Use
Ex.
import pandas as pd
df = pd.DataFrame({'col-a': [1,1,1,2,2,3,3],
'col-b': ['None','Failed','Passed','None','Passed','Inconclusive','Passed']})
df = df.drop(df[df['col-b'] == 'None'].index).groupby('col-a').first().reset_index()
# or
# m = df['col-b'].apply(lambda x: x == 'None')
# df = df[~m].groupby('col-a').first().reset_index()
print(df)
or mask and groupby, if None is class NoneType.
df = pd.DataFrame({'col-a': [1,1,1,2,2,3,3],
'col-b': [None,'Failed','Passed',None,'Passed','Inconclusive','Passed']})
m = df['col-b'].apply(lambda x: x is None)
df = df[~m].groupby('col-a').first().reset_index()
print(df)
O/P:
col-a col-b
0 1 Failed
1 2 Passed
2 3 Inconclusive