Skip to content
2 changes: 1 addition & 1 deletion DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -511,7 +511,7 @@
* Lstm
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polymonial Regression](machine_learning/polymonial_regression.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
Expand Down
44 changes: 0 additions & 44 deletions machine_learning/polymonial_regression.py

This file was deleted.

213 changes: 213 additions & 0 deletions machine_learning/polynomial_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
"""
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:

y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε

By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:

β = (XᵀX)⁻¹Xᵀy = X⁺y

where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is

|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|

In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
decomposition (SVD):

β = VΣ⁺Uᵀy

where UΣVᵀ is an SVD of X.

References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""

import matplotlib.pyplot as plt
import numpy as np


class PolynomialRegression:
__slots__ = "degree", "params"

def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")

self.degree = degree
self.params = None

@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix

|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|

Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix

@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1

>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")

return np.vander(data, N=degree + 1, increasing=True)

def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:

β = (XᵀX)⁻¹Xᵀy = X⁺y

where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
function computes X⁺ using singular value decomposition (SVD).

References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity

@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist

>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients

Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)

# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
self.params = np.linalg.pinv(X) @ y_train

def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = Xβ.

@param data: the predictor values x for prediction
@returns: the predicted response values y = Xβ
@raises ArithmeticError: if this function is called before the model
parameters are fit

>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")

return PolynomialRegression._design_matrix(data, self.degree) @ self.params


def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset

>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns

mpg_data = sns.load_dataset("mpg")

poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)

weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)

plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()


if __name__ == "__main__":
import doctest

doctest.testmod()

main()