7

I have a pandas dataframe which has structure like below:

print raster_arr_df

      60.25 60.50 60.75 61.00 61.25 61.50 61.75 62.00 62.25 62.50  ...  94.75  \
3.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
3.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
3.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
4.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
4.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
4.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
4.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
5.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
5.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
5.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
5.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
6.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
6.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
6.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
6.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
7.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
7.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
7.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
7.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
8.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
8.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
8.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
8.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
9.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
9.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
9.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
9.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
10.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
10.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
10.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
...     ...   ...   ...   ...   ...   ...   ...   ...   ...   ...  ...    ...   
35.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
36.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
36.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
36.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
36.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
37.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
37.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
37.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
37.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
38.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
38.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
38.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
38.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
39.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
39.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
39.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
39.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
40.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
40.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
40.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
40.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
41.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
41.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
41.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
41.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
42.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
42.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
42.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
42.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   
43.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   

      95.00 95.25 95.50 95.75 96.00 96.25 96.50 96.75 97.00  
3.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
3.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
3.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
4.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
4.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
4.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
4.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
5.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
5.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
5.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
5.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
6.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
6.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
6.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
6.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
7.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
7.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
7.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
7.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
8.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
8.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
8.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
8.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
9.00    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
9.25    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
9.50    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
9.75    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
10.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
10.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
10.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
...     ...   ...   ...   ...   ...   ...   ...   ...   ...  
35.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
36.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
36.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
36.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
36.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
37.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
37.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
37.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
37.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
38.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
38.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
38.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
38.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
39.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
39.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
39.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
39.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
40.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
40.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
40.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
40.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
41.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
41.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
41.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
41.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
42.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
42.25   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
42.50   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
42.75   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
43.00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  

[160 rows x 148 columns]

And my numpy array looks like below:

print raster_arr

[[ 0.          0.          0.         ...,  0.64464766  0.78923023
   0.90317035]
 [ 0.          0.          0.         ...,  1.39210367  2.56416273
   1.28261185]
 [ 0.          0.          0.         ...,  0.63526356  0.66092908
   1.5844413 ]
 ..., 
 [ 2.04395676  1.64457083  1.70771551 ...,  8.11063385  2.57144356
   1.60219038]
 [ 2.46784496  2.20636702  1.82298481 ...,  2.11637998  2.1444006
   2.13336754]
 [ 3.26898718  3.19584775  2.69124269 ...,  2.74416089  2.27447248
   6.18890047]]

Process finished with exit code 0

I want to copy all the values in numpy to pandas dataframe with the define index and columns in dataframe.

The shape of both the pandas dataframe and the numpy array is the same.

1
  • Maybe try DataFrame constructor like print pd.DataFrame(raster_arr, index=raster_arr_df.index, columns=raster_arr_df.columns) Commented Feb 27, 2016 at 6:58

2 Answers 2

9

You can use DataFrame constructor like: pd.DataFrame(data=raster_arr, index=raster_arr_df.index, columns=raster_arr_df.columns):

data : numpy ndarray (structured or homogeneous), dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects

index : Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided

columns : Index or array-like Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided

Sample:

print raster_arr_df
     a    b    c    d
1  NaN  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN
3  NaN  NaN  NaN  NaN

print raster_arr
[[1 1 3 0]
 [4 2 6 0]
 [4 3 9 5]]

print pd.DataFrame(data=raster_arr, index=raster_arr_df.index, columns=raster_arr_df.columns)
   a  b  c  d
1  1  1  3  0
2  4  2  6  0
3  4  3  9  5
Sign up to request clarification or add additional context in comments.

1 Comment

Sorry, but why my answer was unaccepted? Thanks for explanation. Is something wrong?
5

pandas.DataFrame(<numpy array>, index=df.index, columns=df.columns, dtype=None, copy=False)

where: data is your numpy array, index is your rows for dataframe, columns is the columns.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.