0

I am reading in a constantly updated data.txt file and am calculating a rolling standard deviation on the incoming data stream. I am storing that in std. I have a window size of 100 on the rolling standard deviation.

I am receiving an error:

ValueError: cannot copy sequence with size 78 to array axis with dimension 1

where the size corresponds to the number of items in the std array. (So this, of course, increases every time I hit Run).

I was wondering why I am receiving this ValueError, and am looking for any suggestions to fix it! The animation works fine when I am just grading ax1.plot(xar, yar). But once I try to graph ax1.plot(xar, std), the problem arises.

The data in data.txt looks as follows:

[0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625]

My current code is as follows:

fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)

def animate(i):
    data = pd.read_csv("C:\\Users\\Desktop\\data.txt", sep="\[|\]\[|\]",engine = 'python', header = None)
    data = data.iloc[0]
    data = data.astype(str).apply(lambda x: x.split(',')[-1]).astype(float)
    data.pop(0)
    xar = []
    yar = []
    std = []
    for j in range(len(data)):
        xar.append(j)
    for k in range(len(data)):
        yar.append(data.iloc[k])
    yar = pd.DataFrame(yar)
    std.append(pd.rolling_std(yar, 100))
    ax1.clear()
    ax1.plot(xar,std)
ani = animation.FuncAnimation(fig, animate, interval=.01)
plt.show()

1 Answer 1

1

The reason for your error is that you stdbecomes a list (of one element) of a data frame. pd.rolling_std() is already giving you a data frame, and then you append it to your list. If you just directly assign it, it will work better:

std = pd.rolling_std(yar, 100)

However, when running pd.rolling_std() there is a deprecation warning given. So, the line should rather be:

std = yar.rolling(window=100,center=False).std()

Also, there are a few more simplifications that can be made as of how you generate xar and yar. xar is just a range and yar contains all the elements of data allowing you to write:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.animation as animation

def animate(i):
    data = pd.read_csv("C:\\Users\\Desktop\\data.txt", sep="\[|\]\[|\]",engine = 'python', header = None)
    data = data.iloc[0]
    data = data.astype(str).apply(lambda x: x.split(',')[-1]).astype(float)
    data.pop(0)
    xar = range(len(data))
    yar = pd.DataFrame(data)
    std = yar.rolling(window=100,center=False).std()
    ax1.clear()
    ax1.plot(xar,std)

fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
ani = animation.FuncAnimation(fig, animate, interval=.01)
plt.show()

where animate() has been somewhat simplified.

Sign up to request clarification or add additional context in comments.

7 Comments

Fantastic! This worked splendidly. Thanks for your support! People like you make this community so awesome.
At the very beginning of the animation, there is a large spike. How could I go about removing this initial spike in the animation?
I don't know your exact use case so I don't know. But, when using a rolling average, you have a bunch of nan (not a number) values in the beginning, before you have sufficiently many data points to get your first average (100 in the above code). Thus, there might be a bump when you hit upon 100 elements, where you are going from a nan value to an actual value. Could it be this you see?
That means there is not much to do about it, since it is a property of the data itself. It may be possible to use fewer values in the initial average, increasing from 1 to 100, but I don't know if that is any better. And it requires more logic.
Perhaps you may be able to support me with a follow-up question here: stackoverflow.com/questions/45358721/…
|

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.