3

I am quite new to Python and Pandas and have some URL paths in a column and I want to split it into individual columns.

Each parameter of the string is separated by a semi-colon.

I understand there are a number of other answers on how to split data into multiple columns by a delimiter however in my example I want to dynamically create the columns and extract the value to go in each column from the parameter itself.

The column that each parameter should be put in is within the parameter itself and the data is after the equals sign. I want to put the data after the equals sign into the column that is before the equals sign.

For example:

cat=be_thnky;u1=men
cat=be_thnky;u1=custom

Should become

cat      u1
be_thnky men
be_thnky custom

For added complexity, not all parameters exist in each URL, where the parameter doesn't exist I would like the column to contain NaN.

Some example URL path strings I am working with are:

;src=4457426;type=be_salec;cat=be_thnky;qty=1;cost=60.00;ord=50608803;gtm=G64;gcldc=*;gclaw=*;gac=UA-32723457-1:*;u1=men;u2=schoenen;u3=none;u5=VA38G1NRI;u6=80;u7=0;u8=1;u9=EUR;u10=be;u11=Suede Old Skool Shoes;u12=checkout;u13=8;u14=VNIWTYI926IW7;u15=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=%2B03C782RqELOiuY1L2ELV7hFeTRMquZ9Eyr1lJqmoSQhClENiUJ6feRNwwAA1ZYd4V7tkAuIwyiIrClp7QaqfLeC%2B%2FPTLl7wSF%2FCyrVWqgiSJRgAS%2BWbXohu0DG8xsdPnSXp%2F%2F4MDb%2FkbPwh%2FT5EpiEWMkGur%2Fx%2FABR7Cvs4jh345776IITNx%2FTRZZXu4zeAco5P%2FvxyqDbmwvLKpPKljf3TpU0wOCmjCDWR5r3uR3ELErPFboWuV5H24FOIy7e%2B2b6m4YhCCDuzceKa5Qllkiwc4YI6AL9rIK1T2jExde343vk%2B4FZtK6XgOMtxbwv6pBIUMX%2Bn3kbb7soGQ%2FjnEwxzxMX5P%2FdMZzts6NkskMSICB955QKsZqPLepiS%2BWY5u5%2Bs9CPjquK%2FlsXmHTi26wq1cLqeiPdyolnE2AxaswLDhQcQbvDengszkSu8U8lTDhqaAxLExYF%2BMstZtKamD14AnMElNAbjZNcTEByzYlXOi1q2FpYg0kCyoaBBBtkRInSDBZtjxNWgd9bl98qs5R2ZqCiHmtOPrfcM53V77Acxcb5wl%2FkpdKEbTGuAijHpHgxpi55kIEcEmkJjvPnW7RwxUXPiVZbFjh34PlGJ10FaGvqPwsijBpR1TXrKWV3t3Z4r03yViU6txghbNtODiQ%3D%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd;~oref=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=%2B03C782RqELOiuY1L2ELV7hFeTRMquZ9Eyr1lJqmoSQhClENiUJ6feRNwwAA1ZYd4V7tkAuIwyiIrClp7QaqfLeC%2B%2FPTLl7wSF%2FCyrVWqgiSJRgAS%2BWbXohu0DG8xsdPnSXp%2F%2F4MDb%2FkbPwh%2FT5EpiEWMkGur%2Fx%2FABR7Cvs4jh345776IITNx%2FTRZZXu4zeAco5P%2FvxyqDbmwvLKpPKljf3TpU0wOCmjCDWR5r3uR3ELErPFboWuV5H24FOIy7e%2B2b6m4YhCCDuzceKa5Qllkiwc4YI6AL9rIK1T2jExde343vk%2B4FZtK6XgOMtxbwv6pBIUMX%2Bn3kbb7soGQ%2FjnEwxzxMX5P%2FdMZzts6NkskMSICB955QKsZqPLepiS%2BWY5u5%2Bs9CPjquK%2FlsXmHTi26wq1cLqeiPdyolnE2AxaswLDhQcQbvDengszkSu8U8lTDhqaAxLExYF%2BMstZtKamD14AnMElNAbjZNcTEByzYlXOi1q2FpYg0kCyoaBBBtkRInSDBZtjxNWgd9bl98qs5R2ZqCiHmtOPrfcM53V77Acxcb5wl%2FkpdKEbTGuAijHpHgxpi55kIEcEmkJjvPnW7RwxUXPiVZbFjh34PlGJ10FaGvqPwsijBpR1TXrKWV3t3Z4r03yViU6txghbNtODiQ%3D%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd

