom.h> instead of <linux/random.h>
scsi: libfcoe: Include <linux/prandom.h> instead of <linux/random.h>
fscrypt: Include <linux/once.h> in fs/crypto/keyring.c
mtd: tests: Include <linux/prandom.h> instead of <linux/random.h>
media: vivid: Include <linux/prandom.h> in vivid-vid-cap.c
drm/lib: Include <linux/prandom.h> instead of <linux/random.h>
drm/i915/selftests: Include <linux/prandom.h> instead of <linux/random.h>
crypto: testmgr: Include <linux/prandom.h> instead of <linux/random.h>
x86/kaslr: Include <linux/prandom.h> instead of <linux/random.h>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Add sig driver API
- Remove signing/verification from akcipher API
- Move crypto_simd_disabled_for_test to lib/crypto
- Add WARN_ON for return values from driver that indicates memory
corruption
Algorithms:
- Provide crc32-arch and crc32c-arch through Crypto API
- Optimise crc32c code size on x86
- Optimise crct10dif on arm/arm64
- Optimise p10-aes-gcm on powerpc
- Optimise aegis128 on x86
- Output full sample from test interface in jitter RNG
- Retry without padata when it fails in pcrypt
Drivers:
- Add support for Airoha EN7581 TRNG
- Add support for STM32MP25x platforms in stm32
- Enable iproc-r200 RNG driver on BCMBCA
- Add Broadcom BCM74110 RNG driver"
* tag 'v6.13-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (112 commits)
crypto: marvell/cesa - fix uninit value for struct mv_cesa_op_ctx
crypto: cavium - Fix an error handling path in cpt_ucode_load_fw()
crypto: aesni - Move back to module_init
crypto: lib/mpi - Export mpi_set_bit
crypto: aes-gcm-p10 - Use the correct bit to test for P10
hwrng: amd - remove reference to removed PPC_MAPLE config
crypto: arm/crct10dif - Implement plain NEON variant
crypto: arm/crct10dif - Macroify PMULL asm code
crypto: arm/crct10dif - Use existing mov_l macro instead of __adrl
crypto: arm64/crct10dif - Remove remaining 64x64 PMULL fallback code
crypto: arm64/crct10dif - Use faster 16x64 bit polynomial multiply
crypto: arm64/crct10dif - Remove obsolete chunking logic
crypto: bcm - add error check in the ahash_hmac_init function
crypto: caam - add error check to caam_rsa_set_priv_key_form
hwrng: bcm74110 - Add Broadcom BCM74110 RNG driver
dt-bindings: rng: add binding for BCM74110 RNG
padata: Clean up in padata_do_multithreaded()
crypto: inside-secure - Fix the return value of safexcel_xcbcmac_cra_init()
crypto: qat - Fix missing destroy_workqueue in adf_init_aer()
crypto: rsassa-pkcs1 - Reinstate support for legacy protocols
...
|
|
Commit 1e562deacecc ("crypto: rsassa-pkcs1 - Migrate to sig_alg backend")
enforced that rsassa-pkcs1 sign/verify operations specify a hash
algorithm. That is necessary because per RFC 8017 sec 8.2, a hash
algorithm identifier must be prepended to the hash before generating or
verifying the signature ("Full Hash Prefix").
However the commit went too far in that it changed user space behavior:
KEYCTL_PKEY_QUERY system calls now return -EINVAL unless they specify a
hash algorithm. Intel Wireless Daemon (iwd) is one application issuing
such system calls (for EAP-TLS).
Closer analysis of the Embedded Linux Library (ell) used by iwd reveals
that the problem runs even deeper: When iwd uses TLS 1.1 or earlier, it
not only queries for keys, but performs sign/verify operations without
specifying a hash algorithm. These legacy TLS versions concatenate an
MD5 to a SHA-1 hash and omit the Full Hash Prefix:
https://git.kernel.org/pub/scm/libs/ell/ell.git/tree/ell/tls-suites.c#n97
TLS 1.1 was deprecated in 2021 by RFC 8996, but removal of support was
inadvertent in this case. It probably should be coordinated with iwd
maintainers first.
So reinstate support for such legacy protocols by defaulting to hash
algorithm "none" which uses an empty Full Hash Prefix.
If it is later on decided to remove TLS 1.1 support but still allow
KEYCTL_PKEY_QUERY without a hash algorithm, that can be achieved by
reverting the present commit and replacing it with the following patch:
https://lore.kernel.org/r/ZxalYZwH5UiGX5uj@wunner.de/
It's worth noting that Python's cryptography library gained support for
such legacy use cases very recently, so they do seem to still be a thing.
The Python developers identified IKE version 1 as another protocol
omitting the Full Hash Prefix:
https://github.com/pyca/cryptography/issues/10226
https://github.com/pyca/cryptography/issues/5495
The author of those issues, Zoltan Kelemen, spent considerable effort
searching for test vectors but only found one in a 2019 blog post by
Kevin Jones. Add it to testmgr.h to verify correctness of this feature.
Examination of wpa_supplicant as well as various IKE daemons (libreswan,
strongswan, isakmpd, raccoon) has determined that none of them seems to
use the kernel's Key Retention Service, so iwd is the only affected user
space application known so far.
Fixes: 1e562deacecc ("crypto: rsassa-pkcs1 - Migrate to sig_alg backend")
Reported-by: Klara Modin <klarasmodin@gmail.com>
Tested-by: Klara Modin <klarasmodin@gmail.com>
Closes: https://lore.kernel.org/r/2ed09a22-86c0-4cf0-8bda-ef804ccb3413@gmail.com/
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The previous patch removed the ENOENT warning at the point of
allocation, but the overall self-test warning is still there.
Fix all of them by returning zero as the test result. This is
safe because if the algorithm has gone away, then it cannot be
marked as tested.
Fixes: 4eded6d14f5b ("crypto: testmgr - Hide ENOENT errors")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Alternatively to the X9.62 encoding of ecdsa signatures, which uses
ASN.1 and is already supported by the kernel, there's another common
encoding called P1363. It stores r and s as the concatenation of two
big endian, unsigned integers. The name originates from IEEE P1363.
Add a P1363 template in support of the forthcoming SPDM library
(Security Protocol and Data Model) for PCI device authentication.
P1363 is prescribed by SPDM 1.2.1 margin no 44:
"For ECDSA signatures, excluding SM2, in SPDM, the signature shall be
the concatenation of r and s. The size of r shall be the size of
the selected curve. Likewise, the size of s shall be the size of
the selected curve. See BaseAsymAlgo in NEGOTIATE_ALGORITHMS for
the size of r and s. The byte order for r and s shall be in big
endian order. When placing ECDSA signatures into an SPDM signature
field, r shall come first followed by s."
Link: https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
crypto_sig_maxsize() is a bit of a misnomer as it doesn't return the
maximum signature size, but rather the key size.
Rename it as well as all implementations of the ->max_size callback.
A subsequent commit introduces a crypto_sig_maxsize() function which
returns the actual maximum signature size.
While at it, change the return type of crypto_sig_keysize() from int to
unsigned int for consistency with crypto_akcipher_maxsize(). None of
the callers checks for a negative return value and an error condition
can always be indicated by returning zero.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Unlike the rsa driver, which separates signature decoding and
signature verification into two steps, the ecdsa driver does both in one.
This restricts users to the one signature format currently supported
(X9.62) and prevents addition of others such as P1363, which is needed
by the forthcoming SPDM library (Security Protocol and Data Model) for
PCI device authentication.
Per Herbert's suggestion, change ecdsa to use a "raw" signature encoding
and then implement X9.62 and P1363 as templates which convert their
respective encodings to the raw one. One may then specify
"x962(ecdsa-nist-XXX)" or "p1363(ecdsa-nist-XXX)" to pick the encoding.
The present commit moves X9.62 decoding to a template. A separate
commit is going to introduce another template for P1363 decoding.
The ecdsa driver internally represents a signature as two u64 arrays of
size ECC_MAX_BYTES. This appears to be the most natural choice for the
raw format as it can directly be used for verification without having to
further decode signature data or copy it around.
Repurpose all the existing test vectors for "x962(ecdsa-nist-XXX)" and
create a duplicate of them to test the raw encoding.
Link: https://lore.kernel.org/all/ZoHXyGwRzVvYkcTP@gondor.apana.org.au/
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
A sig_alg backend has just been introduced and all asymmetric
sign/verify algorithms have been migrated to it.
The sign/verify operations can thus be dropped from akcipher_alg.
It is now purely for asymmetric encrypt/decrypt.
Move struct crypto_akcipher_sync_data from internal.h to akcipher.c and
unexport crypto_akcipher_sync_{prep,post}(): They're no longer used by
sig.c but only locally in akcipher.c.
In crypto_akcipher_sync_{prep,post}(), drop various NULL pointer checks
for data->dst as they were only necessary for the verify operation.
In the crypto_sig_*() API calls, remove the forks that were necessary
while algorithms were converted from crypto_akcipher to crypto_sig
one by one.
In struct akcipher_testvec, remove the "params", "param_len" and "algo"
elements as they were only needed for the ecrdsa verify operation.
Remove corresponding dead code from test_akcipher_one() as well.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate
rsassa-pkcs1.c which uses the new backend.
Consequently there are now two templates which build on the "rsa"
akcipher_alg:
* The existing "pkcs1pad" template, which is instantiated as an
akcipher_instance and retains the encrypt/decrypt operations of
RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2).
* The new "pkcs1" template, which is instantiated as a sig_instance
and contains the sign/verify operations of RSASSA-PKCS1-v1_5
(RFC 8017 sec 8.2).
In a separate step, rsa-pkcs1pad.c could optionally be renamed to
rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates
could be added for RSAES-OAEP and RSASSA-PSS.
Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform
without specifying a hash algorithm. That makes sense if the transform
is only used for encrypt/decrypt and continues to be supported. But for
sign/verify, such transforms previously did not insert the Full Hash
Prefix into the padding. The resulting message encoding was incompliant
with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical.
From here on in, it is no longer allowed to allocate a transform without
specifying a hash algorithm if the transform is used for sign/verify
operations. This simplifies the code because the insertion of the Full
Hash Prefix is no longer optional, so various "if (digest_info)" clauses
can be removed.
There has been a previous attempt to forbid transform allocation without
specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto:
rsa-pkcs1pad - Require hash to be present"). It had to be rolled back
with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be
optional [ver #2]"), presumably because it broke allocation of a
transform which was solely used for encrypt/decrypt, not sign/verify.
Avoid such breakage by allowing transform allocation for encrypt/decrypt
with and without specifying a hash algorithm (and simply ignoring the
hash algorithm in the former case).
