In reference to the docs page, https://docs.scipy.org/doc/numpy-1.14.0/reference/arrays.dtypes.html
you are using the fields dictionary form, with (data-type, offset) value
{'field1': ..., 'field2': ..., ...}
dt1 = {'pos': (('<f8', (3,)), 0),
'x': (('<f8', 1), 0),
'y': (('<f8', 1), 8),
'z': (('<f8', 1), 16)}
The display for the resulting dtype is the other dictionary format:
{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}
In [15]: np.dtype(dt1)
Out[15]: dtype({'names':['x','pos','y','z'],
'formats':['<f8',('<f8', (3,)),'<f8','<f8'],
'offsets':[0,0,8,16], 'itemsize':24})
In [16]: np.dtype(dt1).fields
Out[16]:
mappingproxy({'pos': (dtype(('<f8', (3,))), 0),
'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})
offsets aren't mentioned any where else on the documentation page.
The last format is a union type. It's a little unclear as to whether that's allowed or discouraged. The examples don't seem to work. There have been some changes in how multifield indexing works, and that may have affected this.
Let's play around with various ways of viewing the array:
In [25]: arr
Out[25]:
array([(0., [ 0. , 10. , 0. ], 10., 0. ),
(1., [ 1. , 11. , 0.1], 11., 0.1),
(2., [ 2. , 12. , 0.2], 12., 0.2),
(3., [ 3. , 13. , 0.3], 13., 0.3),
(4., [ 4. , 14. , 0.4], 14., 0.4)],
dtype={'names':['x','pos','y','z'], 'formats':['<f8',('<f8', (3,)),'<f8','<f8'], 'offsets':[0,0,8,16], 'itemsize':24})
In [29]: dt3=[('x','<f8'),('y','<f8'),('z','<f8')]
In [30]: np.dtype(dt3)
Out[30]: dtype([('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
In [31]: np.dtype(dt3).fields
Out[31]:
mappingproxy({'x': (dtype('float64'), 0),
'y': (dtype('float64'), 8),
'z': (dtype('float64'), 16)})
In [32]: arr.view(dt3)
Out[32]:
array([(0., 10., 0. ), (1., 11., 0.1), (2., 12., 0.2), (3., 13., 0.3),
(4., 14., 0.4)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
In [33]: arr['pos']
Out[33]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])
In [35]: arr.view('f8').reshape(5,3)
Out[35]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])
In [37]: arr.view(dt4)
Out[37]:
array([([ 0. , 10. , 0. ],), ([ 1. , 11. , 0.1],),
([ 2. , 12. , 0.2],), ([ 3. , 13. , 0.3],),
([ 4. , 14. , 0.4],)], dtype=[('pos', '<f8', (3,))])
In [38]: arr.view(dt4)['pos']
Out[38]:
array([[ 0. , 10. , 0. ],
[ 1. , 11. , 0.1],
[ 2. , 12. , 0.2],
[ 3. , 13. , 0.3],
[ 4. , 14. , 0.4]])