While I'm still new at OpenCL (and barely glanced at CUDA), optimization at the developer level can be summarized as structuring your code so that it matches the hardware's (and compiler's) preferred way of doing things.
On GPUs, this can be anything from correctly ordering your data to take advantage of cache coherency (GPUs LOVE to work with cached data, from the top all the way down to the individual cores [there are several levels of cache]) to taking advantage of built-in operations like vector and matrix manipulation. I recently had to implement FDTD in OpenCL and found that by replacing the expanded dot/cross products in the popular implementations with matrix operations (which GPUs love!), reordering loops so that the X dimension (elements of which are stored sequentially) is handled in the innermost loop instead of the outer, avoiding branching (which GPUs hate), etc, I was able to increase the speed performance by about 20%. Those optimizations should work in CUDA, OpenCL or even GPU assembly, and I would expect that to be true of all of the most effective GPU optimizations.
Of course, most of this is application-dependent, so it may fall under the TIAS (try-it-and-see) category.
Here are a few links I found that look promising:
NVIDIA - Best Practices for OpenCL Programming
AMD - Porting CUDA to OpenCL
My research (and even NVIDIA's documentation) points to a nearly 1:1 correspondence between CUDA and OpenCL, so I would be very surprised if optimizations did not translate well between them. Most of what I have read focuses on cache coherency, avoiding branching, etc.
Also, note that in the case of OpenCL, the actual compilation process is handled by the vendor (I believe it happens in the video driver), so it may be worthwhile to have a look at the driver documentation and OpenCL kits from your vendor (NVIDIA, ATI, Intel(?), etc).