I have a pandas dataframe which has structure like below:
print raster_arr_df
60.25 60.50 60.75 61.00 61.25 61.50 61.75 62.00 62.25 62.50 ... 94.75 \
3.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
3.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
3.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
35.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
43.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
95.00 95.25 95.50 95.75 96.00 96.25 96.50 96.75 97.00
3.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ...
35.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
43.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
[160 rows x 148 columns]
And my numpy array looks like below:
print raster_arr
[[ 0. 0. 0. ..., 0.64464766 0.78923023
0.90317035]
[ 0. 0. 0. ..., 1.39210367 2.56416273
1.28261185]
[ 0. 0. 0. ..., 0.63526356 0.66092908
1.5844413 ]
...,
[ 2.04395676 1.64457083 1.70771551 ..., 8.11063385 2.57144356
1.60219038]
[ 2.46784496 2.20636702 1.82298481 ..., 2.11637998 2.1444006
2.13336754]
[ 3.26898718 3.19584775 2.69124269 ..., 2.74416089 2.27447248
6.18890047]]
Process finished with exit code 0
I want to copy all the values in numpy to pandas dataframe with the define index and columns in dataframe.
The shape of both the pandas dataframe and the numpy array is the same.
DataFrameconstructor likeprint pd.DataFrame(raster_arr, index=raster_arr_df.index, columns=raster_arr_df.columns)