2

I have a DataFrame similar to following:

new_df = spark.createDataFrame([
    ([['hello', 'productcode'], ['red','color']], 7),
    ([['hi', 'productcode'], ['blue', 'color']], 8),
    ([['hoi', 'productcode'], ['black','color']], 7)
], ["items", "frequency"])
new_df.show(3, False)

# +------------------------------------------------------------+---------+
# |items                                                       |frequency|
# +------------------------------------------------------------+---------+
# |[WrappedArray(hello, productcode), WrappedArray(red, color)]|7        |
# |[WrappedArray(hi, productcode), WrappedArray(blue, color)]  |8        |
# |[WrappedArray(hoi, productcode), WrappedArray(black, color)]|7        |
# +------------------------------------------------------------+---------+

I need to generate a new DataFrame similar to following:

# +-------------------------------------------
# |productcode     | color         |frequency|
# +-------------------------------------------
# |hello           | red          |       7  |
# |hi              | blue         |       8  |
# |hoi             | black        |       7  |
# +--------------------------------------------
1
  • 1
    new_df.select(col("items").getItem(0).getItem(0).alias('productcode'),col("items").getItem(1).getItem(0).alias('color'),col("frequency")).show() Commented Jan 17, 2018 at 11:29

1 Answer 1

4

You can convert items to map:

from pyspark.sql.functions import *
from operator import itemgetter

@udf("map<string, string>")
def as_map(vks):
    return {k: v for v, k in vks}

remapped = new_df.select("frequency", as_map("items").alias("items"))

Collect the keys:

keys = remapped.select("items").rdd \
   .flatMap(lambda x: x[0].keys()).distinct().collect()

And select:

remapped.select([col("items")[key] for key in keys] + ["frequency"]) 

+------------+------------------+---------+
|items[color]|items[productcode]|frequency|
+------------+------------------+---------+
|         red|             hello|        7|
|        blue|                hi|        8|
|       black|               hoi|        7|
+------------+------------------+---------+
Sign up to request clarification or add additional context in comments.

1 Comment

Thanks for the reply. But my dataframe has 3 elements and the expected result is different. I don't really need the column name again in row

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.