So again, specifying a hash algorithm is now mandatory for sign/verify,
but optional and ignored for encrypt/decrypt.
The new sig_alg API uses kernel buffers instead of sglists, which
avoids the overhead of copying signature and digest from sglists back
into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit.
sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg
may be asynchronous. So await the result of the akcipher_alg, similar
to crypto_akcipher_sync_{en,de}crypt().
As part of the migration, rename "rsa_digest_info" to "hash_prefix" to
adhere to the spec language in RFC 9580. Otherwise keep the code
unmodified wherever possible to ease reviewing and bisecting. Leave
several simplification and hardening opportunities to separate commits.
rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers
which need to be freed by kfree_sensitive(), hence a DEFINE_FREE()
clause for kfree_sensitive() is introduced herein as a byproduct.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate ecrdsa.c to the new backend.
One benefit of the new API is the use of kernel buffers instead of
sglists, which avoids the overhead of copying signature and digest
sglists back into kernel buffers. ecrdsa.c is thus simplified quite
a bit.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate ecdsa.c to the new backend.
One benefit of the new API is the use of kernel buffers instead of
sglists, which avoids the overhead of copying signature and digest
sglists back into kernel buffers. ecdsa.c is thus simplified quite
a bit.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Commit 6cb8815f41a9 ("crypto: sig - Add interface for sign/verify")
began a transition of asymmetric sign/verify operations from
crypto_akcipher to a new crypto_sig frontend.
Internally, the crypto_sig frontend still uses akcipher_alg as backend,
however:
"The link between sig and akcipher is meant to be temporary. The
plan is to create a new low-level API for sig and then migrate
the signature code over to that from akcipher."
https://lore.kernel.org/r/ZrG6w9wsb-iiLZIF@gondor.apana.org.au/
"having a separate alg for sig is definitely where we want to
be since there is very little that the two types actually share."
https://lore.kernel.org/r/ZrHlpz4qnre0zWJO@gondor.apana.org.au/
Take the next step of that migration and augment the crypto_sig frontend
with a sig_alg backend to which all algorithms can be moved.
During the migration, there will briefly be signature algorithms that
are still based on crypto_akcipher, whilst others are already based on
crypto_sig. Allow for that by building a fork into crypto_sig_*() API
calls (i.e. crypto_sig_maxsize() and friends) such that one of the two
backends is selected based on the transform's cra_type.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Substitute the inclusion of <linux/random.h> header with
<linux/prandom.h> to allow the removal of legacy inclusion
of <linux/prandom.h> from <linux/random.h>.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
When a crypto algorithm with a higher priority is registered, it
kills the spawns of all lower-priority algorithms. Thus it is to
be expected for an algorithm to go away at any time, even during
a self-test. This is now much more common with asynchronous testing.
Remove the printk when an ENOENT is encountered during a self-test.
This is not really an error since the algorithm being tested is no
longer there (i.e., it didn't fail the test which is what we care
about).
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Implementations of hash functions often have special cases when lengths
are a multiple of the hash function's internal block size (e.g. 64 for
SHA-256, 128 for SHA-512). Currently, when the fuzz testing code
generates lengths, it doesn't prefer any length mod 64 over any other.
This limits the coverage of these special cases.
Therefore, this patch updates the fuzz testing code to generate
power-of-2 lengths and divide messages exactly in half a bit more often.
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The SM2 algorithm has a single user in the kernel. However, it's
never been integrated properly with that user: asymmetric_keys.
The crux of the issue is that the way it computes its digest with
sm3 does not fit into the architecture of asymmetric_keys. As no
solution has been proposed, remove this algorithm.
It can be resubmitted when it is integrated properly into the
asymmetric_keys subsystem.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since crypto_shash_setkey(), crypto_ahash_setkey(),
crypto_skcipher_setkey(), and crypto_aead_setkey() apparently need to
work in no-SIMD context on some architectures, make the self-tests cover
this scenario. Specifically, sometimes do the setkey while under
crypto_disable_simd_for_test(), and do this independently from disabling
SIMD for the other parts of the crypto operation since there is no
guarantee that all parts happen in the same context. (I.e., drivers
mustn't store the key in different formats for SIMD vs. no-SIMD.)
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Register NIST P521 as an akcipher and extend the testmgr with
NIST P521-specific test vectors.
Add a module alias so the module gets automatically loaded by the crypto
subsystem when the curve is needed.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Commit a93492cae30a ("crypto: ccree - remove data unit size support")
removed support for the xts512 and xts4096 algorithms, but left them
defined in testmgr.c. This patch removes those definitions.
Signed-off-by: Joachim Vandersmissen <git@jvdsn.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch registers the deflate-iaa deflate compression algorithm and
hooks it up to the IAA hardware using the 'fixed' compression mode
introduced in the previous patch.
Because the IAA hardware has a 4k history-window limitation, only
buffers <= 4k, or that have been compressed using a <= 4k history
window, are technically compliant with the deflate spec, which allows
for a window of up to 32k. Because of this limitation, the IAA fixed
mode deflate algorithm is given its own algorithm name, 'deflate-iaa'.
With this change, the deflate-iaa crypto algorithm is registered and
operational, and compression and decompression operations are fully
enabled following the successful binding of the first IAA workqueue
to the iaa_crypto sub-driver.
when there are no IAA workqueues bound to the driver, the IAA crypto
algorithm can be unregistered by removing the module.
A new iaa_crypto 'verify_compress' driver attribute is also added,
allowing the user to toggle compression verification. If set, each
compress will be internally decompressed and the contents verified,
returning error codes if unsuccessful. This can be toggled with 0/1:
echo 0 > /sys/bus/dsa/drivers/crypto/verify_compress
The default setting is '1' - verify all compresses.
The verify_compress value setting at the time the algorithm is
registered is captured in the algorithm's crypto_ctx and used for all
compresses when using the algorithm.
[ Based on work originally by George Powley, Jing Lin and Kyung Min
Park ]
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove test vectors for CFB/OFB.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
SP800-90C 3rd draft states that SHA-1 will be removed from all
specifications, including drbg by end of 2030. Given kernels built
today will be operating past that date, start complying with upcoming
requirements.
No functional change, as SHA-256 / SHA-512 based DRBG have always been
the preferred ones.
Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
alg_test_descs[] needs to be in sorted order, since it is used for
binary search. This fixes the following boot-time warning:
testmgr: alg_test_descs entries in wrong order: 'pkcs1pad(rsa,sha512)' before 'pkcs1pad(rsa,sha3-256)'
Fixes: ee62afb9d02d ("crypto: rsa-pkcs1pad - Add FIPS 202 SHA-3 support")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support in rsa-pkcs1pad for FIPS 202 SHA-3 hashes, sizes 256 and
up. As 224 is too weak for any practical purposes.
Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the alignmask for ahash and shash algorithms is always 0,
crypto_ahash_alignmask() always returns 0 and will be removed. In
preparation for this, stop checking crypto_ahash_alignmask() in testmgr.
As a result of this change,
test_sg_division::offset_relative_to_alignmask and
testvec_config::key_offset_relative_to_alignmask no longer have any
effect on ahash (or shash) algorithms. Therefore, also stop setting
these flags in default_hash_testvec_configs[].
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the shash algorithm type does not support nonzero alignmasks,
crypto_shash_alignmask() always returns 0 and will be removed. In
preparation for this, stop checking crypto_shash_alignmask() in testmgr.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Replace skcipher implementation with lskcipher.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove zlib-deflate test vectors as it no longer exists in the kernel.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Test lskcipher algorithms using the same logic as cipher algorithms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add some test vectors for 128-bit cmac(camellia) as found in
draft-kato-ipsec-camellia-cmac96and128-01 section 6.2.
The document also shows vectors for camellia-cmac-96, and for VK with a
length greater than 16, but I'm not sure how to express those in testmgr.
This also leaves cts(cbc(camellia)) untested, but I can't seem to find any
tests for that that I could put into testmgr.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Scott Mayhew <smayhew@redhat.com>
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
Link: https://datatracker.ietf.org/doc/pdf/draft-kato-ipsec-camellia-cmac96and128-01
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The performance of the crypto fuzz tests has greatly regressed since
v5.18. When booting a kernel on an arm64 dev board with all software
crypto algorithms and CONFIG_CRYPTO_MANAGER_EXTRA_TESTS enabled, the
fuzz tests now take about 200 seconds to run, or about 325 seconds with
lockdep enabled, compared to about 5 seconds before.
The root cause is that the random number generation has become much
slower due to commit d4150779e60f ("random32: use real rng for
non-deterministic randomness"). On my same arm64 dev board, at the time
the fuzz tests are run, get_random_u8() is about 345x slower than
prandom_u32_state(), or about 469x if lockdep is enabled.
Lockdep makes a big difference, but much of the rest comes from the
get_random_*() functions taking a *very* slow path when the CRNG is not
yet initialized. Since the crypto self-tests run early during boot,
even having a hardware RNG driver enabled (CONFIG_CRYPTO_DEV_QCOM_RNG in
my case) doesn't prevent this. x86 systems don't have this issue, but
they still see a significant regression if lockdep is enabled.
Converting the "Fully random bytes" case in generate_random_bytes() to
use get_random_bytes() helps significantly, improving the test time to
about 27 seconds. But that's still over 5x slower than before.
This is all a bit silly, though, since the fuzz tests don't actually
need cryptographically secure random numbers. So let's just make them
use a non-cryptographically-secure RNG as they did before. The original
prandom_u32() is gone now, so let's use prandom_u32_state() instead,
with an explicitly managed state, like various other self-tests in the
kernel source tree (rbtree_test.c, test_scanf.c, etc.) already do. This
also has the benefit that no locking is required anymore, so performance
should be even better than the original version that used prandom_u32().
Fixes: d4150779e60f ("random32: use real rng for non-deterministic randomness")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This type of request is often happened in AF_ALG cases.
So add this vector in default cipher config array.
Signed-off-by: Zhang Yiqun <zhangyiqun@phytium.com.cn>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
According to FIPS 140-3 IG, section D.R "Hash Functions Acceptable for
Use in the SP 800-90A DRBGs", modules certified after May 16th, 2023
must not support the use of: SHA-224, SHA-384, SHA512-224, SHA512-256,
SHA3-224, SHA3-384. Disallow HMAC and HASH DRBGs using SHA-384 in FIPS
mode.