and

;src=4457426;type=be_salec;cat=be_thnky;qty=1;cost=79.17;ord=50619855;gtm=G64;gac=UA-32723457-1:*;u1=custom;u2=undefined;u3=none;u5=AQNNOQ;u6=95;u7=0;u8=1;u9=EUR;u10=be;u11=Men Era Shoes;u12=checkout;u13=;u14=;u15=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=aaHqAAtJa9bzV4lSFEuMWqdyG11jxs2yT0UY242hWRQyCn%2Ff7AHBrF%2ByFm6GF%2BZiumn%2B6cjIaHASWHpiwsBKSa5k5fMJoyz3ex%2B8FTyDOp3WwLgA9U3ibS6gLNMEl68UQ8K7bVk%2FP1%2BC2ckY17vriakRKvUpobXypW0AvXHgHGmaleDoIOlM6dVIX1pSHBPbeKDG4JVoXbUOltTgLUcnYbojIiIGx6m%2FYlHnYjWU%2BaYQpCK%2BRBeFd%2FKyekIN9y9wQlZHHKb7pFar8c3S24tuHj%2FeDGe1jwJ0S7%2BBnUb5WloJ1SSf0LjDyFSZAWBSzhidLIRM2OWyTXJeCBdBFNSw%2BwICm6uWHKPClJD%2FRIzO4D%2F3HQyS4sOeynLgyIR6JHsCv3FH%2B%2BrINsPE0Y3eI51mpm7UEmmcLmNKiONm11LwTD1U%2FZKgnLe50naDdiYj9%2BCt7TUkNuDiOYq1jaC2yOSKcz%2BGdF2i4bgEttXJlK84ZUeCUhfvGbQNebesaoRLrGgU7FkuOhut3LQm7Lqu5lpKYSt5cV8gkGP5%2Fm%2BOa%2FzKbRNmbcwACXuZ1hBJW0alkcX%2F3hfpPiSg9UrT1uZKRwfQUpx6fHzagiSWtcWXJDYO2SfWtlfoS%2B7W%2FIvIoD1FtMbCeVC6oAvltLOnIojrW3VYh1OrFUIlXcl0XMXzCPfRz%2B2v28tFOmsucTRbixJ9WyW3WqN2h3YMHZJQoSFbpUDSN7VQkFJmC1NgHzX09u7X1AUIcwP1TmLqO034RnK6ZSfmS38NuYhWCAmPUIyopyEmxqE3M%2FzqEWjId6S1DTmaJSzo09Rx2UtLnZXMOLKXifzoN8eQy3yQvFeNsKxh3IkJxb6uifVXDBpyelQibch9gDg%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd;~oref=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=aaHqAAtJa9bzV4lSFEuMWqdyG11jxs2yT0UY242hWRQyCn%2Ff7AHBrF%2ByFm6GF%2BZiumn%2B6cjIaHASWHpiwsBKSa5k5fMJoyz3ex%2B8FTyDOp3WwLgA9U3ibS6gLNMEl68UQ8K7bVk%2FP1%2BC2ckY17vriakRKvUpobXypW0AvXHgHGmaleDoIOlM6dVIX1pSHBPbeKDG4JVoXbUOltTgLUcnYbojIiIGx6m%2FYlHnYjWU%2BaYQpCK%2BRBeFd%2FKyekIN9y9wQlZHHKb7pFar8c3S24tuHj%2FeDGe1jwJ0S7%2BBnUb5WloJ1SSf0LjDyFSZAWBSzhidLIRM2OWyTXJeCBdBFNSw%2BwICm6uWHKPClJD%2FRIzO4D%2F3HQyS4sOeynLgyIR6JHsCv3FH%2B%2BrINsPE0Y3eI51mpm7UEmmcLmNKiONm11LwTD1U%2FZKgnLe50naDdiYj9%2BCt7TUkNuDiOYq1jaC2yOSKcz%2BGdF2i4bgEttXJlK84ZUeCUhfvGbQNebesaoRLrGgU7FkuOhut3LQm7Lqu5lpKYSt5cV8gkGP5%2Fm%2BOa%2FzKbRNmbcwACXuZ1hBJW0alkcX%2F3hfpPiSg9UrT1uZKRwfQUpx6fHzagiSWtcWXJDYO2SfWtlfoS%2B7W%2FIvIoD1FtMbCeVC6oAvltLOnIojrW3VYh1OrFUIlXcl0XMXzCPfRz%2B2v28tFOmsucTRbixJ9WyW3WqN2h3YMHZJQoSFbpUDSN7VQkFJmC1NgHzX09u7X1AUIcwP1TmLqO034RnK6ZSfmS38NuYhWCAmPUIyopyEmxqE3M%2FzqEWjId6S1DTmaJSzo09Rx2UtLnZXMOLKXifzoN8eQy3yQvFeNsKxh3IkJxb6uifVXDBpyelQibch9gDg%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd

