Is there any issues with using the fuzzy match lib? The implementation is pretty straight forward and works well given the above data is relatively similar. I've performed the below without preprocessing.
import pandas as pd
""" Install the libs below via terminal:
$pip install fuzzywuzzy
$pip install python-Levenshtein
"""
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
#creating the data frames
text_a = ['AKIL KUMAR SINGH','OUSMANI DJIBO','PETER HRYB','CNOC LIMITED','POLY NOVA INDUSTRIES LTD','SAM GAWED JR','ADAN GENERAL LLC','CHINA MOBLE LIMITED','CASTAR CO., LTD.','MURAN','OLD SAROOP FOR CAR SEAT COVERS','CNP HEALTHCARE, LLC','GLORY PACK LTD','AUNCO VENTURES','INTERNATIONAL COMPANY','SAMEERA HEAT AND ENERGY FUND']
text_b = ['Singh, Akil Kumar','DJIBO, Ousmani Illiassou','HRYB, Peter','CNOOC LIMITED','POLYNOVA INDUSTRIES LTD.','GAWED, SAM','ADAN GENERAL TRADING FZE','CHINA MOBILE LIMITED','CASTAR GROUP CO., LTD.','MURMAN','Old Saroop for Car Seat Covers','CNP HEATHCARE, LLC','GLORY PACK LTD.','AUNCO VENTURE','INTL COMPANY','SAMEERA HEAT AND ENERGY PROPERTY FUND']
df_text_a = pd.DataFrame(text_a, columns=['text_a'])
df_text_b = pd.DataFrame(text_b, columns=['text_b'])
def lets_match(txt: str, chklist: list) -> str:
return process.extractOne(txt, chklist, scorer=fuzz.token_set_ratio)
#match Text_A against Text_B
result_txt_ab = df_text_a.apply(lambda x: lets_match(str(x), text_b), axis=1, result_type='expand')
result_txt_ab.rename(columns={0:'Return Match', 1:'Match Value'}, inplace=True)
df_text_a[result_txt_ab.columns]=result_txt_ab
df_text_a
text_a Return Match Match Value
0 AKIL KUMAR SINGH Singh, Akil Kumar 100
1 OUSMANI DJIBO DJIBO, Ousmani Illiassou 72
2 PETER HRYB HRYB, Peter 100
3 CNOC LIMITED CNOOC LIMITED 70
4 POLY NOVA INDUSTRIES LTD POLYNOVA INDUSTRIES LTD. 76
5 SAM GAWED JR GAWED, SAM 100
6 ADAN GENERAL LLC ADAN GENERAL TRADING FZE 67
7 CHINA MOBLE LIMITED CHINA MOBILE LIMITED 79
8 CASTAR CO., LTD. CASTAR GROUP CO., LTD. 81
9 MURAN SAMEERA HEAT AND ENERGY PROPERTY FUND 41
10 OLD SAROOP FOR CAR SEAT COVERS Old Saroop for Car Seat Covers 100
11 CNP HEALTHCARE, LLC CNP HEATHCARE, LLC 58
12 GLORY PACK LTD GLORY PACK LTD. 100
13 AUNCO VENTURES AUNCO VENTURE 56
14 INTERNATIONAL COMPANY INTL COMPANY 74
15 SAMEERA HEAT AND ENERGY FUND SAMEERA HEAT AND ENERGY PROPERTY FUND 86
#match Text_B against Text_A
result_txt_ba= df_text_b.apply(lambda x: lets_match(str(x), text_a), axis=1, result_type='expand')
result_txt_ba.rename(columns={0:'Return Match', 1:'Match Value'}, inplace=True)
df_text_b[result_txt_ba.columns]=result_txt_ba
df_text_b
text_b Return Match Match Value
0 Singh, Akil Kumar AKIL KUMAR SINGH 100
1 DJIBO, Ousmani Illiassou OUSMANI DJIBO 100
2 HRYB, Peter PETER HRYB 100
3 CNOOC LIMITED CNOC LIMITED 74
4 POLYNOVA INDUSTRIES LTD. POLY NOVA INDUSTRIES LTD 74
5 GAWED, SAM SAM GAWED JR 86
6 ADAN GENERAL TRADING FZE ADAN GENERAL LLC 86
7 CHINA MOBILE LIMITED CHINA MOBLE LIMITED 81
8 CASTAR GROUP CO., LTD. CASTAR CO., LTD. 100
9 MURMAN ADAN GENERAL LLC 33
10 Old Saroop for Car Seat Covers OLD SAROOP FOR CAR SEAT COVERS 100
11 CNP HEATHCARE, LLC CNP HEALTHCARE, LLC 56
12 GLORY PACK LTD. GLORY PACK LTD 100
13 AUNCO VENTURE AUNCO VENTURES 53
14 INTL COMPANY INTERNATIONAL COMPANY 50
15 SAMEERA HEAT AND ENERGY PROPERTY FUND SAMEERA HEAT AND ENERGY FUND 100
if sorts(punt(x[text1.casefold()])) == sorts(punt(x[text2])):maybe you need to usetext2.casefoldtoo?POLY NOVA INDUSTRIES LTDbe equal toPOLYNOVA INDUSTRIES LTD.? and what aboutCNOC LIMITEDandCNOOC LIMITED? Even though they seem to be the same, they are not actually. So, it'd be better if you added your expectedTrue/Falsevalues for the sample data you have in the question.