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The kernel provides implementations of the NIST ECDSA signature
verification primitives. For key sizes of 256 and 384 bits respectively
they are approved and can be enabled in FIPS mode. Do so.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
ghash may be used only as part of the gcm(aes) construction in FIPS
mode. Since commit d6097b8d5d55 ("crypto: api - allow algs only in specific
constructions in FIPS mode") there's support for using spawns which by
itself are marked as non-approved from approved template instantiations.
So simply mark plain ghash as non-approved in testmgr to block any attempts
of direct instantiations in FIPS mode.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
cbcmac(aes) may be used only as part of the ccm(aes) construction in FIPS
mode. Since commit d6097b8d5d55 ("crypto: api - allow algs only in specific
constructions in FIPS mode") there's support for using spawns which by
itself are marked as non-approved from approved template instantiations.
So simply mark plain cbcmac(aes) as non-approved in testmgr to block any
attempts of direct instantiations in FIPS mode.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Optimise away self-test overhead when they are disabled
- Support symmetric encryption via keyring keys in af_alg
- Flip hwrng default_quality, the default is now maximum entropy
Algorithms:
- Add library version of aesgcm
- CFI fixes for assembly code
- Add arm/arm64 accelerated versions of sm3/sm4
Drivers:
- Remove assumption on arm64 that kmalloc is DMA-aligned
- Fix selftest failures in rockchip
- Add support for RK3328/RK3399 in rockchip
- Add deflate support in qat
- Merge ux500 into stm32
- Add support for TEE for PCI ID 0x14CA in ccp
- Add mt7986 support in mtk
- Add MaxLinear platform support in inside-secure
- Add NPCM8XX support in npcm"
* tag 'v6.2-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (184 commits)
crypto: ux500/cryp - delete driver
crypto: stm32/cryp - enable for use with Ux500
crypto: stm32 - enable drivers to be used on Ux500
dt-bindings: crypto: Let STM32 define Ux500 CRYP
hwrng: geode - Fix PCI device refcount leak
hwrng: amd - Fix PCI device refcount leak
crypto: qce - Set DMA alignment explicitly
crypto: octeontx2 - Set DMA alignment explicitly
crypto: octeontx - Set DMA alignment explicitly
crypto: keembay - Set DMA alignment explicitly
crypto: safexcel - Set DMA alignment explicitly
crypto: hisilicon/hpre - Set DMA alignment explicitly
crypto: chelsio - Set DMA alignment explicitly
crypto: ccree - Set DMA alignment explicitly
crypto: ccp - Set DMA alignment explicitly
crypto: cavium - Set DMA alignment explicitly
crypto: img-hash - Fix variable dereferenced before check 'hdev->req'
crypto: arm64/ghash-ce - use frame_push/pop macros consistently
crypto: arm64/crct10dif - use frame_push/pop macros consistently
crypto: arm64/aes-modes - use frame_push/pop macros consistently
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"iov_iter work; most of that is about getting rid of direction
misannotations and (hopefully) preventing more of the same for the
future"
* tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
use less confusing names for iov_iter direction initializers
iov_iter: saner checks for attempt to copy to/from iterator
[xen] fix "direction" argument of iov_iter_kvec()
[vhost] fix 'direction' argument of iov_iter_{init,bvec}()
[target] fix iov_iter_bvec() "direction" argument
[s390] memcpy_real(): WRITE is "data source", not destination...
[s390] zcore: WRITE is "data source", not destination...
[infiniband] READ is "data destination", not source...
[fsi] WRITE is "data source", not destination...
[s390] copy_oldmem_kernel() - WRITE is "data source", not destination
csum_and_copy_to_iter(): handle ITER_DISCARD
get rid of unlikely() on page_copy_sane() calls
|
|
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
These cases were done with this Coccinelle:
@@
expression H;
expression L;
@@
- (get_random_u32_below(H) + L)
+ get_random_u32_inclusive(L, H + L - 1)
@@
expression H;
expression L;
expression E;
@@
get_random_u32_inclusive(L,
H
- + E
- - E
)
@@
expression H;
expression L;
expression E;
@@
get_random_u32_inclusive(L,
H
- - E
- + E
)
@@
expression H;
expression L;
expression E;
expression F;
@@
get_random_u32_inclusive(L,
H
- - E
+ F
- + E
)
@@
expression H;
expression L;
expression E;
expression F;
@@
get_random_u32_inclusive(L,
H
- + E
+ F
- - E
)
And then subsequently cleaned up by hand, with several automatic cases
rejected if it didn't make sense contextually.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This patch newly adds the test vectors of CTS-CBC/XTS/XCBC modes of
the SM4 algorithm, and also added some test vectors for SM4 GCM/CCM.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value,
simply use the get_random_{u8,u16}() functions, which are faster than
wasting the additional bytes from a 32-bit value. This was done
mechanically with this coccinelle script:
@@
expression E;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
typedef __be16;
typedef __le16;
typedef u8;
@@
(
- (get_random_u32() & 0xffff)
+ get_random_u16()
|
- (get_random_u32() & 0xff)
+ get_random_u8()
|
- (get_random_u32() % 65536)
+ get_random_u16()
|
- (get_random_u32() % 256)
+ get_random_u8()
|
- (get_random_u32() >> 16)
+ get_random_u16()
|
- (get_random_u32() >> 24)
+ get_random_u8()
|
- (u16)get_random_u32()
+ get_random_u16()
|
- (u8)get_random_u32()
+ get_random_u8()
|
- (__be16)get_random_u32()
+ (__be16)get_random_u16()
|
- (__le16)get_random_u32()
+ (__le16)get_random_u16()
|
- prandom_u32_max(65536)
+ get_random_u16()
|
- prandom_u32_max(256)
+ get_random_u8()
|
- E->inet_id = get_random_u32()
+ E->inet_id = get_random_u16()
)
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
identifier v;
@@
- u16 v = get_random_u32();
+ u16 v = get_random_u16();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u8;
identifier v;
@@
- u8 v = get_random_u32();
+ u8 v = get_random_u8();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u16;
u16 v;
@@
- v = get_random_u32();
+ v = get_random_u16();
@@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u8;
u8 v;
@@
- v = get_random_u32();
+ v = get_random_u8();
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Examine limits
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value < 256:
coccinelle.RESULT = cocci.make_ident("get_random_u8")
elif value < 65536:
coccinelle.RESULT = cocci.make_ident("get_random_u16")
else:
print("Skipping large mask of %s" % (literal))
cocci.include_match(False)
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
identifier add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ (RESULT() & LITERAL)
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Set right indentation for test_acomp().
Signed-off-by: Lucas Segarra Fernandez <lucas.segarra.fernandez@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This userspace command:
modprobe tcrypt
or
modprobe tcrypt mode=0
runs all the tcrypt test cases numbered <200 (i.e., all the
test cases calling tcrypt_test() and returning return values).
Tests are sparsely numbered from 0 to 1000. For example:
modprobe tcrypt mode=12
tests sha512, and
modprobe tcrypt mode=152
tests rfc4543(gcm(aes))) - AES-GCM as GMAC
The test manager generates WARNING crashdumps every time it attempts
a test using an algorithm that is not available (not built-in to the
kernel or available as a module):
alg: skcipher: failed to allocate transform for ecb(arc4): -2
------------[ cut here ]-----------
alg: self-tests for ecb(arc4) (ecb(arc4)) failed (rc=-2)
WARNING: CPU: 9 PID: 4618 at crypto/testmgr.c:5777
alg_test+0x30b/0x510
[50 more lines....]
---[ end trace 0000000000000000 ]---
If the kernel is compiled with CRYPTO_USER_API_ENABLE_OBSOLETE
disabled (the default), then these algorithms are not compiled into
the kernel or made into modules and trigger WARNINGs:
arc4 tea xtea khazad anubis xeta seed
Additionally, any other algorithms that are not enabled in .config
will generate WARNINGs. In RHEL 9.0, for example, the default
selection of algorithms leads to 16 WARNING dumps.
One attempt to fix this was by modifying tcrypt_test() to check
crypto_has_alg() and immediately return 0 if crypto_has_alg() fails,
rather than proceed and return a non-zero error value that causes
the caller (alg_test() in crypto/testmgr.c) to invoke WARN().
That knocks out too many algorithms, though; some combinations
like ctr(des3_ede) would work.
Instead, change the condition on the WARN to ignore a return
value is ENOENT, which is the value returned when the algorithm
or combination of algorithms doesn't exist. Add a pr_warn to
communicate that information in case the WARN is skipped.
This approach allows algorithm tests to work that are combinations,
not provided by one driver, like ctr(blowfish).
Result - no more WARNINGs:
modprobe tcrypt
[ 115.541765] tcrypt: testing md5
[ 115.556415] tcrypt: testing sha1
[ 115.570463] tcrypt: testing ecb(des)
[ 115.585303] cryptomgr: alg: skcipher: failed to allocate transform for ecb(des): -2
[ 115.593037] cryptomgr: alg: self-tests for ecb(des) using ecb(des) failed (rc=-2)
[ 115.593038] tcrypt: testing cbc(des)
[ 115.610641] cryptomgr: alg: skcipher: failed to allocate transform for cbc(des): -2
[ 115.618359] cryptomgr: alg: self-tests for cbc(des) using cbc(des) failed (rc=-2)
...
Signed-off-by: Robert Elliott <elliott@hpe.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Acomp API supports NULL destination buffer for compression
and decompression requests. In such cases allocation is
performed by API.
Add test cases for crypto_acomp_compress() and crypto_acomp_decompress()
with dst buffer allocated by API.
Tests will only run if CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y.
Signed-off-by: Lucas Segarra Fernandez <lucas.segarra.fernandez@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
It contains ARIA ecb(aria), cbc(aria), cfb(aria), ctr(aria), and gcm(aria).
ecb testvector is from RFC standard.
cbc, cfb, and ctr testvectors are from KISA[1], who developed ARIA
algorithm.
gcm(aria) is from openssl test vector.
[1] https://seed.kisa.or.kr/kisa/kcmvp/EgovVerification.do (Korean)
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
BLAKE2s has no currently known use as an shash. Just remove all of this
unnecessary plumbing. Removing this shash was something we talked about
back when we were making BLAKE2s a built-in, but I simply never got
around to doing it. So this completes that project.
Importantly, this fixs a bug in which the lib code depends on
crypto_simd_disabled_for_test, causing linker errors.
Also add more alignment tests to the selftests and compare SIMD and
non-SIMD compression functions, to make up for what we lose from
testmgr.c.
Reported-by: gaochao <gaochao49@huawei.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 6048fdcc5f26 ("lib/crypto: blake2s: include as built-in")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support for HCTR2 as a template. HCTR2 is a length-preserving
encryption mode that is efficient on processors with instructions to
accelerate AES and carryless multiplication, e.g. x86 processors with
AES-NI and CLMUL, and ARM processors with the ARMv8 Crypto Extensions.