2 Answers 2

2

Here's one solution using a dictionary comprehension followed by pd.concat:

str1 = ';src=4457426;type=be_salec;cat=be_thnky;qty=1;cost=60.00;ord=50608803;gtm=G64;gcldc=*;gclaw=*;gac=UA-32723457-1:*;u1=men;u2=schoenen;u3=none;u5=VA38G1NRI;u6=80;u7=0;u8=1;u9=EUR;u10=be;u11=Suede Old Skool Shoes;u12=checkout;u13=8;u14=VNIWTYI926IW7;u15=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=%2B03C782RqELOiuY1L2ELV7hFeTRMquZ9Eyr1lJqmoSQhClENiUJ6feRNwwAA1ZYd4V7tkAuIwyiIrClp7QaqfLeC%2B%2FPTLl7wSF%2FCyrVWqgiSJRgAS%2BWbXohu0DG8xsdPnSXp%2F%2F4MDb%2FkbPwh%2FT5EpiEWMkGur%2Fx%2FABR7Cvs4jh345776IITNx%2FTRZZXu4zeAco5P%2FvxyqDbmwvLKpPKljf3TpU0wOCmjCDWR5r3uR3ELErPFboWuV5H24FOIy7e%2B2b6m4YhCCDuzceKa5Qllkiwc4YI6AL9rIK1T2jExde343vk%2B4FZtK6XgOMtxbwv6pBIUMX%2Bn3kbb7soGQ%2FjnEwxzxMX5P%2FdMZzts6NkskMSICB955QKsZqPLepiS%2BWY5u5%2Bs9CPjquK%2FlsXmHTi26wq1cLqeiPdyolnE2AxaswLDhQcQbvDengszkSu8U8lTDhqaAxLExYF%2BMstZtKamD14AnMElNAbjZNcTEByzYlXOi1q2FpYg0kCyoaBBBtkRInSDBZtjxNWgd9bl98qs5R2ZqCiHmtOPrfcM53V77Acxcb5wl%2FkpdKEbTGuAijHpHgxpi55kIEcEmkJjvPnW7RwxUXPiVZbFjh34PlGJ10FaGvqPwsijBpR1TXrKWV3t3Z4r03yViU6txghbNtODiQ%3D%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd;~oref=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=%2B03C782RqELOiuY1L2ELV7hFeTRMquZ9Eyr1lJqmoSQhClENiUJ6feRNwwAA1ZYd4V7tkAuIwyiIrClp7QaqfLeC%2B%2FPTLl7wSF%2FCyrVWqgiSJRgAS%2BWbXohu0DG8xsdPnSXp%2F%2F4MDb%2FkbPwh%2FT5EpiEWMkGur%2Fx%2FABR7Cvs4jh345776IITNx%2FTRZZXu4zeAco5P%2FvxyqDbmwvLKpPKljf3TpU0wOCmjCDWR5r3uR3ELErPFboWuV5H24FOIy7e%2B2b6m4YhCCDuzceKa5Qllkiwc4YI6AL9rIK1T2jExde343vk%2B4FZtK6XgOMtxbwv6pBIUMX%2Bn3kbb7soGQ%2FjnEwxzxMX5P%2FdMZzts6NkskMSICB955QKsZqPLepiS%2BWY5u5%2Bs9CPjquK%2FlsXmHTi26wq1cLqeiPdyolnE2AxaswLDhQcQbvDengszkSu8U8lTDhqaAxLExYF%2BMstZtKamD14AnMElNAbjZNcTEByzYlXOi1q2FpYg0kCyoaBBBtkRInSDBZtjxNWgd9bl98qs5R2ZqCiHmtOPrfcM53V77Acxcb5wl%2FkpdKEbTGuAijHpHgxpi55kIEcEmkJjvPnW7RwxUXPiVZbFjh34PlGJ10FaGvqPwsijBpR1TXrKWV3t3Z4r03yViU6txghbNtODiQ%3D%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd'
