1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
|
/*
* Copyright (C) 2001 Jens Axboe <axboe@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public Licens
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
*
*/
#include <linux/mm.h>
#include <linux/bio.h>
#include <linux/blk.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mempool.h>
#define BIO_POOL_SIZE 256
static mempool_t *bio_pool;
static kmem_cache_t *bio_slab;
#define BIOVEC_NR_POOLS 6
struct biovec_pool {
int nr_vecs;
char *name;
kmem_cache_t *slab;
mempool_t *pool;
};
/*
* if you change this list, also change bvec_alloc or things will
* break badly! cannot be bigger than what you can fit into an
* unsigned short
*/
#define BV(x) { x, "biovec-" #x }
static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = {
BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV
static void *slab_pool_alloc(int gfp_mask, void *data)
{
return kmem_cache_alloc(data, gfp_mask);
}
static void slab_pool_free(void *ptr, void *data)
{
kmem_cache_free(data, ptr);
}
static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx)
{
struct biovec_pool *bp;
struct bio_vec *bvl;
/*
* see comment near bvec_array define!
*/
switch (nr) {
case 1 : *idx = 0; break;
case 2 ... 4: *idx = 1; break;
case 5 ... 16: *idx = 2; break;
case 17 ... 64: *idx = 3; break;
case 65 ... 128: *idx = 4; break;
case 129 ... BIO_MAX_PAGES: *idx = 5; break;
default:
return NULL;
}
/*
* idx now points to the pool we want to allocate from
*/
bp = bvec_array + *idx;
bvl = mempool_alloc(bp->pool, gfp_mask);
if (bvl)
memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
return bvl;
}
/*
* default destructor for a bio allocated with bio_alloc()
*/
void bio_destructor(struct bio *bio)
{
const int pool_idx = BIO_POOL_IDX(bio);
struct biovec_pool *bp = bvec_array + pool_idx;
BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
/*
* cloned bio doesn't own the veclist
*/
if (!bio_flagged(bio, BIO_CLONED))
mempool_free(bio->bi_io_vec, bp->pool);
mempool_free(bio, bio_pool);
}
inline void bio_init(struct bio *bio)
{
bio->bi_next = NULL;
bio->bi_flags = 1 << BIO_UPTODATE;
bio->bi_rw = 0;
bio->bi_vcnt = 0;
bio->bi_idx = 0;
bio->bi_phys_segments = 0;
bio->bi_hw_segments = 0;
bio->bi_size = 0;
bio->bi_max_vecs = 0;
bio->bi_end_io = NULL;
atomic_set(&bio->bi_cnt, 1);
}
/**
* bio_alloc - allocate a bio for I/O
* @gfp_mask: the GFP_ mask given to the slab allocator
* @nr_iovecs: number of iovecs to pre-allocate
*
* Description:
* bio_alloc will first try it's on mempool to satisfy the allocation.
* If %__GFP_WAIT is set then we will block on the internal pool waiting
* for a &struct bio to become free.
**/
struct bio *bio_alloc(int gfp_mask, int nr_iovecs)
{
int pf_flags = current->flags;
struct bio_vec *bvl = NULL;
unsigned long idx;
struct bio *bio;
current->flags |= PF_NOWARN;
bio = mempool_alloc(bio_pool, gfp_mask);
if (unlikely(!bio))
goto out;
bio_init(bio);
if (unlikely(!nr_iovecs))
goto out;
bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx);
if (bvl) {
bio->bi_flags |= idx << BIO_POOL_OFFSET;
bio->bi_max_vecs = bvec_array[idx].nr_vecs;
bio->bi_io_vec = bvl;
bio->bi_destructor = bio_destructor;
out:
current->flags = pf_flags;
return bio;
}
mempool_free(bio, bio_pool);
bio = NULL;
goto out;
}
/**
* bio_put - release a reference to a bio
* @bio: bio to release reference to
*
* Description:
* Put a reference to a &struct bio, either one you have gotten with
* bio_alloc or bio_get. The last put of a bio will free it.
**/
void bio_put(struct bio *bio)
{
BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
/*
* last put frees it
*/
if (atomic_dec_and_test(&bio->bi_cnt)) {
bio->bi_next = NULL;
bio->bi_destructor(bio);
}
}
inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
{
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
return bio->bi_phys_segments;
}
inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
{
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
return bio->bi_hw_segments;
}
/**
* __bio_clone - clone a bio
* @bio: destination bio
* @bio_src: bio to clone
*
* Clone a &bio. Caller will own the returned bio, but not
* the actual data it points to. Reference count of returned
* bio will be one.