As a length-preserving encryption mode, HCTR2 is suitable for
applications such as storage encryption where ciphertext expansion is
not possible, and thus authenticated encryption cannot be used.
Currently, such applications usually use XTS, or in some cases Adiantum.
XTS has the disadvantage that it is a narrow-block mode: a bitflip will
only change 16 bytes in the resulting ciphertext or plaintext. This
reveals more information to an attacker than necessary.
HCTR2 is a wide-block mode, so it provides a stronger security property:
a bitflip will change the entire message. HCTR2 is somewhat similar to
Adiantum, which is also a wide-block mode. However, HCTR2 is designed
to take advantage of existing crypto instructions, while Adiantum
targets devices without such hardware support. Adiantum is also
designed with longer messages in mind, while HCTR2 is designed to be
efficient even on short messages.
HCTR2 requires POLYVAL and XCTR as components. More information on
HCTR2 can be found here: "Length-preserving encryption with HCTR2":
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support for POLYVAL, an ε-Δ-universal hash function similar to
GHASH. This patch only uses POLYVAL as a component to implement HCTR2
mode. It should be noted that POLYVAL was originally specified for use
in AES-GCM-SIV (RFC 8452), but the kernel does not currently support
this mode.
POLYVAL is implemented as an shash algorithm. The implementation is
modified from ghash-generic.c.
For more information on POLYVAL see:
Length-preserving encryption with HCTR2:
https://eprint.iacr.org/2021/1441.pdf
AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption:
https://datatracker.ietf.org/doc/html/rfc8452
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a generic implementation of XCTR mode as a template. XCTR is a
blockcipher mode similar to CTR mode. XCTR uses XORs and little-endian
addition rather than big-endian arithmetic which has two advantages: It
is slightly faster on little-endian CPUs and it is less likely to be
implemented incorrect since integer overflows are not possible on
practical input sizes. XCTR is used as a component to implement HCTR2.
More information on XCTR mode can be found in the HCTR2 paper:
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As was established in the thread
https://lore.kernel.org/linux-crypto/20220223080400.139367-1-gilad@benyossef.com/T/#u,
many crypto API users doing in-place en/decryption don't use the same
scatterlist pointers for the source and destination, but rather use
separate scatterlists that point to the same memory. This case isn't
tested by the self-tests, resulting in bugs.
This is the natural usage of the crypto API in some cases, so requiring
API users to avoid this usage is not reasonable.
Therefore, update the self-tests to start testing this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Pull block layer 64-bit data integrity support from Jens Axboe:
"This adds support for 64-bit data integrity in the block layer and in
NVMe"
* tag 'for-5.18/64bit-pi-2022-03-25' of git://git.kernel.dk/linux-block:
crypto: fix crc64 testmgr digest byte order
nvme: add support for enhanced metadata
block: add pi for extended integrity
crypto: add rocksoft 64b crc guard tag framework
lib: add rocksoft model crc64
linux/kernel: introduce lower_48_bits function
asm-generic: introduce be48 unaligned accessors
nvme: allow integrity on extended metadata formats
block: support pi with extended metadata
|
|
Hardware specific features may be able to calculate a crc64, so provide
a framework for drivers to register their implementation. If nothing is
registered, fallback to the generic table lookup implementation. The
implementation is modeled after the crct10dif equivalent.
Signed-off-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20220303201312.3255347-7-kbusch@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
SP800-56Arev3, sec. 5.5.2 ("Assurance of Domain-Parameter Validity")
asserts that an implementation needs to verify domain paramtere validity,
which boils down to either
- the domain parameters corresponding to some known safe-prime group
explicitly listed to be approved in the document or
- for parameters conforming to a "FIPS 186-type parameter-size set",
that the implementation needs to perform an explicit domain parameter
verification, which would require access to the "seed" and "counter"
values used in their generation.
The latter is not easily feasible and moreover, SP800-56Arev3 states that
safe-prime groups are preferred and that FIPS 186-type parameter sets
should only be supported for backward compatibility, if it all.
Mark "dh" as not fips_allowed in testmgr. Note that the safe-prime
ffdheXYZ(dh) wrappers are not affected by this change: as these enforce
some approved safe-prime group each, their usage is still allowed in FIPS
mode.
This change will effectively render the keyctl(KEYCTL_DH_COMPUTE) syscall
unusable in FIPS mode, but it has been brought up that this might even be
a good thing ([1]).
[1] https://lore.kernel.org/r/20211217055227.GA20698@gondor.apana.org.au
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently we do not distinguish between algorithms that fail on
the self-test vs. those which are disabled in FIPS mode (not allowed).
Both are marked as having failed the self-test.
Recently the need arose to allow the usage of certain algorithms only
as arguments to specific template instantiations in FIPS mode. For
example, standalone "dh" must be blocked, but e.g. "ffdhe2048(dh)" is
allowed. Other potential use cases include "cbcmac(aes)", which must
only be used with ccm(), or "ghash", which must be used only for
gcm().
This patch allows this scenario by adding a new flag FIPS_INTERNAL to
indicate those algorithms that are not FIPS-allowed. They can then be
used as template arguments only, i.e. when looked up via
crypto_grab_spawn() to be more specific. The FIPS_INTERNAL bit gets
propagated upwards recursively into the surrounding template
instances, until the construction eventually matches an explicit
testmgr entry with ->fips_allowed being set, if any.
The behaviour to skip !->fips_allowed self-test executions in FIPS
mode will be retained. Note that this effectively means that
FIPS_INTERNAL algorithms are handled very similarly to the INTERNAL
ones in this regard. It is expected that the FIPS_INTERNAL algorithms
will receive sufficient testing when the larger constructions they're
a part of, if any, get exercised by testmgr.
Note that as a side-effect of this patch algorithms which are not
FIPS-allowed will now return ENOENT instead of ELIBBAD. Hopefully
this is not an issue as some people were relying on this already.
Link: https://lore.kernel.org/r/YeEVSaMEVJb3cQkq@gondor.apana.org.au
Originally-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add known answer tests for the ffdhe2048(dh), ffdhe3072(dh), ffdhe4096(dh),
ffdhe6144(dh) and ffdhe8192(dh) templates introduced with the previous
patch to the testmgr. All TVs have been generated with OpenSSL.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
By adding the support for the flag fips_skip, hash / HMAC test vectors
may be marked to be not applicable in FIPS mode. Such vectors are
silently skipped in FIPS mode.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As testmgr is part of cryptomgr which was designed to be unloadable
as a module, it shouldn't export any symbols for other crypto
modules to use as that would prevent it from being unloaded. All
its functionality is meant to be accessed through notifiers.
The symbol crypto_simd_disabled_for_test was added to testmgr
which caused it to be pinned as a module if its users were also
loaded. This patch moves it out of testmgr and into crypto/algapi.c
so cryptomgr can again be unloaded and replaced on demand.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
On Dec 31 2023 NIST sunsets TDES for FIPS use. To prevent FIPS
validations to be completed in the future to be affected by the TDES
sunsetting, disallow TDES already now. Otherwise a FIPS validation would
need to be "touched again" end 2023 to handle TDES accordingly.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
crypto_disable_simd_for_test() disables preemption in order to receive a
stable per-CPU variable which it needs to modify in order to alter
crypto_simd_usable() results.
This can also be achived by migrate_disable() which forbidds CPU
migrations but allows the task to be preempted. The latter is important
for PREEMPT_RT since operation like skcipher_walk_first() may allocate
memory which must not happen with disabled preemption on PREEMPT_RT.
Use migrate_disable() in crypto_disable_simd_for_test() to achieve a
stable per-CPU pointer.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The GCM/CCM mode of the SM4 algorithm is defined in the rfc 8998
specification, and the test case data also comes from rfc 8998.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Considering that the HMAC(SHA-512) DRBG is the default DRBG now, a self
test is to be provided.
The test vector is obtained from a successful NIST ACVP test run.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add test vector params for NIST P384, add test vector for
NIST P384 on vector of tests.
Vector param from:
https://datatracker.ietf.org/doc/html/rfc5903#section-3.1
Signed-off-by: Hui Tang <tanghui20@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a comment that p192 will fail to register in FIPS mode.
Fix ecdh-nist-p192's entry in testmgr by removing the ifdefs
and not setting fips_allowed.
Signed-off-by: Hui Tang <tanghui20@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This pulls in the NIST P384/256/192 x509 changes.
|
|
Register NIST P384 as an akcipher and extend the testmgr with
NIST P384-specific test vectors.
Summary of changes:
* crypto/ecdsa.c
- add ecdsa_nist_p384_init_tfm
- register and unregister P384 tfm
* crypto/testmgr.c
- add test vector for P384 on vector of tests
* crypto/testmgr.h
- add test vector params for P384(sha1, sha224, sha256, sha384
and sha512)
Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support for parsing the parameters of a NIST P256 or NIST P192 key.
Enable signature verification using these keys. The new module is
enabled with CONFIG_ECDSA:
Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
is A NIST cryptographic standard algorithm. Only signature verification
is implemented.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
1. crypto and crypto/atmel-ecc:
Move curve id of ECDH from the key into the algorithm name instead
in crypto and atmel-ecc, so ECDH algorithm name change form 'ecdh'
to 'ecdh-nist-pxxx', and we cannot use 'curve_id' in 'struct ecdh';
2. crypto/testmgr and net/bluetooth:
Modify 'testmgr.c', 'testmgr.h' and 'net/bluetooth' to adapt
the modification.
Signed-off-by: Meng Yu <yumeng18@huawei.com>
Reviewed-by: Zaibo Xu <xuzaibo@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Delete sg_data function, because sg_data function definition same as
sg_virt(), so need to delete it and use sg_virt() replace to sg_data().
Signed-off-by: Kai Ye <yekai13@huawei.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
It is not trivial to trace back why exactly the tnepres variant of
serpent was added ~17 years ago - Google searches come up mostly empty,
but it seems to be related with the 'kerneli' version, which was based
on an incorrect interpretation of the serpent spec.
In other words, nobody is likely to care anymore today, so let's get rid
of it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Salsa20 is not used anywhere in the kernel, is not suitable for disk
encryption, and widely considered to have been superseded by ChaCha20.
So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Tiger is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
RIPE-MD 320 is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
RIPE-MD 256 is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
RIPE-MD 128 is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The cipher routines in the crypto API are mostly intended for templates
implementing skcipher modes generically in software, and shouldn't be
used outside of the crypto subsystem. So move the prototypes and all
related definitions to a new header file under include/crypto/internal.
