NumPy structured arrays have named columns:
import numpy as np
a = range(100)
A = np.array(list(zip(*[iter(a)] * 2)), dtype=[('C1', 'int32'),('C2', 'int64')])
print(A.dtype)
[('C1', '<i4'), ('C2', '<i8')]
You can access the columns by name like this:
print(A['C1'])
# [ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
# 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98]
Note that using np.array with zip causes NumPy to build an array from a temporary list of tuples. Python lists of tuples use a lot more memory than equivalent NumPy arrays. So if your array is very large you may not want to use zip.
Instead, given a NumPy array A, you could use ravel() to make A a 1D
array, and then use view to turn it into a structured array, and then use astype to convert the columns to the desired type:
a = range(100)
A = np.array(a).reshape( len(a)//2, 2)
A = A.ravel().view([('col1','i8'),('col2','i8'),]).astype([('col1','i4'),('col2','i8'),])
print(A[:5])
# array([(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)],
# dtype=[('col1', '<i4'), ('col2', '<i8')])
print(A.dtype)
# dtype([('col1', '<i4'), ('col2', '<i8')])
__str__method to pretty-print your arrays with headers.