I'm using scipy's loadmat function to load a matlab data file into python.
from scipy.io import loadmat
data = loadmat('data.mat')
fields = data['field']
The type of fields is numpy.ndarray:
print 'fields type={}'.format(type(fields))
print 'fields dtype={}'.format(fields.dtype)
print 'fields shape={}'.format(fields.shape)
fields type=<type 'numpy.ndarray'> fields dtype=object fields shape=(5,)
I iterate over the array using nditer:
for x in np.nditer(fields, flags=['refs_ok']):
print 'x={}'.format(x)
print 'x type={}'.format(type(x))
print 'x dtype={}'.format(x.dtype)
print 'x shape={}'.format(x.shape)
break
x=[u'ACE'] x type=<type 'numpy.ndarray'> x dtype=object x shape=()
IndexError:
If I try to access the first element of x I get an IndexError:
x[0]
--------------------------------------------------------------------------- IndexError Traceback (most recent call last) <ipython-input-102-8c374ae22096> in <module>() 17 print 'type={}'.format(type(x)) 18 print 'dtype={}'.format(x.dtype) ---> 19 x[0] 20 break 21 IndexError: too many indices for array
Questions:
- How come, if
type(x)returnsnump.ndarrayit says "too many indices for array"? - How can I extract the contents of
xinto a string?
Here are the versions I'm using:
print 'python version: {}'.format(sys.version)
print 'numpy version: {}'.format(numpy.__version__)
print 'scipy version: {}'.format(scipy.__version__)
python version: 2.7.6 (default, Jun 22 2015, 17:58:13) [GCC 4.8.2] numpy version: 1.11.0 scipy version: 0.17.1
x.shape?x.shape, which returns()x[()]. See my answer.