Also, let's use the new module namespace feature to move the symbol
exports into a new namespace CRYPTO_INTERNAL.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, by default crypto self-test failures only result in a
pr_warn() message and an "unknown" status in /proc/crypto. Both of
these are easy to miss. There is also an option to panic the kernel
when a test fails, but that can't be the default behavior.
A crypto self-test failure always indicates a kernel bug, however, and
there's already a standard way to report (recoverable) kernel bugs --
the WARN() family of macros. WARNs are noisier and harder to miss, and
existing test systems already know to look for them in dmesg or via
/proc/sys/kernel/tainted.
Therefore, call WARN() when an algorithm fails its self-tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When alg_test() is called from tcrypt.ko rather than from the algorithm
registration code, "driver" is actually the algorithm name, not the
driver name. So it shouldn't be used in places where a driver name is
wanted, e.g. when reporting a test failure or when checking whether the
driver is the generic driver or not.
Fix this for the skcipher algorithm tests by getting the driver name
from the crypto_skcipher that actually got allocated.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When alg_test() is called from tcrypt.ko rather than from the algorithm
registration code, "driver" is actually the algorithm name, not the
driver name. So it shouldn't be used in places where a driver name is
wanted, e.g. when reporting a test failure or when checking whether the
driver is the generic driver or not.
Fix this for the AEAD algorithm tests by getting the driver name from
the crypto_aead that actually got allocated.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When alg_test() is called from tcrypt.ko rather than from the algorithm
registration code, "driver" is actually the algorithm name, not the
driver name. So it shouldn't be used in places where a driver name is
wanted, e.g. when reporting a test failure or when checking whether the
driver is the generic driver or not.
Fix this for the hash algorithm tests by getting the driver name from
the crypto_ahash or crypto_shash that actually got allocated.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add testmgr test vectors for SM2 algorithm. These vectors come
from `openssl pkeyutl -sign` and libgcrypt.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: Xufeng Zhang <yunbo.xufeng@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When the 'key' allocation fails, the 'req' will not be released,
which will cause memory leakage on this path. This patch adds a
'free_req' tag used to solve this problem, and two new err values
are added to reflect the real reason of the error.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Some asymmetric algorithms will get different ciphertext after
each encryption, such as SM2, and let testmgr support the testing
of such algorithms.
In struct akcipher_testvec, set c and c_size to be empty, skip
the comparison of the ciphertext, and compare the decrypted
plaintext with m to achieve the test purpose.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: Xufeng Zhang <yunbo.xufeng@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The header file algapi.h includes skbuff.h unnecessarily since
all we need is a forward declaration for struct sk_buff. This
patch removes that inclusion.
Unfortunately skbuff.h pulls in a lot of things and drivers over
the years have come to rely on it so this patch adds a lot of
missing inclusions that result from this.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As said by Linus:
A symmetric naming is only helpful if it implies symmetries in use.
Otherwise it's actively misleading.
In "kzalloc()", the z is meaningful and an important part of what the
caller wants.
In "kzfree()", the z is actively detrimental, because maybe in the
future we really _might_ want to use that "memfill(0xdeadbeef)" or
something. The "zero" part of the interface isn't even _relevant_.
The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.
Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.
The renaming is done by using the command sequence:
git grep -w --name-only kzfree |\
xargs sed -i 's/kzfree/kfree_sensitive/'
followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.
[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Fix out-of-sync IVs in self-test for IPsec AEAD algorithms
Algorithms:
- Use formally verified implementation of x86/curve25519
Drivers:
- Enhance hwrng support in caam
- Use crypto_engine for skcipher/aead/rsa/hash in caam
- Add Xilinx AES driver
- Add uacce driver
- Register zip engine to uacce in hisilicon
- Add support for OCTEON TX CPT engine in marvell"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
crypto: af_alg - bool type cosmetics
crypto: arm[64]/poly1305 - add artifact to .gitignore files
crypto: caam - limit single JD RNG output to maximum of 16 bytes
crypto: caam - enable prediction resistance in HRWNG
bus: fsl-mc: add api to retrieve mc version
crypto: caam - invalidate entropy register during RNG initialization
crypto: caam - check if RNG job failed
crypto: caam - simplify RNG implementation
crypto: caam - drop global context pointer and init_done
crypto: caam - use struct hwrng's .init for initialization
crypto: caam - allocate RNG instantiation descriptor with GFP_DMA
crypto: ccree - remove duplicated include from cc_aead.c
crypto: chelsio - remove set but not used variable 'adap'
crypto: marvell - enable OcteonTX cpt options for build
crypto: marvell - add the Virtual Function driver for CPT
crypto: marvell - add support for OCTEON TX CPT engine
crypto: marvell - create common Kconfig and Makefile for Marvell
crypto: arm/neon - memzero_explicit aes-cbc key
crypto: bcm - Use scnprintf() for avoiding potential buffer overflow
crypto: atmel-i2c - Fix wakeup fail
...
|
|
Do test_aead_vs_generic_impl() before test_aead_inauthentic_inputs() so
that any differences with the generic driver are detected before getting
to the inauthentic input tests, which intentionally use only the driver
being tested (so that they run even if a generic driver is unavailable).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
rfc4543 was missing from the list of algorithms that may treat the end
of the AAD buffer specially.
Also, with rfc4106, rfc4309, rfc4543, and rfc7539esp, the end of the AAD
buffer is actually supposed to contain a second copy of the IV, and
we've concluded that if the IV copies don't match the behavior is
implementation-defined. So, the fuzz tests can't easily test that case.
So, make the fuzz tests only use inputs where the two IV copies match.
Reported-by: Geert Uytterhoeven <geert+renesas@glider.be>
Fixes: 40153b10d91c ("crypto: testmgr - fuzz AEADs against their generic implementation")
Cc: Stephan Mueller <smueller@chronox.de>
Originally-from: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch enables the selftests for the s390 specific protected key
AES (PAES) cipher implementations:
* cbc-paes-s390
* ctr-paes-s390
* ecb-paes-s390
* xts-paes-s390
PAES is an AES cipher but with encrypted ('protected') key
material. However, the paes ciphers are able to derive an protected
key from clear key material with the help of the pkey kernel module.
So this patch now enables the generic AES tests for the paes
ciphers. Under the hood the setkey() functions rearrange the clear key
values as clear key token and so the pkey kernel module is able to
provide protected key blobs from the given clear key values. The
derived protected key blobs are then used within the paes cipers and
should produce the very same results as the generic AES implementation
with the clear key values.
The s390-paes cipher testlist entries are surrounded
by #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) because they don't
make any sense on non s390 platforms or without the PAES
cipher implementation.
Link: http://lkml.kernel.org/r/20200213083946.zicarnnt3wizl5ty@gondor.apana.org.au
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
The whole point of using an AEAD over length-preserving encryption is
that the data is authenticated. However currently the fuzz tests don't
test any inauthentic inputs to verify that the data is actually being
authenticated. And only two algorithms ("rfc4543(gcm(aes))" and
"ccm(aes)") even have any inauthentic test vectors at all.
Therefore, update the AEAD fuzz tests to sometimes generate inauthentic
test vectors, either by generating a (ciphertext, AAD) pair without
using the key, or by mutating an authentic pair that was generated.
To avoid flakiness, only assume this works reliably if the auth tag is
at least 8 bytes. Also account for the rfc4106, rfc4309, and rfc7539esp
algorithms intentionally ignoring the last 8 AAD bytes, and for some
algorithms doing extra checks that result in EINVAL rather than EBADMSG.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for adding inauthentic input fuzz tests, which don't
require that a generic implementation of the algorithm be available,
refactor test_aead_vs_generic_impl() so that instead there's a
higher-level function test_aead_extra() which initializes a struct
aead_extra_tests_ctx and then calls test_aead_vs_generic_impl() with a
pointer to that struct.
As a bonus, this reduces stack usage.
Also switch from crypto_aead_alg(tfm)->maxauthsize to
crypto_aead_maxauthsize(), now that the latter is available in
<crypto/aead.h>.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The alignment bug in ghash_setkey() fixed by commit 5c6bc4dfa515
("crypto: ghash - fix unaligned memory access in ghash_setkey()")
wasn't reliably detected by the crypto self-tests on ARM because the
tests only set the keys directly from the test vectors.
To improve test coverage, update the tests to sometimes pass misaligned
keys to setkey(). This applies to shash, ahash, skcipher, and aead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When checking two implementations of the same skcipher algorithm for
consistency, require that the minimum key size be the same, not just the
maximum key size. There's no good reason to allow different minimum key
sizes.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently if the comparison fuzz tests encounter an encryption error
when generating an skcipher or AEAD test vector, they will still test
the decryption side (passing it the uninitialized ciphertext buffer)
and expect it to fail with the same error.
This is sort of broken because it's not well-defined usage of the API to
pass an uninitialized buffer, and furthermore in the AEAD case it's
acceptable for the decryption error to be EBADMSG (meaning "inauthentic
input") even if the encryption error was something else like EINVAL.
Fix this for skcipher by explicitly initializing the ciphertext buffer
on error, and for AEAD by skipping the decryption test on error.
Reported-by: Pascal Van Leeuwen <pvanleeuwen@verimatrix.com>
Fixes: d435e10e67be ("crypto: testmgr - fuzz skciphers against their generic implementation")
Fixes: 40153b10d91c ("crypto: testmgr - fuzz AEADs against their generic implementation")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::keysize is now redundant since it always equals
crypto_skcipher_alg(tfm)->max_keysize.
Remove it and update crypto_skcipher_default_keysize() accordingly.
Also rename crypto_skcipher_default_keysize() to
crypto_skcipher_max_keysize() to clarify that it specifically returns
the maximum key size, not some unspecified "default".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation of introducing KPP implementations of Curve25519, import
the set of test cases proposed by the Zinc patch set, but converted to
the KPP format.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As suggested by Eric for the Blake2b implementation contributed by
David, introduce a set of test vectors for Blake2s covering different
digest and key sizes.
blake2s-128 blake2s-160 blake2s-224 blake2s-256
---------------------------------------------------
len=0 | klen=0 klen=1 klen=16 klen=32
len=1 | klen=16 klen=32 klen=0 klen=1
len=7 | klen=32 klen=0 klen=1 klen=16
len=15 | klen=1 klen=16 klen=32 klen=0
len=64 | klen=0 klen=1 klen=16 klen=32
len=247 | klen=16 klen=32 klen=0 klen=1
len=256 | klen=32 klen=0 klen=1 klen=16
Cc: David Sterba <dsterba@suse.com>
Cc: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Test vectors for blake2b with various digest sizes. As the algorithm is
the same up to the digest calculation, the key and input data length is
distributed in a way that tests all combinanions of the two over the
digest sizes.