*/
inline void __bio_clone(struct bio *bio, struct bio *bio_src)
{
bio->bi_io_vec = bio_src->bi_io_vec;
bio->bi_sector = bio_src->bi_sector;
bio->bi_bdev = bio_src->bi_bdev;
bio->bi_flags |= 1 << BIO_CLONED;
bio->bi_rw = bio_src->bi_rw;
/*
* notes -- maybe just leave bi_idx alone. assume identical mapping
* for the clone
*/
bio->bi_vcnt = bio_src->bi_vcnt;
bio->bi_idx = bio_src->bi_idx;
if (bio_flagged(bio, BIO_SEG_VALID)) {
bio->bi_phys_segments = bio_src->bi_phys_segments;
bio->bi_hw_segments = bio_src->bi_hw_segments;
bio->bi_flags |= (1 << BIO_SEG_VALID);
}
bio->bi_size = bio_src->bi_size;
/*
* cloned bio does not own the bio_vec, so users cannot fiddle with
* it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this
* apparent
*/
bio->bi_max_vecs = 0;
bio->bi_flags &= (BIO_POOL_MASK - 1);
}
/**
* bio_clone - clone a bio
* @bio: bio to clone
* @gfp_mask: allocation priority
*
* Like __bio_clone, only also allocates the returned bio
*/
struct bio *bio_clone(struct bio *bio, int gfp_mask)
{
struct bio *b = bio_alloc(gfp_mask, 0);
if (b)
__bio_clone(b, bio);
return b;
}
/**
* bio_copy - create copy of a bio
* @bio: bio to copy
* @gfp_mask: allocation priority
* @copy: copy data to allocated bio
*
* Create a copy of a &bio. Caller will own the returned bio and
* the actual data it points to. Reference count of returned
* bio will be one.
*/
struct bio *bio_copy(struct bio *bio, int gfp_mask, int copy)
{
struct bio *b = bio_alloc(gfp_mask, bio->bi_vcnt);
unsigned long flags = 0; /* gcc silly */
struct bio_vec *bv;
int i;
if (unlikely(!b))
return NULL;
/*
* iterate iovec list and alloc pages + copy data
*/
__bio_for_each_segment(bv, bio, i, 0) {
struct bio_vec *bbv = &b->bi_io_vec[i];
char *vfrom, *vto;
bbv->bv_page = alloc_page(gfp_mask);
if (bbv->bv_page == NULL)
goto oom;
bbv->bv_len = bv->bv_len;
bbv->bv_offset = bv->bv_offset;
/*
* if doing a copy for a READ request, no need
* to memcpy page data
*/
if (!copy)
continue;
if (gfp_mask & __GFP_WAIT) {
vfrom = kmap(bv->bv_page);
vto = kmap(bbv->bv_page);
} else {
local_irq_save(flags);
vfrom = kmap_atomic(bv->bv_page, KM_BIO_SRC_IRQ);
vto = kmap_atomic(bbv->bv_page, KM_BIO_DST_IRQ);
}
memcpy(vto + bbv->bv_offset, vfrom + bv->bv_offset, bv->bv_len);
if (gfp_mask & __GFP_WAIT) {
kunmap(bbv->bv_page);
kunmap(bv->bv_page);
} else {
kunmap_atomic(vto, KM_BIO_DST_IRQ);
kunmap_atomic(vfrom, KM_BIO_SRC_IRQ);
local_irq_restore(flags);
}
}
b->bi_sector = bio->bi_sector;
b->bi_bdev = bio->bi_bdev;
b->bi_rw = bio->bi_rw;
b->bi_vcnt = bio->bi_vcnt;
b->bi_size = bio->bi_size;
return b;
oom:
while (--i >= 0)
__free_page(b->bi_io_vec[i].bv_page);
mempool_free(b, bio_pool);
return NULL;
}
/**
* bio_get_nr_vecs - return approx number of vecs
* @bdev: I/O target
*
* Return the approximate number of pages we can send to this target.
* There's no guarentee that you will be able to fit this number of pages
* into a bio, it does not account for dynamic restrictions that vary
* on offset.
*/
int bio_get_nr_vecs(struct block_device *bdev)
{
request_queue_t *q = bdev_get_queue(bdev);
int nr_pages;
nr_pages = q->max_sectors >> (PAGE_SHIFT - 9);
if (nr_pages > q->max_phys_segments)
nr_pages = q->max_phys_segments;
if (nr_pages > q->max_hw_segments)
nr_pages = q->max_hw_segments;
return nr_pages;
}
/**
* bio_add_page - attempt to add page to bio
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
*
* Attempt to add a page to the bio_vec maplist. This can fail for a
* number of reasons, such as the bio being full or target block
* device limitations.
