I created an activation function class Threshold that should operate on one-hot-encoded image tensors.
The function performs min-max feature scaling on each channel followed by thresholding.
class Threshold(nn.Module):
def __init__(self, threshold=.5):
super().__init__()
if threshold < 0.0 or threshold > 1.0:
raise ValueError("Threshold value must be in [0,1]")
else:
self.threshold = threshold
def min_max_fscale(self, input):
r"""
applies min max feature scaling to input. Each channel is treated individually.
input is assumed to be N x C x H x W (one-hot-encoded prediction)
"""
for i in range(input.shape[0]):
# N
for j in range(input.shape[1]):
# C
min = torch.min(input[i][j])
max = torch.max(input[i][j])
input[i][j] = (input[i][j] - min) / (max - min)
return input
def forward(self, input):
assert (len(input.shape) == 4), f"input has wrong number of dims. Must have dim = 4 but has dim {input.shape}"
input = self.min_max_fscale(input)
return (input >= self.threshold) * 1.0
When I use the function I get the following error, since the gradients are not calculated automatically I assume.
Variable._execution_engine.run_backward(RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
I already had a look at How to properly update the weights in PyTorch? but could not get a clue how to apply it to my case.
How is it possible to calculate the gradients for this function?
Thanks for your help.