Based on the suggestion from Eric, the following input sizes are tested
[0, 1, 7, 15, 64, 247, 256], where blake2b blocksize is 128, so the
padded and the non-padded input buffers are tested.
blake2b-160 blake2b-256 blake2b-384 blake2b-512
---------------------------------------------------
len=0 | klen=0 klen=1 klen=32 klen=64
len=1 | klen=32 klen=64 klen=0 klen=1
len=7 | klen=64 klen=0 klen=1 klen=32
len=15 | klen=1 klen=32 klen=64 klen=0
len=64 | klen=0 klen=1 klen=32 klen=64
len=247 | klen=32 klen=64 klen=0 klen=1
len=256 | klen=64 klen=0 klen=1 klen=32
Where key:
- klen=0: empty key
- klen=1: 1 byte value 0x42, 'B'
- klen=32: first 32 bytes of the default key, sequence 00..1f
- klen=64: default key, sequence 00..3f
The unkeyed vectors are ordered before keyed, as this is required by
testmgr.
CC: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Added testvectors for the rfc3686(ctr(sm4)) skcipher algorithm
changes since v1:
- nothing
Signed-off-by: Pascal van Leeuwen <pvanleeuwen@verimatrix.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Added testvectors for the ofb(sm4) and cfb(sm4) skcipher algorithms
changes since v1:
- nothing
Signed-off-by: Pascal van Leeuwen <pvanleeuwen@verimatrix.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Added testvectors for the hmac(sm3) ahash authentication algorithm
changes since v1 & v2:
-nothing
Signed-off-by: Pascal van Leeuwen <pvanleeuwen@verimatrix.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a test vector for the ESSIV mode that is the most widely used,
i.e., using cbc(aes) and sha256, in both skcipher and AEAD modes
(the latter is used by tcrypt to encapsulate the authenc template
or h/w instantiations of the same)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Three variants of AEGIS were proposed for the CAESAR competition, and
only one was selected for the final portfolio: AEGIS128.
The other variants, AEGIS128L and AEGIS256, are not likely to ever turn
up in networking protocols or other places where interoperability
between Linux and other systems is a concern, nor are they likely to
be subjected to further cryptanalysis. However, uninformed users may
think that AEGIS128L (which is faster) is equally fit for use.
So let's remove them now, before anyone starts using them and we are
forced to support them forever.
Note that there are no known flaws in the algorithms or in any of these
implementations, but they have simply outlived their usefulness.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
MORUS was not selected as a winner in the CAESAR competition, which
is not surprising since it is considered to be cryptographically
broken [0]. (Note that this is not an implementation defect, but a
flaw in the underlying algorithm). Since it is unlikely to be in use
currently, let's remove it before we're stuck with it.
[0] https://eprint.iacr.org/2019/172.pdf
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add self-tests for the lzo-rle algorithm.
Signed-off-by: Hannah Pan <hannahpan@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Crypto test failures in FIPS mode cause an immediate panic, but
on some system the cryptographic boundary extends beyond just
the Linux controlled domain.
Add a simple atomic notification chain to allow interested parties
to register to receive notification prior to us kicking the bucket.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"Here is the crypto update for 5.3:
API:
- Test shash interface directly in testmgr
- cra_driver_name is now mandatory
Algorithms:
- Replace arc4 crypto_cipher with library helper
- Implement 5 way interleave for ECB, CBC and CTR on arm64
- Add xxhash
- Add continuous self-test on noise source to drbg
- Update jitter RNG
Drivers:
- Add support for SHA204A random number generator
- Add support for 7211 in iproc-rng200
- Fix fuzz test failures in inside-secure
- Fix fuzz test failures in talitos
- Fix fuzz test failures in qat"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (143 commits)
crypto: stm32/hash - remove interruptible condition for dma
crypto: stm32/hash - Fix hmac issue more than 256 bytes
crypto: stm32/crc32 - rename driver file
crypto: amcc - remove memset after dma_alloc_coherent
crypto: ccp - Switch to SPDX license identifiers
crypto: ccp - Validate the the error value used to index error messages
crypto: doc - Fix formatting of new crypto engine content
crypto: doc - Add parameter documentation
crypto: arm64/aes-ce - implement 5 way interleave for ECB, CBC and CTR
crypto: arm64/aes-ce - add 5 way interleave routines
crypto: talitos - drop icv_ool
crypto: talitos - fix hash on SEC1.
crypto: talitos - move struct talitos_edesc into talitos.h
lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE
crypto/NX: Set receive window credits to max number of CRBs in RxFIFO
crypto: asymmetric_keys - select CRYPTO_HASH where needed
crypto: serpent - mark __serpent_setkey_sbox noinline
crypto: testmgr - dynamically allocate crypto_shash
crypto: testmgr - dynamically allocate testvec_config
crypto: talitos - eliminate unneeded 'done' functions at build time
...
|
|
The largest stack object in this file is now the shash descriptor.
Since there are many other stack variables, this can push it
over the 1024 byte warning limit, in particular with clang and
KASAN:
crypto/testmgr.c:1693:12: error: stack frame size of 1312 bytes in function '__alg_test_hash' [-Werror,-Wframe-larger-than=]
Make test_hash_vs_generic_impl() do the same thing as the
corresponding eaed and skcipher functions by allocating the
descriptor dynamically. We can still do better than this,
but it brings us well below the 1024 byte limit.
Suggested-by: Eric Biggers <ebiggers@kernel.org>
Fixes: 9a8a6b3f0950 ("crypto: testmgr - fuzz hashes against their generic implementation")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
On arm32, we get warnings about high stack usage in some of the functions:
crypto/testmgr.c:2269:12: error: stack frame size of 1032 bytes in function 'alg_test_aead' [-Werror,-Wframe-larger-than=]
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
^
crypto/testmgr.c:1693:12: error: stack frame size of 1312 bytes in function '__alg_test_hash' [-Werror,-Wframe-larger-than=]
static int __alg_test_hash(const struct hash_testvec *vecs,
^
On of the larger objects on the stack here is struct testvec_config, so
change that to dynamic allocation.
Fixes: 40153b10d91c ("crypto: testmgr - fuzz AEADs against their generic implementation")
Fixes: d435e10e67be ("crypto: testmgr - fuzz skciphers against their generic implementation")
Fixes: 9a8a6b3f0950 ("crypto: testmgr - fuzz hashes against their generic implementation")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
There are no remaining users of the cipher implementation, and there
are no meaningful ways in which the arc4 cipher can be combined with
templates other than ECB (and the way we do provide that combination
is highly dubious to begin with).
So let's drop the arc4 cipher altogether, and only keep the ecb(arc4)
skcipher, which is used in various places in the kernel.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Call cond_resched() after each fuzz test iteration. This avoids stall
warnings if fuzz_iterations is set very high for testing purposes.
While we're at it, also call cond_resched() after finishing testing each
test vector.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
xxhash is currently implemented as a self-contained module in /lib.
This patch enables that module to be used as part of the generic kernel
crypto framework. It adds a simple wrapper to the 64bit version.
I've also added test vectors (with help from Nick Terrell). The upstream
xxhash code is tested by running hashing operation on random 222 byte
data with seed values of 0 and a prime number. The upstream test
suite can be found at https://github.com/Cyan4973/xxHash/blob/cf46e0c/xxhsum.c#L664
Essentially hashing is run on data of length 0,1,14,222 with the
aforementioned seed values 0 and prime 2654435761. The particular random
222 byte string was provided to me by Nick Terrell by reading
/dev/random and the checksums were calculated by the upstream xxsum
utility with the following bash script:
dd if=/dev/random of=TEST_VECTOR bs=1 count=222
for a in 0 1; do
for l in 0 1 14 222; do
for s in 0 2654435761; do
echo algo $a length $l seed $s;
head -c $l TEST_VECTOR | ~/projects/kernel/xxHash/xxhsum -H$a -s$s
done
done
done
This produces output as follows:
algo 0 length 0 seed 0
02cc5d05 stdin
algo 0 length 0 seed 2654435761
02cc5d05 stdin
algo 0 length 1 seed 0
25201171 stdin
algo 0 length 1 seed 2654435761
25201171 stdin
algo 0 length 14 seed 0
c1d95975 stdin
algo 0 length 14 seed 2654435761
c1d95975 stdin
algo 0 length 222 seed 0
b38662a6 stdin
algo 0 length 222 seed 2654435761
b38662a6 stdin
algo 1 length 0 seed 0
ef46db3751d8e999 stdin
algo 1 length 0 seed 2654435761
ac75fda2929b17ef stdin
algo 1 length 1 seed 0
27c3f04c2881203a stdin
algo 1 length 1 seed 2654435761
4a15ed26415dfe4d stdin
algo 1 length 14 seed 0
3d33dc700231dfad stdin
algo 1 length 14 seed 2654435761
ea5f7ddef9a64f80 stdin
algo 1 length 222 seed 0
5f3d3c08ec2bef34 stdin
algo 1 length 222 seed 2654435761
6a9df59664c7ed62 stdin
algo 1 is xx64 variant, algo 0 is the 32 bit variant which is currently
not hooked up.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For hash algorithms implemented using the "shash" algorithm type, test
both the ahash and shash APIs, not just the ahash API.
Testing the ahash API already tests the shash API indirectly, which is
normally good enough. However, there have been corner cases where there
have been shash bugs that don't get exposed through the ahash API. So,
update testmgr to test the shash API too.
This would have detected the arm64 SHA-1 and SHA-2 bugs for which fixes
were just sent out (https://patchwork.kernel.org/patch/10964843/ and
https://patchwork.kernel.org/patch/10965089/):
alg: shash: sha1-ce test failed (wrong result) on test vector 0, cfg="init+finup aligned buffer"
alg: shash: sha224-ce test failed (wrong result) on test vector 0, cfg="init+finup aligned buffer"
alg: shash: sha256-ce test failed (wrong result) on test vector 0, cfg="init+finup aligned buffer"
This also would have detected the bugs fixed by commit 307508d10729
("crypto: crct10dif-generic - fix use via crypto_shash_digest()") and
commit dec3d0b1071a
("crypto: x86/crct10dif-pcl - fix use via crypto_shash_digest()").