*/
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
unsigned int offset)
{
request_queue_t *q = bdev_get_queue(bio->bi_bdev);
int fail_segments = 0, retried_segments = 0;
struct bio_vec *bvec;
/*
* cloned bio must not modify vec list
*/
if (unlikely(bio_flagged(bio, BIO_CLONED)))
return 1;
if (bio->bi_vcnt >= bio->bi_max_vecs)
return 1;
if (((bio->bi_size + len) >> 9) > q->max_sectors)
return 1;
/*
* we might loose a segment or two here, but rather that than
* make this too complex.
*/
retry_segments:
if (bio_phys_segments(q, bio) >= q->max_phys_segments
|| bio_hw_segments(q, bio) >= q->max_hw_segments)
fail_segments = 1;
if (fail_segments) {
if (retried_segments)
return 1;
bio->bi_flags &= ~(1 << BIO_SEG_VALID);
retried_segments = 1;
goto retry_segments;
}
/*
* setup the new entry, we might clear it again later if we
* cannot add the page
*/
bvec = &bio->bi_io_vec[bio->bi_vcnt];
bvec->bv_page = page;
bvec->bv_len = len;
bvec->bv_offset = offset;
/*
* if queue has other restrictions (eg varying max sector size
* depending on offset), it can specify a merge_bvec_fn in the
* queue to get further control
*/
if (q->merge_bvec_fn && q->merge_bvec_fn(q, bio, bvec)) {
bvec->bv_page = NULL;
bvec->bv_len = 0;
bvec->bv_offset = 0;
return 1;
}
bio->bi_vcnt++;
bio->bi_phys_segments++;
bio->bi_hw_segments++;
bio->bi_size += len;
return 0;
}
/**
* bio_endio - end I/O on a bio
* @bio: bio
* @bytes_done: number of bytes completed
* @error: error, if any
*
* Description:
* bio_endio() will end I/O @bytes_done number of bytes. This may be just
* a partial part of the bio, or it may be the whole bio. bio_endio() is
* the preferred way to end I/O on a bio, it takes care of decrementing
* bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
* and one of the established -Exxxx (-EIO, for instance) error values in
* case something went wrong.
**/
int bio_endio(struct bio *bio, unsigned int bytes_done, int error)
{
if (error)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
if (unlikely(bytes_done > bio->bi_size)) {
printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
bytes_done, bio->bi_size);
bytes_done = bio->bi_size;
}
bio->bi_size -= bytes_done;
return bio->bi_end_io(bio, bytes_done, error);
}
static void __init biovec_init_pools(void)
{
int i, size, megabytes, pool_entries = BIO_POOL_SIZE;
int scale = BIOVEC_NR_POOLS;
megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
/*
* find out where to start scaling
*/
if (megabytes <= 16)
scale = 0;
else if (megabytes <= 32)
scale = 1;
else if (megabytes <= 64)
scale = 2;
else if (megabytes <= 96)
scale = 3;
else if (megabytes <= 128)
scale = 4;
/*
* scale number of entries
*/
pool_entries = megabytes * 2;
if (pool_entries > 256)
pool_entries = 256;
for (i = 0; i < BIOVEC_NR_POOLS; i++) {
struct biovec_pool *bp = bvec_array + i;
size = bp->nr_vecs * sizeof(struct bio_vec);
bp->slab = kmem_cache_create(bp->name, size, 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!bp->slab)
panic("biovec: can't init slab cache\n");
if (i >= scale)
pool_entries >>= 1;
bp->pool = mempool_create(pool_entries, slab_pool_alloc,
slab_pool_free, bp->slab);
if (!bp->pool)
panic("biovec: can't init mempool\n");
printk("biovec pool[%d]: %3d bvecs: %3d entries (%d bytes)\n",
i, bp->nr_vecs, pool_entries,
size);
}
}
static int __init init_bio(void)
{
bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!bio_slab)
panic("bio: can't create slab cache\n");
bio_pool = mempool_create(BIO_POOL_SIZE, slab_pool_alloc, slab_pool_free, bio_slab);
if (!bio_pool)
panic("bio: can't create mempool\n");
printk("BIO: pool of %d setup, %ZuKb (%Zd bytes/bio)\n", BIO_POOL_SIZE, BIO_POOL_SIZE * sizeof(struct bio) >> 10, sizeof(struct bio));
biovec_init_pools();
return 0;
}
module_init(init_bio);
EXPORT_SYMBOL(bio_alloc);
EXPORT_SYMBOL(bio_put);
EXPORT_SYMBOL(bio_endio);
EXPORT_SYMBOL(bio_init);
EXPORT_SYMBOL(bio_copy);
EXPORT_SYMBOL(__bio_clone);
EXPORT_SYMBOL(bio_clone);
EXPORT_SYMBOL(bio_phys_segments);
EXPORT_SYMBOL(bio_hw_segments);
EXPORT_SYMBOL(bio_add_page);
EXPORT_SYMBOL(bio_get_nr_vecs);
|