str2 = ';src=4457426;type=be_salec;cat=be_thnky;qty=1;cost=79.17;ord=50619855;gtm=G64;gac=UA-32723457-1:*;u1=custom;u2=undefined;u3=none;u5=AQNNOQ;u6=95;u7=0;u8=1;u9=EUR;u10=be;u11=Men Era Shoes;u12=checkout;u13=;u14=;u15=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=aaHqAAtJa9bzV4lSFEuMWqdyG11jxs2yT0UY242hWRQyCn%2Ff7AHBrF%2ByFm6GF%2BZiumn%2B6cjIaHASWHpiwsBKSa5k5fMJoyz3ex%2B8FTyDOp3WwLgA9U3ibS6gLNMEl68UQ8K7bVk%2FP1%2BC2ckY17vriakRKvUpobXypW0AvXHgHGmaleDoIOlM6dVIX1pSHBPbeKDG4JVoXbUOltTgLUcnYbojIiIGx6m%2FYlHnYjWU%2BaYQpCK%2BRBeFd%2FKyekIN9y9wQlZHHKb7pFar8c3S24tuHj%2FeDGe1jwJ0S7%2BBnUb5WloJ1SSf0LjDyFSZAWBSzhidLIRM2OWyTXJeCBdBFNSw%2BwICm6uWHKPClJD%2FRIzO4D%2F3HQyS4sOeynLgyIR6JHsCv3FH%2B%2BrINsPE0Y3eI51mpm7UEmmcLmNKiONm11LwTD1U%2FZKgnLe50naDdiYj9%2BCt7TUkNuDiOYq1jaC2yOSKcz%2BGdF2i4bgEttXJlK84ZUeCUhfvGbQNebesaoRLrGgU7FkuOhut3LQm7Lqu5lpKYSt5cV8gkGP5%2Fm%2BOa%2FzKbRNmbcwACXuZ1hBJW0alkcX%2F3hfpPiSg9UrT1uZKRwfQUpx6fHzagiSWtcWXJDYO2SfWtlfoS%2B7W%2FIvIoD1FtMbCeVC6oAvltLOnIojrW3VYh1OrFUIlXcl0XMXzCPfRz%2B2v28tFOmsucTRbixJ9WyW3WqN2h3YMHZJQoSFbpUDSN7VQkFJmC1NgHzX09u7X1AUIcwP1TmLqO034RnK6ZSfmS38NuYhWCAmPUIyopyEmxqE3M%2FzqEWjId6S1DTmaJSzo09Rx2UtLnZXMOLKXifzoN8eQy3yQvFeNsKxh3IkJxb6uifVXDBpyelQibch9gDg%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd;~oref=https://www.vans.be/webapp/wcs/stores/servlet/OrderOKView?langId=-27&catalogId=11260&storeId=10167&krypto=aaHqAAtJa9bzV4lSFEuMWqdyG11jxs2yT0UY242hWRQyCn%2Ff7AHBrF%2ByFm6GF%2BZiumn%2B6cjIaHASWHpiwsBKSa5k5fMJoyz3ex%2B8FTyDOp3WwLgA9U3ibS6gLNMEl68UQ8K7bVk%2FP1%2BC2ckY17vriakRKvUpobXypW0AvXHgHGmaleDoIOlM6dVIX1pSHBPbeKDG4JVoXbUOltTgLUcnYbojIiIGx6m%2FYlHnYjWU%2BaYQpCK%2BRBeFd%2FKyekIN9y9wQlZHHKb7pFar8c3S24tuHj%2FeDGe1jwJ0S7%2BBnUb5WloJ1SSf0LjDyFSZAWBSzhidLIRM2OWyTXJeCBdBFNSw%2BwICm6uWHKPClJD%2FRIzO4D%2F3HQyS4sOeynLgyIR6JHsCv3FH%2B%2BrINsPE0Y3eI51mpm7UEmmcLmNKiONm11LwTD1U%2FZKgnLe50naDdiYj9%2BCt7TUkNuDiOYq1jaC2yOSKcz%2BGdF2i4bgEttXJlK84ZUeCUhfvGbQNebesaoRLrGgU7FkuOhut3LQm7Lqu5lpKYSt5cV8gkGP5%2Fm%2BOa%2FzKbRNmbcwACXuZ1hBJW0alkcX%2F3hfpPiSg9UrT1uZKRwfQUpx6fHzagiSWtcWXJDYO2SfWtlfoS%2B7W%2FIvIoD1FtMbCeVC6oAvltLOnIojrW3VYh1OrFUIlXcl0XMXzCPfRz%2B2v28tFOmsucTRbixJ9WyW3WqN2h3YMHZJQoSFbpUDSN7VQkFJmC1NgHzX09u7X1AUIcwP1TmLqO034RnK6ZSfmS38NuYhWCAmPUIyopyEmxqE3M%2FzqEWjId6S1DTmaJSzo09Rx2UtLnZXMOLKXifzoN8eQy3yQvFeNsKxh3IkJxb6uifVXDBpyelQibch9gDg%3D&ddkey=https%3AVFCWorldpayPunchoutCallbackCmd'