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Mark sm4 and missing aes using protected keys which are indetical to
same algs with no HW protected keys as tested.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When the extra crypto self-tests are enabled, test each AEAD algorithm
against its generic implementation when one is available. This
involves: checking the algorithm properties for consistency, then
randomly generating test vectors using the generic implementation and
running them against the implementation under test. Both good and bad
inputs are tested.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When the extra crypto self-tests are enabled, test each skcipher
algorithm against its generic implementation when one is available.
This involves: checking the algorithm properties for consistency, then
randomly generating test vectors using the generic implementation and
running them against the implementation under test. Both good and bad
inputs are tested.
This has already detected a bug in the skcipher_walk API, a bug in the
LRW template, and an inconsistency in the cts implementations.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When the extra crypto self-tests are enabled, test each hash algorithm
against its generic implementation when one is available. This
involves: checking the algorithm properties for consistency, then
randomly generating test vectors using the generic implementation and
running them against the implementation under test. Both good and bad
inputs are tested.
This has already detected a bug in the x86 implementation of poly1305,
bugs in crct10dif, and an inconsistency in cbcmac.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add some helper functions in preparation for fuzz testing algorithms
against their generic implementation.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for fuzz testing algorithms against their generic
implementation, make error messages in testmgr identify test vectors by
name rather than index. Built-in test vectors are simply "named" by
their index in testmgr.h, as before. But (in later patches) generated
test vectors will be given more descriptive names to help developers
debug problems detected with them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Update testmgr to support testing for specific errors from setkey() and
digest() for hashes; setkey() and encrypt()/decrypt() for skciphers and
ciphers; and setkey(), setauthsize(), and encrypt()/decrypt() for AEADs.
This is useful because algorithms usually restrict the lengths or format
of the message, key, and/or authentication tag in some way. And bad
inputs should be tested too, not just good inputs.
As part of this change, remove the ambiguously-named 'fail' flag and
replace it with 'setkey_error = -EINVAL' for the only test vector that
used it -- the DES weak key test vector. Note that this tightens the
test to require -EINVAL rather than any error code, but AFAICS this
won't cause any test failure.
Other than that, these new fields aren't set on any test vectors yet.
Later patches will do so.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add testmgr test vectors for EC-RDSA algorithm for every of five
supported parameters (curves). Because there are no officially published
test vectors for the curves, the vectors are generated by gost-engine.
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Some public key algorithms (like EC-DSA) keep in parameters field
important data such as digest and curve OIDs (possibly more for
different EC-DSA variants). Thus, just setting a public key (as
for RSA) is not enough.
Append parameters into the key stream for akcipher_set_{pub,priv}_key.
Appended data is: (u32) algo OID, (u32) parameters length, parameters
data.
This does not affect current akcipher API nor RSA ciphers (they could
ignore it). Idea of appending parameters to the key stream is by Herbert
Xu.
Cc: David Howells <dhowells@redhat.com>
Cc: Denis Kenzior <denkenz@gmail.com>
Cc: keyrings@vger.kernel.org
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Reviewed-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Previous akcipher .verify() just `decrypts' (using RSA encrypt which is
using public key) signature to uncover message hash, which was then
compared in upper level public_key_verify_signature() with the expected
hash value, which itself was never passed into verify().
This approach was incompatible with EC-DSA family of algorithms,
because, to verify a signature EC-DSA algorithm also needs a hash value
as input; then it's used (together with a signature divided into halves
`r||s') to produce a witness value, which is then compared with `r' to
determine if the signature is correct. Thus, for EC-DSA, nor
requirements of .verify() itself, nor its output expectations in
public_key_verify_signature() wasn't sufficient.
Make improved .verify() call which gets hash value as input and produce
complete signature check without any output besides status.
Now for the top level verification only crypto_akcipher_verify() needs
to be called and its return value inspected.
Make sure that `digest' is in kmalloc'd memory (in place of `output`) in
{public,tpm}_key_verify_signature() as insisted by Herbert Xu, and will
be changed in the following commit.
Cc: David Howells <dhowells@redhat.com>
Cc: keyrings@vger.kernel.org
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Reviewed-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a module parameter cryptomgr.panic_on_fail which causes the kernel
to panic if any crypto self-tests fail.
Use cases:
- More easily detect crypto self-test failures by boot testing,
e.g. on KernelCI.
- Get a bug report if syzkaller manages to use the template system to
instantiate an algorithm that fails its self-tests.
The command-line option "fips=1" already does this, but it also makes
other changes not wanted for general testing, such as disabling
"unapproved" algorithms. panic_on_fail just does what it says.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
All crypto API algorithms are supposed to support the case where they
are called in a context where SIMD instructions are unusable, e.g. IRQ
context on some architectures. However, this isn't tested for by the
self-tests, causing bugs to go undetected.
Now that all algorithms have been converted to use crypto_simd_usable(),
update the self-tests to test the no-SIMD case. First, a bool
testvec_config::nosimd is added. When set, the crypto operation is
executed with preemption disabled and with crypto_simd_usable() mocked
out to return false on the current CPU.
A bool test_sg_division::nosimd is also added. For hash algorithms it's
honored by the corresponding ->update(). By setting just a subset of
these bools, the case where some ->update()s are done in SIMD context
and some are done in no-SIMD context is also tested.
These bools are then randomly set by generate_random_testvec_config().
For now, all no-SIMD testing is limited to the extra crypto self-tests,
because it might be a bit too invasive for the regular self-tests.
But this could be changed later.
This has already found bugs in the arm64 AES-GCM and ChaCha algorithms.
This would have found some past bugs as well.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
So that the no-SIMD fallback code can be tested by the crypto
self-tests, add a macro crypto_simd_usable() which wraps may_use_simd(),
but also returns false if the crypto self-tests have set a per-CPU bool
to disable SIMD in crypto code on the current CPU.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that all AEAD algorithms (that I have the hardware to test, at
least) have been fixed to not modify the user-provided aead_request,
remove the workaround from testmgr that reset aead_request::tfm after
each AEAD encryption/decryption.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Allow skcipher test vectors to declare the value the IV buffer should be
updated to at the end of the encryption or decryption operation.
(This check actually used to be supported in testmgr, but it was never
used and therefore got removed except for the AES-Keywrap special case.
But it will be used by CBC and CTR now, so re-add it.)
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Check that algorithms do not change the aead_request structure, as users
may rely on submitting the request again (e.g. after copying new data
into the same source buffer) without reinitializing everything.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Check that algorithms do not change the skcipher_request structure, as
users may rely on submitting the request again (e.g. after copying new
data into the same source buffer) without reinitializing everything.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert alg_test_hash() to use the new test framework, adding a list of
testvec_configs to test by default. When the extra self-tests are
enabled, randomly generated testvec_configs are tested as well.
This improves hash test coverage mainly because now all algorithms have
a variety of data layouts tested, whereas before each algorithm was
responsible for declaring its own chunked test cases which were often
missing or provided poor test coverage. The new code also tests both
the MAY_SLEEP and !MAY_SLEEP cases and buffers that cross pages.
This already found bugs in the hash walk code and in the arm32 and arm64
implementations of crct10dif.
I removed the hash chunked test vectors that were the same as
non-chunked ones, but left the ones that were unique.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert alg_test_aead() to use the new test framework, using the same
list of testvec_configs that skcipher testing uses.
This significantly improves AEAD test coverage mainly because previously
there was only very limited test coverage of the possible data layouts.
Now the data layouts to test are listed in one place for all algorithms
and optionally are also randomly generated. In fact, only one AEAD
algorithm (AES-GCM) even had a chunked test case before.
This already found bugs in all the AEGIS and MORUS implementations, the
x86 AES-GCM implementation, and the arm64 AES-CCM implementation.
I removed the AEAD chunked test vectors that were the same as
non-chunked ones, but left the ones that were unique.
Note: the rewritten test code allocates an aead_request just once per
algorithm rather than once per encryption/decryption, but some AEAD
algorithms incorrectly change the tfm pointer in the request. It's
nontrivial to fix these, so to move forward I'm temporarily working
around it by resetting the tfm pointer. But they'll need to be fixed.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert alg_test_skcipher() to use the new test framework, adding a list
of testvec_configs to test by default. When the extra self-tests are
enabled, randomly generated testvec_configs are tested as well.
This improves skcipher test coverage mainly because now all algorithms
have a variety of data layouts tested, whereas before each algorithm was
responsible for declaring its own chunked test cases which were often
missing or provided poor test coverage. The new code also tests both
the MAY_SLEEP and !MAY_SLEEP cases, different IV alignments, and buffers
that cross pages.
This has already found a bug in the arm64 ctr-aes-neonbs algorithm.
It would have easily found many past bugs.
I removed the skcipher chunked test vectors that were the same as
non-chunked ones, but left the ones that were unique.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add functions that generate a random testvec_config, in preparation for
using it for randomized fuzz tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
To achieve more comprehensive crypto test coverage, I'd like to add fuzz
tests that use random data layouts and request flags.
To be most effective these tests should be part of testmgr, so they
automatically run on every algorithm registered with the crypto API.
However, they will take much longer to run than the current tests and
therefore will only really be intended to be run by developers, whereas
the current tests have a wider audience.
Therefore, add a new kconfig option CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
that can be set by developers to enable these extra, expensive tests.
Similar to the regular tests, also add a module parameter
cryptomgr.noextratests to support disabling the tests.
Finally, another module parameter cryptomgr.fuzz_iterations is added to
control how many iterations the fuzz tests do. Note: for now setting
this to 0 will be equivalent to cryptomgr.noextratests=1. But I opted
for separate parameters to provide more flexibility to add other types
of tests under the "extra tests" category in the future.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Crypto algorithms must produce the same output for the same input
regardless of data layout, i.e. how the src and dst scatterlists are
divided into chunks and how each chunk is aligned. Request flags such
as CRYPTO_TFM_REQ_MAY_SLEEP must not affect the result either.
However, testing of this currently has many gaps. For example,
individual algorithms are responsible for providing their own chunked
test vectors. But many don't bother to do this or test only one or two
cases, providing poor test coverage. Also, other things such as
misaligned IVs and CRYPTO_TFM_REQ_MAY_SLEEP are never tested at all.
Test code is also duplicated between the chunked and non-chunked cases,
making it difficult to make other improvements.
To improve the situation, this patch series basically moves the chunk
descriptions into the testmgr itself so that they are shared by all
algorithms. However, it's done in an extensible way via a new struct
'testvec_config', which describes not just the scaled chunk lengths but
also all other aspects of the crypto operation besides the data itself
such as the buffer alignments, the request flags, whether the operation
is in-place or not, the IV alignment, and for hash algorithms when to
do each update() and when to use finup() vs. final() vs. digest().
