Given column-spaced the format of your data,
1 0 0 617.09 0.00 9.38 l 0.0000E+00
2 0 0 7169.00 6978.44 94.10 o 0.1913E-05
3 0 0 366.08 371.91 14.06 o 0.6503E-03
4 0 0 5948.04 5586.09 52.95 o 0.2804E-05
5 0 0 3756.34 3944.63 50.69 o 0.6960E-05
-11 1 0 147.27 93.02 23.25 o 0.1320E-02
-10 1 0 -2.31 5.71 9.57 o 0.2533E-02
I think it would be easiest to just use Python string manipulation tools like split to parse the file:
def to_float(item):
try:
return float(item)
except ValueError:
return item
def formatter(lines):
for line in lines:
if not line.strip(): continue
yield [to_float(item) for item in line.split()]
dct = {}
with open('data') as f:
for row in formatter(f):
dct[tuple(row[:3])] = row[5:7]
print(dct)
yields
{(-11.0, 1.0, 0.0): [23.25, 'o'], (4.0, 0.0, 0.0): [52.95, 'o'], (1.0, 0.0, 0.0): [9.38, 'l'], (-10.0, 1.0, 0.0): [9.57, 'o'], (3.0, 0.0, 0.0): [14.06, 'o'], (5.0, 0.0, 0.0): [50.69, 'o'], (2.0, 0.0, 0.0): [94.1, 'o']}
Original answer:
genfromtxt has a parameter dtype, which when set to None causes genfromtxt to try to guess the appropriate dtype:
import numpy as np
arr = np.genfromtxt('data', dtype = None)
dct = {tuple(row[:3]):row[5:7] for row in arr}
For example, with data like this:
1 2 3 4 5 6 7 8 9 10
1 2 4 4 5 6 7 8 9 10
1 2 5 4 5 6 7 8 9 10
dct gets set to
{(1, 2, 5): array([6, 7]), (1, 2, 4): array([6, 7]), (1, 2, 3): array([6, 7])}