It's a hard question and it heavily depends on your hardware, OS and complier. But for sake of theory, you should consider two things: branching and memory access. As branching is generally evil, you want to avoid it. I wouldn't even surprise if some compiler optimization took place and your second snippet would be reduced to the first one (compilers love avoiding branches, they probably consider it as a hobby, but they have a reason). So in these terms the first example is much cleaner and easier to deal with.
There're also CPU caches and other memory related issues. I believe that in both examples you have to actually load the memory into the CPU cache, so you can either read it or update. While reading is not a problem, writing have to propagate the changes up. I wouldn't be worried if you use the function in a single thread (as @gby pointed out, OS can push the changes a little bit later).
There is only one scenario I can come up with, that would make me consider solution from your second example. If I shared the table between threads to work on it in parallel (without locking) and had separate caches for different CPUs. Then, every time you amend the cache line from one thread, the other thread have to update it's copy before reading or writing to the same memory block. It's known as a cache coherence and it actually may hurt your performance badly; in such a case I could consider conditional writes. But wait, it's probably far away from your question...
n * i < endslightly.nandendstay constant throughout the loop. So before the loop begins,int end_n = end/n;and then you can change the loop condition toi < end_n. That will avoid the repeated multiplication each loop. Again, I say might - I don't know assembly; there could be a compound instruction for testing if 'a*b < c' that makes this 'optimization' worthless.