Then, this patch series makes skcipher, aead, and hash algorithms be
tested against a list of default testvec_configs, replacing the current
test code. This improves overall test coverage, without reducing test
performance too much. Note that the test vectors themselves are not
changed, except for removing the chunk lists.
This series also adds randomized fuzz tests, enabled by a new kconfig
option intended for developer use only, where skcipher, aead, and hash
algorithms are tested against many randomly generated testvec_configs.
This provides much more comprehensive test coverage.
These improved tests have already exposed many bugs.
To start it off, this initial patch adds the testvec_config and various
helper functions that will be used by the skcipher, aead, and hash test
code that will be converted to use the new testvec_config framework.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Fixes coccinnelle alerts:
/crypto/testmgr.c:2112:13-20: WARNING opportunity for kmemdup
/crypto/testmgr.c:2130:13-20: WARNING opportunity for kmemdup
/crypto/testmgr.c:2152:9-16: WARNING opportunity for kmemdup
Signed-off-by: Christopher Diaz Riveros <chrisadr@gentoo.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRC32 is not a cryptographic hash algorithm,
so the FIPS restrictions should not apply to it.
(The CRC32C variant is already allowed.)
This CRC32 variant is used for in dm-crypt legacy TrueCrypt
IV implementation (tcw); detected by cryptsetup test suite
failure in FIPS mode.
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Instantiating "cryptd(crc32c)" causes a crypto self-test failure because
the crypto_alloc_shash() in alg_test_crc32c() fails. This is because
cryptd(crc32c) is an ahash algorithm, not a shash algorithm; so it can
only be accessed through the ahash API, unlike shash algorithms which
can be accessed through both the ahash and shash APIs.
As the test is testing the shash descriptor format which is only
applicable to shash algorithms, skip it for ahash algorithms.
(Note that it's still important to fix crypto self-test failures even
for weird algorithm instantiations like cryptd(crc32c) that no one
would really use; in fips_enabled mode unprivileged users can use them
to panic the kernel, and also they prevent treating a crypto self-test
failure as a bug when fuzzing the kernel.)
Fixes: 8e3ee85e68c5 ("crypto: crc32c - Test descriptor context format")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
CRYPTO_TFM_REQ_WEAK_KEY confuses newcomers to the crypto API because it
sounds like it is requesting a weak key. Actually, it is requesting
that weak keys be forbidden (for algorithms that have the notion of
"weak keys"; currently only DES and XTS do).
Also it is only one letter away from CRYPTO_TFM_RES_WEAK_KEY, with which
it can be easily confused. (This in fact happened in the UX500 driver,
though just in some debugging messages.)
Therefore, make the intent clear by renaming it to
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently testmgr has separate encryption and decryption test vectors
for AEADs. That's massively redundant, since usually the decryption
tests are identical to the encryption tests, just with the input/result
swapped. And for some algorithms it was forgotten to add decryption
test vectors, so for them currently only encryption is being tested.
Therefore, eliminate the redundancy by removing the AEAD decryption test
vectors and updating testmgr to test both AEAD encryption and decryption
using what used to be the encryption test vectors. Naming is adjusted
accordingly: each aead_testvec now has a 'ptext' (plaintext), 'plen'
(plaintext length), 'ctext' (ciphertext), and 'clen' (ciphertext length)
instead of an 'input', 'ilen', 'result', and 'rlen'. "Ciphertext" here
refers to the full ciphertext, including the authentication tag.
For now the scatterlist divisions are just given for the plaintext
length, not also the ciphertext length. For decryption, the last
scatterlist element is just extended by the authentication tag length.
In total, this removes over 5000 lines from testmgr.h, with no reduction
in test coverage since prior patches already copied the few unique
decryption test vectors into the encryption test vectors.
The testmgr.h portion of this patch was automatically generated using
the following awk script, except that I also manually updated the
definition of 'struct aead_testvec' and fixed the location of the
comment describing the AEGIS-128 test vectors.
BEGIN { OTHER = 0; ENCVEC = 1; DECVEC = 2; DECVEC_TAIL = 3; mode = OTHER }
/^static const struct aead_testvec.*_enc_/ { sub("_enc", ""); mode = ENCVEC }
/^static const struct aead_testvec.*_dec_/ { mode = DECVEC }
mode == ENCVEC {
sub(/\.input[[:space:]]*=/, ".ptext\t=")
sub(/\.result[[:space:]]*=/, ".ctext\t=")
sub(/\.ilen[[:space:]]*=/, ".plen\t=")
sub(/\.rlen[[:space:]]*=/, ".clen\t=")
print
}
mode == DECVEC_TAIL && /[^[:space:]]/ { mode = OTHER }
mode == OTHER { print }
mode == ENCVEC && /^};/ { mode = OTHER }
mode == DECVEC && /^};/ { mode = DECVEC_TAIL }
Note that git's default diff algorithm gets confused by the testmgr.h
portion of this patch, and reports too many lines added and removed.
It's better viewed with 'git diff --minimal' (or 'git show --minimal'),
which reports "2 files changed, 1235 insertions(+), 6491 deletions(-)".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for unifying the AEAD encryption and decryption test
vectors, skip AEAD test vectors with the 'novrfy' (verification failure
expected) flag set when testing encryption rather than decryption.
These test vectors only make sense for decryption.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The crc32c context is in CPU endianness, whereas the final digest is
little endian. alg_test_crc32c() got this mixed up. Fix it.
The test passes both before and after, but this patch fixes the
following sparse warning:
crypto/testmgr.c:1912:24: warning: cast to restricted __le32
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Before this, if akcipher_testvec have `public_key_vec' set to true
(i.e. having a public key) only sign/encrypt test is performed, but
verify/decrypt test is skipped.
With a public key we could do encrypt and verify, but to sign and decrypt
a private key is required.
This logic is correct for encrypt/decrypt tests (decrypt is skipped if
no private key). But incorrect for sign/verify tests - sign is performed
no matter if there is no private key, but verify is skipped if there is
a public key.
Rework `test_akcipher_one' to arrange tests properly depending on value
of `public_key_vec` and `siggen_sigver_test'.
No tests were missed since there is only one sign/verify test (which
have `siggen_sigver_test' set to true) and it has a private key, but
future tests could benefit from this improvement.
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support for the Adiantum encryption mode. Adiantum was designed by
Paul Crowley and is specified by our paper:
Adiantum: length-preserving encryption for entry-level processors
(https://eprint.iacr.org/2018/720.pdf)
See our paper for full details; this patch only provides an overview.
Adiantum is a tweakable, length-preserving encryption mode designed for
fast and secure disk encryption, especially on CPUs without dedicated
crypto instructions. Adiantum encrypts each sector using the XChaCha12
stream cipher, two passes of an ε-almost-∆-universal (εA∆U) hash
function, and an invocation of the AES-256 block cipher on a single
16-byte block. On CPUs without AES instructions, Adiantum is much
faster than AES-XTS; for example, on ARM Cortex-A7, on 4096-byte sectors
Adiantum encryption is about 4 times faster than AES-256-XTS encryption,
and decryption about 5 times faster.
Adiantum is a specialization of the more general HBSH construction. Our
earlier proposal, HPolyC, was also a HBSH specialization, but it used a
different εA∆U hash function, one based on Poly1305 only. Adiantum's
εA∆U hash function, which is based primarily on the "NH" hash function
like that used in UMAC (RFC4418), is about twice as fast as HPolyC's;
consequently, Adiantum is about 20% faster than HPolyC.
This speed comes with no loss of security: Adiantum is provably just as
secure as HPolyC, in fact slightly *more* secure. Like HPolyC,
Adiantum's security is reducible to that of XChaCha12 and AES-256,
subject to a security bound. XChaCha12 itself has a security reduction
to ChaCha12. Therefore, one need not "trust" Adiantum; one need only
trust ChaCha12 and AES-256. Note that the εA∆U hash function is only
used for its proven combinatorical properties so cannot be "broken".
Adiantum is also a true wide-block encryption mode, so flipping any
plaintext bit in the sector scrambles the entire ciphertext, and vice
versa. No other such mode is available in the kernel currently; doing
the same with XTS scrambles only 16 bytes. Adiantum also supports
arbitrary-length tweaks and naturally supports any length input >= 16
bytes without needing "ciphertext stealing".
For the stream cipher, Adiantum uses XChaCha12 rather than XChaCha20 in
order to make encryption feasible on the widest range of devices.
Although the 20-round variant is quite popular, the best known attacks
on ChaCha are on only 7 rounds, so ChaCha12 still has a substantial
security margin; in fact, larger than AES-256's. 12-round Salsa20 is
also the eSTREAM recommendation. For the block cipher, Adiantum uses
AES-256, despite it having a lower security margin than XChaCha12 and
needing table lookups, due to AES's extensive adoption and analysis
making it the obvious first choice. Nevertheless, for flexibility this
patch also permits the "adiantum" template to be instantiated with
XChaCha20 and/or with an alternate block cipher.
We need Adiantum support in the kernel for use in dm-crypt and fscrypt,
where currently the only other suitable options are block cipher modes
such as AES-XTS. A big problem with this is that many low-end mobile
devices (e.g. Android Go phones sold primarily in developing countries,
as well as some smartwatches) still have CPUs that lack AES
instructions, e.g. ARM Cortex-A7. Sadly, AES-XTS encryption is much too
slow to be viable on these devices. We did find that some "lightweight"
block ciphers are fast enough, but these suffer from problems such as
not having much cryptanalysis or being too controversial.
The ChaCha stream cipher has excellent performance but is insecure to
use directly for disk encryption, since each sector's IV is reused each
time it is overwritten. Even restricting the threat model to offline
attacks only isn't enough, since modern flash storage devices don't
guarantee that "overwrites" are really overwrites, due to wear-leveling.
Adiantum avoids this problem by constructing a
"tweakable super-pseudorandom permutation"; this is the strongest
possible security model for length-preserving encryption.
Of course, storing random nonces along with the ciphertext would be the
ideal solution. But doing that with existing hardware and filesystems
runs into major practical problems; in most cases it would require data
journaling (like dm-integrity) which severely degrades performance.
Thus, for now length-preserving encryption is still needed.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a generic implementation of NHPoly1305, an ε-almost-∆-universal hash
function used in the Adiantum encryption mode.
CONFIG_NHPOLY1305 is not selectable by itself since there won't be any
real reason to enable it without also enabling Adiantum support.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add testmgr and tcrypt tests and vectors for Streebog hash function
from RFC 6986 and GOST R 34.11-2012, for HMAC-Streebog vectors are
from RFC 7836 and R 50.1.113-2016.
Cc: linux-integrity@vger.kernel.org
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|