def converter(x):
    return dict(i.split('=', 1) for i in str1.split(';') if '=' in i)

res = pd.concat([pd.DataFrame.from_dict(converter(i), orient='index').T \
                 for i in (str1, str2)])

Result:

print(res)

       src      type       cat qty   cost       ord  gtm gcldc gclaw  \
0  4457426  be_salec  be_thnky   1  60.00  50608803  G64     *     *   
0  4457426  be_salec  be_thnky   1  60.00  50608803  G64     *     *   

                                               ~oref  
0  https://www.vans.be/webapp/wcs/stores/servlet/...  
0  https://www.vans.be/webapp/wcs/stores/servlet/...  

[2 rows x 25 columns]
Sign up to request clarification or add additional context in comments.

3 Comments

Nice dict comprehension answer! I just wanted to add, this solution has the further advantage on top of Rakesh's one that the fields with several '=' characters are correctly not split after the first (thanks to i.split('=', 1) as opposed to i.split('=')[1]).
Thanks for the answer, I should have mentioned in my question that I have over 9000 rows of these strings to loop over and they are already in a column of a pandas data frame. How do I utilise your function to loop over each row of a column in a pandas data frame?
Nevermind, doing that part was quite simple and your solution seems to work. Thanks!
0

You can do:

def gen_col(u):
    for i in u:
        d = {}
        val = filter(None, i.split(";"))
        for j in val:
            v = j.split("=")
            d[v[0]] = v[1]
        yield d

your9000list = list(yourOtherDFWithURLS['URLCOL'].values)
df = pd.DataFrame([r for r in gen_col(your9000list])
print(df)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.